Abstract:The consequence of polycyclic aromatic hydrocarbons (PAHs) in the environment is of great concern. The hydrophobic properties of PAHs significantly impact phase distribution causing limited bioavailability. Enhanced biodegradation has been extensively carried out by surfactants and the redeployment effect was recognized. However, the quantitative relationship concerning the impact of solids was rarely reported. A batch of biphasic tests were carried out by introducing Mycobacterium vanbaalenii PYR-1 and hydroxypropyl-β-cyclodextrin (HPCD) into a mixture of phenanthrene solution and various glass beads (GB37-63, GB105-125, and GB350-500). The comparative results demonstrated that HPCD had little effect on microbial growth and was not degradable by bacterium. A model was proposed to describe the biodegradation process. The regression results indicated that the partition coefficient kd (1.234, 0.726 and 0.448 L·g−1) and the degradation rate k (0 mmol·L−1: 0.055, 0.094, and 0.112; 20 mmol·L−1: 0.126, 0.141, and 0.156; 40 mmol·L−1: 0.141, 0.156 and 0.184 d−1) were positively and negatively correlated with the calculated total surface area (TSA) of solids, respectively. Degradation enhanced in the presence of HPCD, and the enhancing factor f was calculated (20 mmol·L−1: 15.16, 40.01, and 145.5; 40 mmol·L−1: 13.29, 37.97, and 138.4), indicating that the impact of solids was significant for the enhancement of biodegradation.
. Impact of solids on biphasic biodegradation of
phenanthrene in the presence of hydroxypropyl- β -cyclodextrin (HPCD)[J]. Front.Environ.Sci.Eng., 2010, 4(3): 329-333.
Zhenyi ZHANG, Chihiro INOUE, Guanghe LI, . Impact of solids on biphasic biodegradation of
phenanthrene in the presence of hydroxypropyl- β -cyclodextrin (HPCD). Front.Environ.Sci.Eng., 2010, 4(3): 329-333.
Samanta S K, Singh O V, Jain R K. Polycyclic aromatic hydrocarbons: environmentalpollution and bioremediation. Trends inBiotechnology, 2002, 20(6): 243―248 doi: 10.1016/S0167-7799(02)01943-1
Bamforth S M, Singleton I. Bioremediationof polycyclic aromatic hydrocarbons: current knowledge and futuredirections. Journal of Chemical Technologyand Biotechnology (Oxford, Oxfordshire), 2005, 80(7): 723―736 doi: 10.1002/jctb.1276
Peng R H, Xiong A S, Xue Y, Fu X Y, Gao F, Zhao W, Tian Y S, Yao Q H. Microbial biodegradation of polyaromatichydrocarbons. FEMS Microbiology Reviews, 2008, 32(6): 927―955 doi: 10.1111/j.1574-6976.2008.00127.x
Edwards D A, Luthy R G, Liu Z B. Solubilization of Polycyclic Aromatic-Hydrocarbonsin Micellar Nonionic Surfactant Solutions. Environmental Science & Technology, 1991, 25(1): 127―133 doi: 10.1021/es00013a014
Volkering F, Breure A M, van Andel J G, Rulkens W H. Influence of Nonionic Surfactants on Bioavailabilityand Biodegradation of Polycyclic Aromatic Hydrocarbons. Applied and Environmental Microbiology, 1995, 61(5): 1699―1705
Grimberg S J, Miller C T, Aitken M D. Surfactant-enhanced dissolutionof phenanthrene into water for laminar flow conditions. Environmental Science & Technology, 1996, 30(10): 2967―2974 doi: 10.1021/es9509285
Guha S, Jaffe P R. Bioavailabilityof hydrophobic compounds partitioned into the micellar phase of nonionicsurfactants. Environmental Science &Technology, 1996, 30(4): 1382―1391 doi: 10.1021/es950694p
Sun S B, Jaffe P R. Sorptionof phenanthrone from water onto alumina coated with dianionic surfactants. Environmental Science & Technology, 1996, 30(10): 2906―2913 doi: 10.1021/es950768x
Carmichael L M, Pfaender F K. The effect of inorganic and organic supplements on the microbialdegradation of phenanthrene and pyrene in soils. Biodegradation, 1997, 8(1): 1―13 doi: 10.1023/A:1008258720649
Sun L, Zhu L Z. Effect ofanionic-nonionic mixed surfactant on ryegrass uptake of phenanthreneand pyrene from water. Chinese ScienceBulletin, 2009, 54(3): 387―393 doi: 10.1007/s11434-009-0037-2
Li J L, Chen B H. Effect ofnonionic surfactants on biodegradation of phenanthrene by a marinebacteria of Neptunomonas naphthovorans. Journal of Hazardous Materials, 2009, 162(1): 66―73 doi: 10.1016/j.jhazmat.2008.05.019
Zhou W J, Zhu L Z. Influenceof surfactant sorption on the removal of phenanthrene from contaminatedsoils. Environmental Pollution, 2008, 152(1): 99―105 doi: 10.1016/j.envpol.2007.05.016
Wang P, Keller A A. Partitioning of hydrophobic organic compounds within soil-water-surfactantsystems. Water Research, 2008, 42(8―9): 2093―2101 doi: 10.1016/j.watres.2007.11.015
Allan I J, Semple K T, Hare R, Reid B J. Cyclodextrin enhanced biodegradation of polycyclic aromatichydrocarbons and phenols in contaminated soil slurries. Environmental Science & Technology, 2007, 41(15): 5498―5504 doi: 10.1021/es0704939
Allan I J, Semple K T, Hare R, Reid B J. Prediction of mono- and polycyclic aromatic hydrocarbondegradation in spiked soils using cyclodextrin extraction. Environmental Pollution, 2006, 144(2): 562―571 doi: 10.1016/j.envpol.2006.01.026
Khan A A, Kim S J, Paine D D, Cerniglia C E. Classification of a polycyclic aromatic hydrocarbon-metabolizingbacterium, Mycobacterium sp strain PYR-1, as Mycobacterium vanbaalenii sp nov. InternationalJournal of Systematic and Evolutionary Microbiology, 2002, 52(6): 1997―2002 doi: 10.1099/ijs.0.02163-0
Ko S O, Schlautman M A, Carraway E R. Partitioning of hydrophobicorganic compounds to hydroxypropyl-beta-cyclodextrin: Experimentalstudies and model predictions for surfactant-enhanced remediationapplications. Environmental Science &Technology, 1999, 33(16): 2765―2770 doi: 10.1021/es9813360
Viglianti C, Hanna K, de Brauer C, Germain P. Removalof polycyclic aromatic hydrocarbons from aged-contaminated soil usingcyclodextrins: experimental study. EnvironmentalPollution, 2006, 140(3): 427―435 doi: 10.1016/j.envpol.2005.08.002
Reid B J, Stokes J D, Jones K C, Semple K T. Nonexhaustive cyclodextrin-based extraction techniquefor the evaluation of PAH bioavailability. Environmental Science & Technology, 2000, 34(15): 3174―3179 doi: 10.1021/es990946c
Doick K J, Semple K T. The effect of soil: water ratios on the mineralisation of phenanthrene:LNAPL mixtures in soil. FEMS MicrobiologyLetters, 2003, 220(1): 29―33 doi: 10.1016/S0378-1097(03)00056-9
Stokes J D, Wilkinson A, Reid B J, Jones K C, Semple K T. Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminatedsoils using an aqueous hydroxypropyl-beta-cyclodextrin extractiontechnique. Environmental Toxicology andChemistry, 2005, 24(6): 1325―1330 doi: 10.1897/04-336R.1
Kang S H, Xing B S. Phenanthrenesorption to sequentially extracted soil humic acids and humins. Environmental Science & Technology, 2005, 39(1): 134―140 doi: 10.1021/es0490828
Liang C S, Dang Z, Xiao B, Huang W L, Liu C Q. Equilibrium sorption of phenanthreneby soil humic acids. Chemosphere, 2006, 63(11): 1961―1968 doi: 10.1016/j.chemosphere.2005.09.065
Wen B, Zhang J J, Zhang S Z, Shan X Q, Khan S U, Xing B S. Phenanthrene sorption to soil humic acid and differenthumin fractions. Environmental Science& Technology, 2007, 41(9): 3165―3171 doi: 10.1021/es062262s