1.State Key Laboratory
of Pollution Control and Resource Reuse, School of the Environment,
Nanjing University, Nanjing 210093, China; 2.Nanjing Research Institude
of Environmental Protection, Nanjing 210013, China; 3.Changzhou Environmental
Monitoring Center, Changzhou 210093, China;
Abstract:A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s−1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.
. Investigation of the effects of humic acid and
H 2 O 2 on the photocatalytic
degradation of atrazine assisted by microwave[J]. Front.Environ.Sci.Eng., 2010, 4(3): 321-328.
Chao QIN, Shaogui YANG, Cheng SUN, Jia ZHOU, Manjun ZHAN, Rongjun WANG, Huanxing CAI, . Investigation of the effects of humic acid and
H 2 O 2 on the photocatalytic
degradation of atrazine assisted by microwave. Front.Environ.Sci.Eng., 2010, 4(3): 321-328.
USEPA. National Pesticide Survey Factsheet, CLARIT 570990―NPS10. United States Environmental Protection Agency: Washington, DC, 1990
Graziano N, McGuire M J, Roberson A, Adams C, Jiang H, Blute N. 2004 National atrazine occurrence monitoringprogram using the abraxis elisa method. Environmental Science & Technology, 2006, 40(4): 1163―1171 doi: 10.1021/es051586y
Cooper R L, Stoker T E, Tyrey L, Goldman J M, McElroy W K. Atrazine disrupts the hypothalamic control of pituitary-ovarian function. Toxicological Sciences, 2000, 53(2): 297―307 doi: 10.1093/toxsci/53.2.297
Banerjee K, Cheremisinoff P N, Cheng S L. Sorption of organic contaminantsby fly ash in a single solute system. EnvironmentalScience & Technology, 1995, 29(9): 2243―2251 doi: 10.1021/es00009a014
Mascolo G, Lopez A, Foldenyi R, Passino R, TiravantiG. Prometryne oxidation by sodium hypochlorite in aqueous solution:kinetics and mechanism. Environmental Science& Technology, 1995, 29(12): 2987―2991 doi: 10.1021/es00012a015
Yang H, Lin W Y, Rajeshwar K. Homogeneous and heterogeneous photocatalyticreactions involving As(III) and As(V) species in aqueous media. Journal of Photochemistry and Photobiology A Chemistry, 1999, 123(1―3): 137―143 doi: 10.1016/S1010-6030(99)00052-0
Moraes J E F, Quina F H, Nascimento C A O, Silva D N, Chiavone-Filho O. Treatmentof saline wastewater contaminated with hydrocarbons by the photo-Fentonprocess. Environmental Science & Technology, 2004, 38(4): 1183―1187 doi: 10.1021/es034217f
Skoumal M, Cabot P L, Centellas F, Arias C, Rodriguez R M, Garrido J A, Brillas E. Mineralizationof paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Applied Catalysis B: Environmental, 2006, 66(3―4): 228―240 doi: 10.1016/j.apcatb.2006.03.016
Zalazar C S, Satuf M L, Alfano O M, Cassano A E. Comparison of H2O2/UVand heterogeneous photocatalytic processes for the degradation ofdichloroacetic acid in water. EnvironmentalScience & Technology, 2008, 42(16): 6198―6204 doi: 10.1021/es800028h
Horikoshi S, Hidaka H, Serpone N. Environmental remediationby an integrated microwave/UV illumination technique: VI. A simplemodified domestic microwave oven integrating an electrodeless UV-Vislamp to photodegrade environmental pollutants in aqueous media. Journal of Photochemistry and Photobiology A Chemistry, 2004, 161(2―3): 221―225
Yang S G, Fu H B, Sun C, Gao Z Q. Rapid photocatalytic destruction of pentachlorophenol in F-Si-comodifiedTiO2 suspensions under microwave irradiation. Journal of Hazardous Materials, 2009, 161(2―3): 1281―1287
Ju Y M, Yang S G, Ding Y C, Sun C, Zhang A Q, Wang L. Microwave-Assisted Rapid Photocatalytic Degradation ofMalachite Green in TiO2 Suspensions: Mechanismand Pathways. Journal of Physical ChemistryA, 2008, 112(44): 11172―11177 doi: 10.1021/jp804439z
Zhanqi G, Shaogui Y, Na T, Cheng S. Microwave assisted rapid and complete degradation ofatrazine using TiO2 nanotube photocatalystsuspensions. Journal of Hazardous Materials, 2007, 145(3): 424―430 doi: 10.1016/j.jhazmat.2006.11.042
Lin C, Lin K S. Photocatalyticoxidation of toxic organohalides with TiO2/UV:the effects of humic substances and organic mixtures. Chemosphere, 2007, 66(10): 1872―1877
Lee H, Choi W. Photocatalyticoxidation of arsenite in TiO2 suspension: kineticsand mechanisms. Environmental Science &Technology, 2002, 36(17): 3872―3878 doi: 10.1021/es0158197
Ta N, Hong J, Liu T, Sun C. Degradationof atrazine by microwave-assisted electrodeless discharge mercurylamp in aqueous solution. Journal of HazardousMaterials, 2006, 138(1): 187―194 doi: 10.1016/j.jhazmat.2006.05.050
Konstantinou I K, Sakellarides T M, Sakkas V A, Albanis T A. Photocatalytic degradation of selected s-triazine herbicidesand organophosphorus insecticides over aqueous TiO2 suspensions. Environmental Science &Technology, 2001, 35(2): 398―405 doi: 10.1021/es001271c
Lackhoff M, Niessner R. Photocatalyticatrazine degradation by synthetic minerals, atmospheric aerosols,and soil particles. Environmental Science& Technology, 2002, 36(24): 5342―5347 doi: 10.1021/es025590a
Cao Y, Yi L, Huang L, Hou Y, Lu Y. Mechanism and pathways ofchlorfenapyr photocatalytic degradation in aqueous suspension of TiO2. Environmental Science &Technology, 2006, 40(10): 3373―3377 doi: 10.1021/es052073u
Garbin J R, Milori D M B P, Sim?es M L, da Silva W T L, Neto L M. Influenceof humic substances on the photolysis of aqueous pesticide residues. Chemosphere, 2007, 66(9): 1692―1698
Chu W, Choy W K. The mechanismsof rate enhancing and quenching of trichloroethene photodecay in thepresence of sensitizer and hydrogen sources. Water Research, 2002, 36(10): 2525―2532 doi: 10.1016/S0043-1354(01)00471-7
Ilisz I, Dombi A. The photochemicalbehavior of hydrogen peroxide in near UV-irradiated aqueous TiO2 suspensions. Journal ofMolecular Catalysis A Chemical, 1998, 135(1): 55―61 doi: 10.1016/S1381-1169(97)00296-3
Dionysiou D D, Suidan M T, Bekou E, Baudin I, Laine J M. Effect ofionic strength and hydrogen peroxide on the photocatalytic degradationof 4-chlorobenzoic acid in water. AppliedCatalysis B: Environmental, 2000, 26(3): 153―171 doi: 10.1016/S0926-3373(00)00124-7
Chemseddine A. A study of the primary step in the photochemical degradationof acetic-acid and chloroacetic acids on a TiO2 photocatalyst. Journal of Molecular Catalysis, 1990, 60(3): 295―311 doi: 10.1016/0304-5102(90)85253-E
Pelizzetti E. Enhancement of the rate of photocatalytic degradationon TiO2 of 2-chlorophenol, 2,7-dichlorodibenzodioxinand atrazine by inorganic oxidizing species. New Journal of Chemistry, 1991, 15(5): 351―359
Granados-Oliveros G, Paez-Mozo E A, Ortega F M, Ferronato C, Chovelon J M. Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Applied Catalysis B: Environmental, 2009, 89(3―4): 448―454
Héquet V, Gonzalez C, Le Cloirec P. Photochemical processes foratrazine degradation: methodological approach. Water Research, 2001, 35(18): 4253―4260 doi: 10.1016/S0043-1354(01)00166-X
Pelizzetti E, Maurino V, Minero C, Carlin V, Tosato M L, Pramauro E, Zerbinati O. Photocatalytic degradation of atrazine and other striazineherbicides. Environmental Science &Technology, 1990, 24(10): 1559―1565
Canelli E. Chemical, bacteriological, and toxicological propertiesof cyanuric acid and chlorinated isocyanurates as applied to swimmingpool disinfection: a review. American Journalof Public Health, 1974, 64(2): 155―162 doi: 10.2105/AJPH.64.2.155
Hiskia A, Ecke M, Troupis A, Kokorakis A, Hennig H, Papaconstantinou E. Sonolytic, photolytic, and photocatalyticdecomposition of atrazine in the presence of polyoxometalates. Environmental Science & Technology, 2001, 35(11): 2358―2364 doi: 10.1021/es000212w