Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (3) : 649-670    https://doi.org/10.1007/s11707-024-1108-z
Sedimentary environment and major controlling factors of organic matter-rich shale from the Wufeng-Longmaxi formation in eastern Sichuan Basin, China
Yang WANG1,2(), Hanyu ZHANG1,2, Yanming ZHU1,2, Shangbin CHEN1,2, Qingshun CAO1,2, Manli HUANG1,2, Jinghui YANG1,2, Yunsheng ZHANG1,2
1. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process (Ministry of Education), China University of Mining and Technology, Xuzhou 221008, China
2. School of Resources and Geoscience, China University of Mining and Technology, Xuzhou 221116, China
 Download: PDF(5162 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The major controlling factors of organic matter and its enrichment model of the black shale from the Wufeng-Longmaxi Formation were explored by investigating the vertical variation characteristics, as well as major element and trace element abundances in the Wuxi Bailu section. The results show that the sedimentary tectonic setting of the Wufeng-Longmaxi Formation in the north-east margin of the upper Yangtze platform is located on the active continental margin, which is a passive continental margin and continental island arc. The parent rock in the source area is mainly felsic volcanic rocks mixed with small amounts of sedimentary recycling materials. Due to increased plate activity and a drop in sea levels, terrigenous pyroclastic input increased. The palaeoclimate was semi-humid, and a robust dysoxic-reduction environment and a high level of palaeoproductivity, causing the formation of the organic-rich shale in the Wufeng Formation. At the base of the Longmaxi Formation, the sedimentary water body was affected by global transgression, showing a strong anoxic-reductive environment, and the paleoclimate was a warm and humid condition. The palaeoproductivity level was high, resulting in the formation of organic shale. Due to the sea level drop at the top of the Longmaxi Formation, the sedimentary water was in an oxic-reduced environment, but the input of terrigenous pyroclastic matter increased. Because the paleoclimate was warm and humid and the palaeoproductivity level was high, organic-rich shale was formed. The findings demonstrate that terrigenous clastic input circumstances, palaeoproductivity conditions, and paleo-redox conditions had the greatest influence on the enrichment of organic matter in the Wufeng-Longmaxi Formation. Thus, organic matter enrichment was controlled by multiple paleoenvironmental factors.

Keywords Wufeng-Longmaxi Formation      organic-rich shale      organic matter enrichment      depositional palaeoenvironment      eastern Sichuan Basin     
Corresponding Author(s): Yang WANG   
Online First Date: 01 April 2024    Issue Date: 15 July 2024
 Cite this article:   
Yang WANG,Hanyu ZHANG,Yanming ZHU, et al. Sedimentary environment and major controlling factors of organic matter-rich shale from the Wufeng-Longmaxi formation in eastern Sichuan Basin, China[J]. Front. Earth Sci., 2024, 18(3): 649-670.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-024-1108-z
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I3/649
Fig.1  (a) Geotectonic zoning of the Sichuan Basin and location of the study area; (b) early paleogeographic map and research profile of Silurian Dan Lu in southern China; (c) stratigraphic column of the Bailu section.
Fig.2  (a) Normalized REE concentration of chondrites in Bailu section; (b) PAAS normalized REE concentration in Bailu section.
Formation Sample No. TOC/% SiO2/% TiO2/% Al2O3/% TFe2O3/% MnO/% MgO/% CaO/% Na2O/% K2O/% P2O5/% CIAa)/%
WufengFormation BL-1 1.14 94.67 0.07 1.74 0.73 0.005 0.20 0.13 0.13 0.44 0.02 66.52
BL-3 5.1 80.55 0.43 6.83 1.10 0.001 0.54 0.18 0.75 1.73 0.06 67.46
BL-4 4.82 82.58 0.33 6.01 1.24 0.001 0.47 0.23 0.50 1.74 0.07 67.16
BL-5 4.28 86.78 0.22 4.15 0.61 0.001 0.36 0.14 0.36 1.18 0.05 67.38
LongmaxiFormation BL-6 6.1 76.75 0.35 6.77 1.58 0.005 0.46 0.08 0.75 1.86 0.05 67.26
BL-7 5.33 77.21 0.31 6.16 3.34 0.005 0.44 0.09 0.65 1.69 0.05 67.69
BL-8 3.93 85.97 0.23 4.54 0.51 0.001 0.32 0.24 0.45 1.26 0.03 64.71
BL-9 3.85 85.57 0.27 5.17 0.98 0.001 0.35 0.09 0.46 1.40 0.07 69.52
BL-10 4.28 81.20 0.39 7.21 1.22 0.003 0.46 0.09 0.67 1.91 0.07 69.35
BL-11 4.76 73.75 0.45 8.97 3.47 0.007 0.51 0.17 1.19 2.26 0.15 67.20
BL-12 4.29 84.10 0.27 5.16 1.21 0.004 0.34 0.14 0.51 1.37 0.09 68.63
BL-13 3.63 87.36 0.19 3.94 1.19 0.004 0.25 0.14 0.36 1.07 0.07 68.16
BL-14 4.31 78.51 0.37 7.03 2.65 0.007 0.44 0.19 0.80 1.81 0.12 67.73
BL-15 2.99 87.79 0.18 3.52 1.57 0.004 0.22 0.24 0.36 0.92 0.06 64.99
BL-16 3.83 84.91 0.23 4.66 1.44 0.005 0.28 0.12 0.52 1.25 0.07 67.22
BL-17 4.61 82.85 0.30 5.77 1.20 0.005 0.36 0.17 0.61 1.58 0.07 66.76
BL-18 5.36 74.69 0.45 8.52 1.89 0.008 0.58 0.34 0.93 2.34 0.13 66.09
BL-19 5.63 72.09 0.58 10.70 1.34 0.004 0.77 0.22 1.19 2.91 0.05 66.47
BL-20 2.48 85.50 0.25 4.82 1.98 0.005 0.33 0.24 0.51 1.27 0.07 66.00
BL-21 4.18 80.47 0.28 6.27 2.53 0.004 0.52 0.12 0.46 1.69 0.07 70.47
Tab.1  Results of TOC analysis and major element content of shale samples from the Wufeng Formation-Longmaxi Formation in the Bailu section
Formation Sample No. La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Sc ΣREE a) LREE/HREE δCe b) δEu c)
Wufeng Formation BL-1 4.10 6.80 0.78 2.87 0.58 0.22 0.59 0.11 0.73 0.17 0.55 0.09 0.71 0.11 5.40 1.61 25.40 5.03 0.92 1.14
BL-3 28.35 45.49 5.03 15.84 2.39 0.53 2.24 0.45 3.47 0.82 2.54 0.40 2.81 0.42 27.03 6.06 143.87 7.42 0.92 0.70
BL-4 22.63 38.47 4.69 16.14 2.52 0.54 2.11 0.34 2.40 0.50 1.57 0.25 1.71 0.24 16.60 5.61 116.33 9.32 0.90 0.72
BL-5 17.58 32.54 3.99 15.26 2.90 0.65 2.36 0.38 2.23 0.48 1.40 0.20 1.32 0.19 15.50 3.68 100.66 8.53 0.94 0.76
Longmaxi Formation BL-6 26.78 48.27 5.87 21.48 3.58 0.85 3.41 0.57 3.76 0.77 2.32 0.34 2.23 0.32 27.01 6.04 153.62 7.78 0.93 0.75
BL-7 24.40 45.22 5.42 19.89 3.42 0.74 3.00 0.50 3.26 0.67 1.91 0.29 1.89 0.26 22.04 5.48 138.40 8.40 0.95 0.71
BL-8 19.25 35.39 4.22 16.11 2.86 0.62 2.42 0.38 2.31 0.48 1.46 0.21 1.37 0.19 16.22 3.57 107.07 8.88 0.95 0.73
BL-9 20.37 37.52 4.40 16.39 3.16 0.74 2.77 0.44 2.64 0.54 1.57 0.24 1.53 0.21 18.28 4.64 115.44 8.31 0.95 0.76
BL-10 28.13 52.11 6.28 23.68 4.07 0.83 3.33 0.52 3.22 0.66 1.97 0.30 1.99 0.28 21.88 6.92 156.17 9.38 0.94 0.69
BL-11 33.43 63.10 7.36 28.02 5.32 1.21 4.69 0.74 4.47 0.93 2.57 0.38 2.53 0.35 29.10 8.09 192.30 8.31 0.97 0.74
BL-12 20.42 36.76 4.41 16.39 3.19 0.74 3.05 0.45 2.82 0.59 1.67 0.24 1.62 0.23 19.84 4.59 117.00 7.68 0.93 0.72
BL-13 17.10 32.50 3.90 15.01 3.08 0.67 2.70 0.41 2.42 0.50 1.36 0.21 1.31 0.19 15.80 3.35 100.49 7.95 0.96 0.71
BL-14 29.54 55.61 6.54 24.86 4.67 1.10 4.48 0.71 4.29 0.87 2.48 0.37 2.37 0.33 28.32 6.03 172.56 7.69 0.96 0.73
BL-15 22.77 43.22 4.96 18.17 3.54 0.81 3.20 0.53 3.12 0.63 1.74 0.25 1.59 0.22 20.40 2.81 127.97 8.27 0.98 0.74
BL-16 18.84 33.33 3.77 13.42 2.22 0.53 1.96 0.31 1.97 0.44 1.30 0.20 1.27 0.18 14.51 3.84 98.10 9.44 0.95 0.77
BL-17 22.67 42.46 4.95 17.73 2.93 0.69 2.57 0.43 2.51 0.52 1.58 0.24 1.56 0.22 17.92 4.45 123.43 9.49 0.96 0.77
BL-18 34.93 62.00 6.95 23.23 3.49 0.86 3.08 0.55 3.70 0.76 2.36 0.38 2.48 0.36 27.23 7.04 179.40 9.62 0.96 0.80
BL-19 60.18 114.10 13.15 44.45 7.77 1.43 6.33 1.11 6.63 1.29 3.72 0.56 3.57 0.50 40.61 7.29 312.69 10.17 0.98 0.63
BL-20 16.90 32.92 3.68 13.43 2.44 0.51 1.88 0.32 1.90 0.40 1.13 0.17 1.10 0.16 11.99 3.30 92.26 9.88 1.00 0.73
BL-21 21.58 39.41 4.54 16.49 2.92 0.69 2.36 0.40 2.39 0.50 1.47 0.22 1.40 0.21 15.59 5.67 115.83 9.56 0.96 0.80
Tab.2  Rare earth elements (REE) abundances (μg/g) and relevant geochemical indexes of shale samples from the Wufeng-Longmaxi Formation in the Bailu section
Fig.3  Tectonic setting diagram for mud shale of WF-LMX Formation in eastern Sichuan Basin (after Bhatia, 1985; Roser and Korsch, 1988). (a) K2O/Na2O-SiO2; (b) La/Sc-Ti/Zr.
Fig.4  Tectonic setting diagram for mud shale of WF-LMX Formation in eastern Sichuan Basin (Bhatia and Crook, 1986). (a) Th-Co-Zr/10; (b) La-Th-Sc; A-oceanic island arc; B-continental island arc; C-active continental margin; D- passive continental margin.
Fig.5  Source and compositional discrimination for mud shale of WF-LMX Formation in eastern Sichuan Basin. (after Allègre and Minster, 1978; Floyd and Leveridge, 1987). (a) Hf versus La/Th diagram; (b) La/Sc vs. Co/Th diagram; (c) ΣREE vs. La/Yb diagram; (d) Th-Hf-Co discrimination.
Fig.6  Vertical variations of Al (%), Zr (μg/g), Ti (%), Y/Ho, and K2O/ Rb of sediments in BL section.
Fig.7  Vertical variations of paleoclimate index “C”, chemical alteration index “CIA”, and Sr/Cu of sediments in BL section.
Element indexOxygen-deficient environmentOxic
AnoxicDysoxic
V/Cr> 4.252.00–4.25< 2.00
V/(V + Ni)> 0.600.46–0.60< 0.46
Ni/Co> 7.005.00–7.00< 5.00
U/Th> 1.250.75–1.25< 0.75
Ce/La> 1.81.5–1.8< 1.5
Tab.3  Criteria for judging redox conditions of the WF-LMX Formation in eastern Sichuan Basin
Fig.8  Al-Fe-Mn triangle map (the plate was revised according to Zhang et al., 2019).
Fig.9  Vertical variations of V/(V + Ni), U /Th, Ni /Co, V /Cr, and Ce/La of sediments in BL section.
Fig.10  Crossplots of paleoredox indicators for different systems tracts of the WF-LMX Formations in Bailu section. (a) V/Cr vs. V/(V + Ni); (b) U/Th vs. Ni/Co.
Fig.11  Vertical variations of Babio and Ni/Al of sediments in BL section.
Fig.12  (a) Co × Mn vs. Al. (b) Co-EF × Mn-EF vs. Al; The patterns of Co × Mn–Al and CoEF × MnEF – Al are modified from (Sweere et al. 2016).
Fig.13  Cross plots of TOC vs. clastic influx index of the shale samples from the WF-LMX Formations in Bailu section.
Fig.14  Crossplots of TOC vs. paleoclimatic index of the shale samples from the WF-LMX Formations in Bailu section.
Fig.15  Crossplots of TOC vs. paleo redox index of the shale samples from the WF-LMX Formations in the Bailu section.
Fig.16  Crossplots of TOC vs. paleoproductivity index of the shale samples from the WF-LMX Formations in Bailu section.
Fig.17  Paleoenvironmental factors and gray correlation for shale samples from the WF-LMX Formations in the Bailu section. (a) Wufeng Formation samples; (b) Longmaxi Formation samples.
Fig.18  Organic matter enrichment model of WF-LMX organic-rich shales in eastern Sichuan Basin. the data of sea-level are from Liu et al., (2019).
1 A K, Adegoke W H, Abdullah M H, Hakimi B M S Yandoka (2015). Geochemical characterisation and organic matter enrichment of Upper Cretaceous Gongila shales from Chad (Bornu) Basin, northeastern Nigeria: bioproductivity versus anoxia conditions.J Petrol Sci Eng, 135: 73–87
https://doi.org/10.1016/j.petrol.2015.08.012
2 T J, Algeo C Li (2020). Redox classification and calibration of redox thresholds in sedimentary systems.Geochim Cosmochim Acta, 287: 8–26
https://doi.org/10.1016/j.gca.2020.01.055
3 T J, Algeo J S Liu (2020). A re–assessment of elemental proxies for paleoredox analysis.Chem Geol, 540: 119549
https://doi.org/10.1016/j.chemgeo.2020.119549
4 T J, Algeo J B Maynard (2004). Trace–element behavior and redox facies in core shales of Upper Pennsylvanian Kansas–type cyclothems.Chem Geol, 206(3–4): 289–318
https://doi.org/10.1016/j.chemgeo.2003.12.009
5 C J, Allègre J F Minster (1978). Quantitative models of trace element behavior in magmatic process.Earth Planet Sci Lett, 38(1): 1–25
https://doi.org/10.1016/0012-821X(78)90123-1
6 M A, Arthur W E, Dean K Laarkamp (1998). Organic carbon accumulation and preservation in surface sediments on the Peru margin.Chem Geol, 152(3–4): 273–286
https://doi.org/10.1016/S0009-2541(98)00120-X
7 J K, Bai S H, Zhang C Y, Liu L B, Jia K Y, Luo T, Jiang H Peng (2022). Mineralogy and geochemistry of the Middle Permian Pingdiquan Formation black shales on the eastern margin of the Junggar Basin, north–west China: implications for palaeoenvironmental and organic matter accumulation analyses.Geol J, 57(5): 1989–2006
https://doi.org/10.1002/gj.4392
8 Y Y, Bai Z J, Liu P C, Sun R, Liu X F, Hu H Q, Zhao Y B Xu (2015). Rare earth and major element geochemistry of Eocene fine–grained sediments in oil shale– and coal–bearing layers of the Meihe Basin, northeast China.J Asian Earth Sci, 97: 89–101
https://doi.org/10.1016/j.jseaes.2014.10.008
9 W B N, Berry P Wilde (1978). Progressive ventilation of the oceans: an explanation for the distribution of the Lower Paleozoic black shales.Am J Sci, 278(3): 257–275
https://doi.org/10.2475/ajs.278.3.257
10 M R Bhatia (1985). Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control.Sediment Geol, 45(1–2): 97–113
https://doi.org/10.1016/0037-0738(85)90025-9
11 M R, Bhatia K A W Crook (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins.Contrib Mineral Petrol, 92(2): 181–193
https://doi.org/10.1007/BF00375292
12 T, Borjigin B J, Shen L J, Yu Y F, Yang W T, Zhang C, Tao B B, Xi Q Z, Zhang F, Bao J Z Qin (2017). Mechanisms of shale gas generation and accumulation in the ordovician Wufeng–Longmaxi Formation, sichuan basin, SW China.Pet Explor Dev, 44(1): 69–78
https://doi.org/10.1016/S1876-3804(17)30009-5
13 S E, Calvert T F Pedersen (1993). Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record.Mar Geol, 113(1–2): 67–88
https://doi.org/10.1016/0025-3227(93)90150-T
14 J, Cao M, Wu Y, Chen K, Hu L Z, Bian L G, Wang Y Zhang (2012). Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China.Geochemistry, 72(3): 245–252
https://doi.org/10.1016/j.chemer.2011.12.002
15 A R, Carroll K M Bohacs (1999). Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls.Geology, 27(2): 99–102
https://doi.org/10.1130/0091-7613(1999)027<0099:SCOALB>2.3.CO;2
16 M, Casacci A, Bertinelli T J, Algeo M Rigo (2016). Carbonate–to–biosilica transition at the Norian–Rhaetian boundary controlled by rift–related subsidence in the western Tethyan Lagonegro Basin (southern Italy).Palaeogeogr Palaeoclimatol Palaeoecol, 456: 21–36
https://doi.org/10.1016/j.palaeo.2016.05.007
17 L, Chen S, Jiang P, Chen X H, Chen B M, Zhang G T, Zhang W B, Lin Y C Lu (2021). Relative sea–level changes and organic matter enrichment in the Upper Ordovician–Lower Silurian Wufeng–Longmaxi Formations in the Central Yangtze area, China.Mar Pet Geol, 124: 104809
https://doi.org/10.1016/j.marpetgeo.2020.104809
18 Y H, Chen Y B, Wang M Q, Guo H Y, Wu J, Li W T, Wu J Z Zhao (2020). Differential enrichment mechanism of organic matters in the marine–continental transitional shale in northeastern Ordos Basin, China: control of sedimentary environments.J Nat Gas Sci Eng, 83: 103625
https://doi.org/10.1016/j.jngse.2020.103625
19 R L Cullers (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies.Lithos, 51(3): 181–203
https://doi.org/10.1016/S0024-4937(99)00063-8
20 J H, Ding J S, Sun J C, Zhang X T, Yang G, Shi R Y, Wang B, Huang H L Li (2022). Elemental geochemical evidence for controlling factors and mechanisms of transitional organic matter accumulation: the upper Permian Longtan Formation black shale in the Lower Yangtze region, south China.J Nat Gas Sci Eng, 98: 104385
https://doi.org/10.1016/j.jngse.2021.104385
21 J H, Ding J C, Zhang X, Tang Z P, Huo S B, Han Y, Lang T Liu (2018). Elemental geochemical evidence for depositional conditions and organic matter enrichment of black rock series strata in an inter-platform basin: the Lower Carboniferous Datang Formation, Southern Guizhou, southwest China.Minerals, 8(11): 509
https://doi.org/10.3390/min8110509
22 P A, Floyd B E Leveridge (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones.J Geol Soc London, 144(4): 531–542
https://doi.org/10.1144/gsjgs.144.4.0531
23 J R, Hatch J S Leventhal (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A.Chem Geol, 99(1–3): 65–82
https://doi.org/10.1016/0009-2541(92)90031-Y
24 R S, Ji D Y, Qin C L Gao (1990). Closing of eastern Qinling palaeoocean and collaging between the North China and Yangtze Blocks.Petroleum Geo Experiment, 12(4): 353–365
https://doi.org/10.11781/sysydz199004353
25 Z K, Lan J J Shen (2022). Depositional paleo–environments of Lower Cambrian Qiongzhusi Formation in the Western Middle Yangtze Block and its controlling effect on the organic matter enrichment.Energies, 15(10): 3761
https://doi.org/10.3390/en15103761
26 M D, Lewan J B Maynard (1982). Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks.Geochim Cosmochim Acta, 46(12): 2547–2560
https://doi.org/10.1016/0016-7037(82)90377-5
27 C, Liang Z X, Jiang Y T, Yang X J Wei (2012). Shale lithofacies and reservoir space of the Wufeng–Longmaxi Formation, Sichuan Basin, China.Pet Explor Dev, 39(6): 736–743
https://doi.org/10.1016/S1876-3804(12)60098-6
28 Z W, Liao W X, Hu J, Cao X L, Wang Z Y Hu (2019). Petrologic and geochemical evidence for the formation of organic–rich siliceous rocks of the Late Permian Dalong Formation, Lower Yangtze region, southern China.Mar Pet Geol, 103: 41–54
https://doi.org/10.1016/j.marpetgeo.2019.02.005
29 S X, Liu C F, Wu T, Li H C Wang (2018). Multiple geochemical proxies controlling the organic matter accumulation of the marine–continental transitional shale: a case study of the Upper Permian Longtan Formation, western Guizhou, China.J Nat Gas Sci Eng, 56: 152–165
https://doi.org/10.1016/j.jngse.2018.06.007
30 Y, Liu B, Wu Q S, Gong H Y Cao (2019). Geochemical characteristics of the lower Silurian Longmaxi Formation on the Yangtze Platform, South China: implications for depositional environment and accumulation of organic matters.J Asian Earth Sci, 184: 104003
https://doi.org/10.1016/j.jseaes.2019.104003
31 S M McLennan (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes.Rev Mineral Geochem, 21(1): 169–200
32 A E, Murphy B B, Sageman D J, Hollander T W, Lyons C E Brett (2000). Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal water–column mixing, and efficient biolimiting nutrient recycling.Paleoceanography, 15(3): 280–291
https://doi.org/10.1029/1999PA000445
33 B P, Roser R J Korsch (1988). Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major–element data.Chem Geol, 67(1–2): 119–139
https://doi.org/10.1016/0009-2541(88)90010-1
34 D J, Ross R M Bustin (2009). Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic–rich strata: examples from the Devonian–Mississippian shales, Western Canadian Sedimentary Basin.Chem Geol, 260(1–2): 1–19
https://doi.org/10.1016/j.chemgeo.2008.10.027
35 R, Sugisaki K, Yamamoto M Adachi (1982). Triassic bedded cherts in central Japan are not pelagic.Nature, 298(5875): 644–647
https://doi.org/10.1038/298644a0
36 F H, Shang Y M, Zhu Q H, Hu Y, Wang Y, Li W, Li R Y, Liu H T Gao (2020). Factors controlling organic–matter accumulation in the Upper Ordovician–Lower Silurian organic–rich shale on the northeast margin of the Upper Yangtze platform: evidence from petrographic and geochemical proxies.Mar Pet Geol, 121: 104597
https://doi.org/10.1016/j.marpetgeo.2020.104597
37 J, Shen S D, Schoepfer Q L, Feng L, Zhou J X, Yu H Y, Song H Y, Wei T J Algeo (2015). Marine productivity changes during the end–Permian crisis and Early Triassic recovery.Earth Sci Rev, 149: 136–162
https://doi.org/10.1016/j.earscirev.2014.11.002
38 T, Sweere den Boorn S, van A J, Dickson G J Reichart (2016). Definition of new trace–metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations.Chem Geol, 441: 235–245
https://doi.org/10.1016/j.chemgeo.2016.08.028
39 M R Talbot (1988). The origins of lacustrine oil source rocks: evidence from the lakes of tropical Africa.Geological Society, 40: 29–43
https://doi.org/10.1144/GSL.SP.1988.040.01.04
40 S R, Taylor S M McLennan (1985). The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1–328
41 N, Tribovillard T J, Algeo T, Lyons A Riboulleau (2006). Trace metals as paleoredox and paleoproductivity proxies: an update.Chem Geol, 232(1–2): 12–32
https://doi.org/10.1016/j.chemgeo.2006.02.012
42 Y M, Wang X J, Li D Z, Dong C C, Zhang S F Wang (2017). Major controlling factors for the high–quality shale of Wufeng–Longmaxi Formation, Sichuan Basin.Energ Explor Exploit, 35(4): 444–462
https://doi.org/10.1177/0144598717698080
43 Y Y, Wang J F, Chen W B, Shen M Li (2022). Mechanism of organic matter accumulation in black shales of the Yuertusi Formation in the Tarim Basin: insights from paleoenvironmental variation during the Early Cambrian.Front Earth Sci (Lausanne), 10: 879658
https://doi.org/10.3389/feart.2022.879658
44 P B, Wignall R Newton (2001). Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France.Sediment Geol, 144(3–4): 335–356
https://doi.org/10.1016/S0037-0738(01)00125-7
45 B Wu (2022). The sedimentary geochemical characteristics and geological significance of the Wufeng–Longmaxi Formation accumulation of organic matter black shale on the southeastern Sichuan Basin, China.Geofluids, 2022: 1900158
https://doi.org/10.1155/2022/1900158
46 Z R, Wu S, He Z L, He X C, Li G Y, Zhai Z Q Huang (2022). Petrographical and geochemical characterization of the Upper Permian Longtan Formation and Dalong Formation in the Lower Yangtze region, South China: implications for provenance, paleoclimate, paleoenvironment and organic matter accumulation mechanisms.Mar Pet Geol, 139: 105580
https://doi.org/10.1016/j.marpetgeo.2022.105580
47 L F, Xu Y S, Cheng J C, Zhang Y, Liu Y Y Yang (2022). Controls on the organic matter accumulation of the marine–continental transitional Shanxi Formation shale in the southeastern Ordos Basin.ACS Omega, 7(5): 4317–4332
https://doi.org/10.1021/acsomega.1c06051
48 D T, Yan D Z, Chen Z Z, Wang J, Li X R, Yang B Zhang (2019). Climatic and oceanic controlled deposition of Late Ordovician–Early Silurian black shales on the North Yangtze platform, south China.Mar Pet Geol, 110: 112–121
https://doi.org/10.1016/j.marpetgeo.2019.06.040
49 K, Yin J, Xu X M Li (2019). A new grey comprehensive relational model based on weighted mean distance and induced intensity and its application.Grey Systems-Theory and Application, 9(3): 374–384
https://doi.org/10.1108/GS-09-2018-0037
50 W, Yuan G D, Liu X X, Zhou L M, Xu C Z Li (2020). Palaeoproductivity and organic matter accumulation during the deposition of the Chang 7 organic–rich shale of the Upper Triassic Yanchang Formation, Ordos Basin, China.Geol J, 55(4): 3139–3156
https://doi.org/10.1002/gj.3578
51 S Q, Zeng J, Wang X G, Fu W B, Chen X L, Feng D, Wang C Y, Song Z W Wang (2015). Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China.Mar Pet Geol, 64: 203–221
https://doi.org/10.1016/j.marpetgeo.2015.02.031
52 L C, Zhang D S, Xiao S F, Lu S, Jiang S D Lu (2019). Effect of sedimentary environment on the formation of organic–rich marine shale: insights from major/trace elements and shale composition.Int J Coal Geol, 204: 34–50
https://doi.org/10.1016/j.coal.2019.01.014
53 C N, Zou D Z, Dong S J, Wang J Z, Li X J, Li Y M, Wang D H, Li K M Cheng (2010). Geological characteristics and resource potential of shale gas in China.Pet Explor Dev, 37(6): 641–653
https://doi.org/10.1016/S1876-3804(11)60001-3
[1] Yong TANG, Xiatian WANG, Tao WANG, Chenlu HEI, Shuang LIANG, Hu CHENG. Reconstruction of sedimentary paleoenvironment of Permian Lucaogou Formation and its implications for the organic matter enrichment in south-eastern Junggar Basin, China[J]. Front. Earth Sci., 2024, 18(3): 526-537.
[2] Qianyang HE, Delu LI, Qiang SUN, Jianwen GAO, Haibin LI, Xinhu LI, Xiaochen ZHAO, Shaofei WANG, Gaozhe JI. Constraints of palaeoenvironment on organic matter of Benxi Formation shale and discussion on enrichment mechanism under different facies[J]. Front. Earth Sci., 2024, 18(1): 148-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed