Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (1) : 87-99    https://doi.org/10.1007/s11707-021-0967-4
RESEARCH ARTICLE
The evolution of coal, examining the transitions from anthracite to natural graphite: a spectroscopy and optical microscopy evaluation
Liang YUAN1, Qinfu LIU1(), Kuo LI1, Ying QUAN1, Xiaoguang LI2, Jonathan P. MATHEWS3
1. School of Geosciences and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
3. The EMS Energy Institute, and the Leone Family Department of Energy and Mineral Engineering, Pennsylvania State University, University Park PA 16802, USA
 Download: PDF(6954 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Coal-derived natural graphite (CDNG) has multiple industrial applications. Here, ten metamorphic coals from anthracite to CDNG were obtained from Lutang and Xinhua in the Hunan Province and Panshi in the Jilin Province. Bulk characterization (proximate and ultimate analyses, X-Ray powder diffraction (XRD), and powder Raman spectroscopy), along with optical microscopy, scanning electron microscope (SEM) and micro-Raman spectroscopy were utilized to examine the transitions from anthracite to semi-graphite to CDNG. The XRD and Raman spectroscopy data indicate that from anthracite to highly ordered graphite the average crystal diameter (La) and height (Lc) increased from 6.1 and 4.6 nm to 34.8 and 27.5 nm, respectively. The crystalline parameters of the CDNG samples from Panshi and Lutang varied slightly when closer to the intrusive body. Optical microscopy and SEM indicated that in the anthracite samples there were thermoplastic vitrinite, devolatilized vitrinite, and some “normal” macerals. In the meta-anthracite, pyrolytic carbon, mosaic structure, and crystalline tar were present. In the CDNG there were flake graphite, crystalline aggregates, and matrix graphite. The crystalline aggregates show the highest structural ordering degree as determined from Raman spectral parameters (full-width at half maxima (G-FWHM) ~20 cm−1, D1/(D1 + D2 + G) area ratio (R2) value < 0.5). The flake graphite is less ordered with G-FWHM ~28 cm −1 and 0.5 < R2 < 1, but a larger grain size (up to 50 μm). The mosaic structures were likely the precursors of the matrix graphite through in situ solid-state transformation. The pyrolytic carbon and crystalline tars are the transient phase of gas-state and liquid-state transformations. This study is beneficial to realize the rational utilization of CDNG.

Keywords micro-Raman spectroscopy      structural ordering evolution      coal-derived natural graphite      XRD      anthracite     
Corresponding Author(s): Qinfu LIU   
About author:

* These authors contributed equally to this work.

Online First Date: 30 June 2022    Issue Date: 03 July 2023
 Cite this article:   
Liang YUAN,Qinfu LIU,Kuo LI, et al. The evolution of coal, examining the transitions from anthracite to natural graphite: a spectroscopy and optical microscopy evaluation[J]. Front. Earth Sci., 2023, 17(1): 87-99.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0967-4
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I1/87
Fig.1  Geological sketch map of the study region showing sampling locations (the Xinhua area was modified after (Li et al., 2018) and the Lutang area was modified after (Wang et al., 2019a)). (a) Panshi, Jilin Province, (b) Lutang, Hunan Province, and (c) Xinhua, Hunan Province.
Fig.2  Illustration of how to calculate asymmetry index (AI).
RegionSamplesProximate analysis (wt%) Ultimate analysis (wt%, dmmf)Macerals or MDCs
Moist(ad)Ash(d)VM(daf)FC(d)CHORmax%
XinhuaCM1.532.094.2995.71 94.360.874.659.4948.2% vitirnite, 51.1% inertinite
SL2.3815.655.6279.693.70.463.419.9637.7% vitrinite, 39.6% inertinite,
BC1.8410.094.8985.5196.40.312.865.3917.5% vitrinite, 27.3% Inertinite, 46.6% MG
SXL0.688.365.9388.898.460.041.174.954.3% inertinite, 82.6% MG
LutangNF630.6912.911.6985.6297.890.061.996.0240.3% MG, 23.4% FG, 10% CA
NF680.9518.833.5178.3298.330.033.595.2956.3% MG, 33% FG, 12.4% CA
NF6170.8125.283.7871.8997.350.192.214.6870.4% MG, 23.1% FG, 7.4% CA
PanshiPSXRD2.2226.043.5171.3695.920.04nd4.5465.4% MG, 13.3% FG, 20.5% CA
PSZK0.8649.296.647.2999.33ndnd5.2880.1% MG, 12.3% FG, 3% CA
Tab.1  Proximate and ultimate analyses (part of data from Yuan et al. (2021) and Li et al. (2018))
Fig.3  Raw XRD and Raman spectra of demineralized coal and CDNG samples.
RegionSamplesd002/nmLa/nmLcnmNaveAIR2G-FWHM (cm?1)Types
XinhuaCM0.34766.14.614 0.7551anthracite
SL0.338136.519.5590.550.6248meta-anthracite
BC0.337023.417.2520.470.7040semi-graphite
SXL0.337834.827.5830.610.5925CDNG
LutangNF630.335474.539.21170.680.4320CDNG
NF680.335588.334.41040.650.4820CDNG
NF6170.336774.539.21180.630.6020CDNG
PanshiPSXRD0.335557.439.41180.700.5323CDNG
PSZK0.335472.242.11270.720.4620CDNG
Tab.2  Crystalline parameter and basic properties of coal and CDNG
Fig.4  Relationship between AI (a), R2, and d002 (b).
Fig.5  Representative photomicrographs and SEM images of samples. For optical observation, the images were taken under polarized light, × 50 anti-reflective objective, under oil immersion. (a) thermoplastic vitrinite (TV); (b) TV with 90° rotation; (c) devolatilized vitrinite (D-V); (d) desmocollinite (Dt); (e) edge side of the graphite sheet under SEM and (f) frontage of the graphite sheet under SEM.
Fig.6  Representative photomicrographs and SEM of samples. For optical observation, the images were taken under polarized light, × 50 anti-reflective objective, under oil immersion. (a) Pyrolytic carbon (PyC); (b) crystalline tar (CT) and mosaic structure (MS); (c) CT in the cell cavity; (d) CT in the fracture; (e) PyC under SEM; (f) a focus on the PyC microspheres of (e); (g) CT under SEM; (h) a focus on the CT of (g).
Fig.7  Representative photomicrographs and SEM of samples. For optical observation, the images were taken under polarized light, × 50 anti-reflective objective, under oil immersion. (a) PyC and Matrix graphite (MG) in semi-graphite; (b) flake graphite (FG) and MG in semi-graphite; (c) PyC, CT, and MG in semi-graphite; (d) MG, CT, and crystalline aggregates (CA) in CDNG; (e) and (f) FG and CA in CDNG. (g) MG under SEM in CDNG; (h) graphite basal plane (GBP); (i) and (j) graphite edge plane (GEP) under SEM in CDNG.
Fig.8  Representative micro-Raman patterns and peak-fitting patterns of the first-order region of the maceral/MDCs. (a) “Normal” vitrinite; (b) TV; (c) D-V; (d) CT in vacuoles; (e) MS; (f) MG; (g) FG and (h) CA. The X-axis is Raman shift (cm?1) and the Y-axis is intensity (a.u).
SamplesComponentsD4 D1 D3 G D2R1R2
FWHMPositionFWHMPositionFWHMPositionFWHMPositionFWHMPosition
CMDT198 (3.30)1240 (4.85) 252 (2.73)1337 (4.43) 92 (1.34)1555 (6.51) 59 (7.52)1594 (9.06)   0.860.14
TV73 (4.45)1186 (8.08)77 (7.45)1344 (5.38)  49 (6.29)1587 (9.35)  1.270.67
D-V  49 (1.07)1349 (0.89)  41 (2.69)1590 (7.24)25 (9.35)1618 (1.34)2.640.70
SLMS  35 (0.75)1350 (3.53)  26 (2.93)1583 (9.87)15 (3.38)1622 (5.21)0.590.43
CT  37 (8.42)1351 (1.56)  26 (7.08)1582 (8.27)14 (5.43)1623 (7.96)0.280.28
BCPyC  40 (8.39)1351 (1.41)  24 (1.68)1584 (5.59)20 (0.81)1619 (9.74)1.670.60
CT  36 (2.18)1351 (2.66)  26 (7.84)1584 (4.73)15 (3.61)1622 (5.35)0.890.53
CA  33 (5.49)1353 (9.51)  21 (7.85)1582 (5.41)5 (8.71)1624 (4.27)0.190.22
MG  32 (5.07)1351 (7.75)  26 (1.34)1583 (9.44)13 (2.25)1622 (7.72)0.730.46
SXLCA  29 (1.88)1353 (2.13)  24 (6.02 )1582 (1.90)  0.150.16
MG  34 (8.76)1350 (4.46)  23 (5.31)1582 (4.06)13 (3.84)1620 (4.28)0.420.38
PSXRDCA  32 (2.77)1349 (9.87)  22 (3.66)1582 (6.41)9 (7.60)1622 (0.36)0.280.29
FG  41 (0.49)1351 (6.06)  26 (4.11)1583 (5.06)17 (6.45)1622 (4.68)0.760.52
PSZKCA  29 (3.32)1351 (6.95)  17 (8.79)1583 (1.93)11 (0.71)1623 (1.55)0.270.30
FG  46 (5.69)1352 (9.88)  26 (5.33)1583 (0.15)17 (2.81)1623 (8.22)0.660.57
NF63FG  42 (8.41)1351 (3.73)  25 (9.65)1583 (8.05)20 (0.36)1621 (0.81)0.740.52
CA  32 (1.41)1349 (2.57)  21 (4.86)1582 (3.76)6 (1.71)1620 (1.58)0.260.28
NF68FG  44 (6.99)1350 (5.13)  27 (5.96)1582 (3.63)20 (6.91)1621 (0.66)0.900.56
CA  33 (0.22)1351 (6.06)  22 (8.69)1582 (0.73)8 (0.97)1621 (0.12)0.210.24
NF617FG  42 (6.46)1354 (0.16)  28 (1.91)1584 (2.62)21 (2.80)1623 (8.18)0.900.60
CA  29 (0.47)1351 (1.14)  21 (3.63)1582 (2.11)  0.060.08
Tab.3  Detailed micro-Raman parameters of selected samples
Fig.9  Crystalline aggregates and CTs within the same MDC particle and their micro-Raman pattern.
Fig.10  A plot of D1-FWHM versus R1 (Rouzaud et al., 2015).
1 D Y, Bai J Z, Huang Y R, Liu G Y, Wu X H, Wang (2005). Framework of mesozoic tectonic evolution in southeastern Hunan and the Hunan-Guangdong-Jiangxi border area. Chin Geol, 32(4): 566−570
2 O, Beyssac D Rumble (2014). Graphitic carbon: a ubiquitous, diverse, and useful geomaterial.Elements, 10(6): 415–420
https://doi.org/10.2113/gselements.10.6.415
3 C C, Blanche J N, Rouzaud D Dumas (1995). New data on anthracite graphitizibility
4 M, Bonijoly M, Oberlin A Oberlin (1982). A possible mechanism for natural graphite formation.Int J Coal Geol, 1(4): 283–312
https://doi.org/10.1016/0166-5162(82)90018-0
5 P R, Buseck O Beyssac (2014). From organic matter to graphite: Graphitization.Elements, 10(6): 421–426
https://doi.org/10.2113/gselements.10.6.421
6 P R, Buseck B J Huang (1985). Conversion of carbonaceous material to graphite during metamorphism.Geochim Cosmochim Acta, 49(10): 2003–2016
https://doi.org/10.1016/0016-7037(85)90059-6
7 R M, Bustin J V, Ross J N Rouzaud (1995). Mechanisms of graphite formation from kerogen: experimental evidence.Int J Coal Geol, 28(1): 1–36
https://doi.org/10.1016/0166-5162(95)00002-U
8 L I, Chao D H, Wang L M, Zhou H, Zhao X W, Li W J Qu (2017). Study on the Re-Os isotope composition of graphite from the Lutang graphite deposit in Hunan Province. Rock and Mineral Analysis
9 S, Duber J N, Rouzaud C, Bény D Dumas (1993). Graphitization of anthracites
10 A, Eckmann A, Felten A, Mishchenko L, Britnell R, Krupke K S, Novoselov C Casiraghi (2012). Probing the nature of defects in graphene by Raman spectroscopy.Nano Lett, 12(8): 3925–3930
https://doi.org/10.1021/nl300901a pmid: 22764888
11 D, González M A, Montes-Morán A B Garcia (2003). Graphite materials prepared from an anthracite: a structural characterization.Energy Fuels, 17(5): 1324–1329
https://doi.org/10.1021/ef0300491
12 F, Goodarzi O R, Eckstrand L, Snowdon B, Williamson L D Stasiuk (1992). Thermal metamorphism of bitumen in archean rocks by ultramafic volcanic flows.Int J Coal Geol, 20(1): 165–178
https://doi.org/10.1016/0166-5162(92)90009-L
13 A, Guedes B, Valentim A C, Prieto F Noronha (2012). Raman spectroscopy of coal macerals and fluidized bed char morphotypes.Fuel, 97: 443–449
https://doi.org/10.1016/j.fuel.2012.02.054
14 A, Guedes B, Valentim A C, Prieto S, Rodrigues F Noronha (2010). Micro-raman spectroscopy of collotelinite, fusinite and macrinite.Int J Coal Geol, 83(4): 415–422
https://doi.org/10.1016/j.coal.2010.06.002
15 Y Z, Han R T, Xu Q L, Hou J, Wang J N Pan (2016). Deformation mechanisms and macromolecular structure response of anthracite under different stress.Energ Fuel, 30(2): 975–983
https://doi.org/10.1021/acs.energyfuels.5b02837
16 P J F Harris (2005). New perspectives on the structure of graphitic carbons.Crit Rev Solid State Mater Sci, 30(4): 235–253
https://doi.org/10.1080/10408430500406265
17 R, Hinrichs M T, Brown M A Z, Vasconcellos M V, Abrashev W Kalkreuth (2014). Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy.Int J Coal Geol, 136: 52–58
https://doi.org/10.1016/j.coal.2014.10.013
18 J C, Hower J M K, O’Keefe B, Valentim A Guedes (2021a). Contrasts in maceral textures in progressive metamorphism versus near-surface hydrothermal metamorphism.Int J Coal Geol, 246: 103840
https://doi.org/10.1016/j.coal.2021.103840
19 J C, Hower S M, Rimmer M, Mastalerz N J Wagner (2019). Notes on the mechanisms of coal metamorphism in the Pennsylvania anthracite fields.Int J Coal Geol, 202: 161–170
https://doi.org/10.1016/j.coal.2018.12.009
20 J C, Hower S M, Rimmer M, Mastalerz N J Wagner (2021b). Migmatite-like textures in anthracite: further evidence for low-grade metamorphic melting and resolidification in high-rank coals.Geosci Front, 12(3): 101122
https://doi.org/10.1016/j.gsf.2020.12.004
21 L W, Kuo H B, Li S A F, Smith Toro G, Di J, Suppe S R, Song S, Nielsen H S, Sheu J L Si (2014). Gouge graphitization and dynamic fault weakening during the 2008 MW 7.9 Wenchuan earthquake.Geology, 42(1): 47–50
https://doi.org/10.1130/G34862.1
22 B, Kwiecińska H I Petersen (2004). Graphite, semi-graphite, natural coke, and natural char classification—ICCP system.Int J Coal Geol, 57(2): 99–116
https://doi.org/10.1016/j.coal.2003.09.003
23 B, Kwiecinska I, Suarez-Ruiz C, Paluszkiewicz S Rodrigues (2010). Raman spectroscopy of selected carbonaceous samples.Int J Coal Geol, 84(3−4): 206–212
https://doi.org/10.1016/j.coal.2010.08.010
24 B K, Kwiecińska S Pusz (2016). Pyrolytic carbon—definition, classification and occurrence.Int J Coal Geol, 163: 1–7
https://doi.org/10.1016/j.coal.2016.06.014
25 K Li (2019). Investigation on the structural ordering of natural coaly graphite from Xinhua, Hunan Province, China. Dissertation for Doctoral Degree. Beijing: China University of Mining and Technology
26 K, Li Q, Liu S M, Rimmer W W, Huggett S Zhang (2020a). Investigation of the carbon structure of naturally graphitized coals from central Hunan, China, by density-gradient centrifugation, X-ray diffraction, and high-resolution transmission electron microscopy.Int J Coal Geol, 232: 103628
https://doi.org/10.1016/j.coal.2020.103628
27 K, Li Q F, Liu D D, Hou Z G, Wang S Zhang (2021). Quantitative investigation on the structural characteristics and evolution of high-rank coals from Xinhua, Hunan Province, China.Fuel, 289: 119945
https://doi.org/10.1016/j.fuel.2020.119945
28 K, Li S M, Rimmer Q F Liu (2018). Geochemical and petrographic analysis of graphitized coals from central Hunan, China.Int J Coal Geol, 195(April): 267–279
https://doi.org/10.1016/j.coal.2018.06.009
29 K, Li S M, Rimmer Q F, Liu Y M Zhang (2019). Micro-Raman spectroscopy of microscopically distinguishable components of naturally graphitized coals from central Hunan Province, China.Energ Fuel, 33(2): 1037–1048
https://doi.org/10.1021/acs.energyfuels.8b04065
30 K, Li S M, Rimmer S M, Presswood Q F Liu (2020b). Raman spectroscopy of intruded coals from the Illinois basin: correlation with rank and estimated alteration temperature.Int J Coal Geol, 219: 103369
https://doi.org/10.1016/j.coal.2019.103369
31 L, Lu V, Sahajwalla C, Kong D Harris (2001). Quantitative X-ray diffraction analysis and its application to various coals.Carbon, 39(12): 1821–1833
https://doi.org/10.1016/S0008-6223(00)00318-3
32 R J, Nemanich S A Solin (1979). First- and second-order Raman scattering from finite-size crystals of graphite.Phys Rev B Condens Matter, 20(2): 392–401
https://doi.org/10.1103/PhysRevB.20.392
33 M S, Nyathi C B, Clifford H H Schobert (2013). Characterization of graphitic materials prepared from different rank Pennsylvania anthracites.Fuel, 114: 244–250
https://doi.org/10.1016/j.fuel.2012.04.003
34 A Oberlin (1984). Carbonization and graphitization.Carbon, 22(6): 521–541
https://doi.org/10.1016/0008-6223(84)90086-1
35 A Oberlin (2002). Pyrocarbons.Carbon, 40(1): 7–24
https://doi.org/10.1016/S0008-6223(01)00138-5
36 A, Oberlin G Terriere (1975). Graphitization studies of anthracites by high resolution electron microscopy.Carbon, 13(5): 367–376
https://doi.org/10.1016/0008-6223(75)90004-4
37 S, Potgieter-Vermaak N, Maledi N, Wagner Heerden J H P, Van Grieken R, Van J H Potgieter (2011). Raman spectroscopy for the analysis of coal: a review.J Raman Spectrosc, 42(2): 123–129
https://doi.org/10.1002/jrs.2636
38 G, Rantitsch W, Lämmerer E, Fisslthaler S, Mitsche H Kaltenböck (2016). On the discrimination of semi-graphite and graphite by Raman spectroscopy.Int J Coal Geol, 159: 48–56
https://doi.org/10.1016/j.coal.2016.04.001
39 G R Jr, Robinson J M, Hammarstrom D W, Olson G R Jr, Robinson J M, Hammarstrom D W Olson (2017). Graphite.1802J, Reston: VA
40 S, Rodrigues M, Marques I, Suarez-Ruiz I, Camean D, Flores B Kwiecinska (2013). Microstructural investigations of natural and synthetic graphites and semi-graphites.Int J Coal Geol, 111: 67–79
https://doi.org/10.1016/j.coal.2012.06.013
41 J N, Rouzaud D, Deldicque E, Charon J Pageot (2015). Carbons at the heart of questions on energy and environment: a nanostructural approach.C R Geosci, 347(3): 124–133
https://doi.org/10.1016/j.crte.2015.04.004
42 J, Schwan S, Ulrich V, Batori H, Ehrhardt S R P Silva (1996). Raman spectroscopy on amorphous carbon films.J Appl Phys, 80(1): 440–447
https://doi.org/10.1063/1.362745
43 F, Tuinstra J L Koenig (1970). Raman spectrum of graphite.J Chem Phys, 53(3): 1126–1130
https://doi.org/10.1063/1.1674108
44 L, Wang D Y, Cao Y W, Peng Z Y, Ding Y Li (2019a). Strain-induced graphitization mechanism of coal-based graphite from Lutang, Hunan Province, China.Minerals (Basel), 9(10): 1–19
https://doi.org/10.3390/min9100617
45 L, Wang R F, Qin Y, Li H, Zhang (2019b). On the difference of graphitization behavior between vitrinite- and inertinite-rich anthracites during heat treatment.Energ Source, 7036
46 Y, Wang S, Ma T, Shimamoto L, Yao J, Chen X, Yang H, He J, Dang L, Hou T Togo (2014). Internal structures and high-velocity frictional properties of Longmenshan fault zone at Shenxigou activated during the 2008 Wenchuan earthquake.Earth Sci (Paris), 27(5): 499–528
https://doi.org/10.1007/s11589-014-0096-6
47 Y, Wu K, Li Z, Wang M, Hu H, Cao Q Liu (2021). Fluctuations in graphitization of coal seam-derived natural graphite upon approaching the Qitianling granite intrusion, Hunan, China.Minerals (Basel), 11(10): 1147
https://doi.org/10.3390/min11101147
48 J, Xu H, Tang S, Su J W, Liu H D, Han L P, Zhang K, Xu Y, Wang S, Hu Y B, Zhou J Xiang (2017). Micro-Raman spectroscopy study of 32 kinds of Chinese coals: second-order raman spectrum and its correlations with coal properties.Energ Fuel, 31(8): 7884–7893
https://doi.org/10.1021/acs.energyfuels.7b00990
49 L, Yuan Q F, Liu J P, Mathews H, Zhang Y K Wu (2021). Quantifying the structural transitions of Chinese coal to coal-derived natural graphite by XRD, Raman spectroscopy, and HRTEM image analyses.Energ Fuel, 35(3): 2335–2346
https://doi.org/10.1021/acs.energyfuels.0c04019
50 S, Zhang Q F, Liu H, Zhang R J, Ma K, Li Y K, Wu B J Teppen (2020). Structural order evaluation and structural evolution of coal derived natural graphite during graphitization.Carbon, 157: 714–723
https://doi.org/10.1016/j.carbon.2019.10.104
51 Z, Zheng J, Zhang J Y Huang (1996). Observations of microstructure and reflectivity of coal graphites for two locations in China.Int J Coal Geol, 30(4): 277–284
https://doi.org/10.1016/0166-5162(95)00047-X
52 J, Zhu R, Wang P, Zhang C, Xie W, Zhang K, Zhao L, Xie C, Yang X, Che A, Yu L Wang (2009). Zircon U-Pb geochronological framework of Qitianling granite batholith, middle part of Nanling range, south China.Sci China Ser D Earth Sci, 52(9): 1279–1294
https://doi.org/10.1007/s11430-009-0154-4
[1] Aikuan WANG, Pei SHAO, Qinghui WANG. Biogenic gas generation effects on anthracite molecular structure and pore structure[J]. Front. Earth Sci., 2021, 15(2): 272-282.
[2] Chang’an SHAN, Tingshan ZHANG, Xing LIANG, Dongchu SHU, Zhao ZHANG, Xiangfeng WEI, Kun ZHANG, Xuliang FENG, Haihua ZHU, Shengtao WANG, Yue CHEN. Effects of nano-pore system characteristics on CH4 adsorption capacity in anthracite[J]. Front. Earth Sci., 2019, 13(1): 75-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed