Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
A series of CeO2 supported V2O5 catalysts with various loadings were prepared with different calcination temperatures by the incipient impregnation. The catalysts were evaluated for low temperature selective catalytic reduction (SCR) of NO with ammonia (NH3). The effects of O2 and SO2 on catalytic activity were also studied. The catalysts were characterized by specific surface areas (SBET) and X–ray diffraction (XRD) methods. The experimental results showed that NO conversion changed significantly with the different V2O5 loading and calcination temperature. With the V2O5 loading increasing from 0 to 10 wt%, NO conversion increased significantly, but decreased at higher loading. The optimum calcination temperature was 400°C. The best catalyst yielded above 80% NO conversion in the reaction temperature range of 160°C–300°C. The formation of CeVO4 on the surface of catalysts caused the decrease of redox ability.
Corresponding Author(s):
LI Caiting,Email:ctli@hnu.cn
引用本文:
. Characterization and performance of V2O5/CeO2 for NH3-SCR of NO at low temperatures[J]. Frontiers of Environmental Science & Engineering, 2012, 6(2): 156-161.
Caiting LI, Qun LI, Pei LU, Huafei CUI, Guangming ZENG. Characterization and performance of V2O5/CeO2 for NH3-SCR of NO at low temperatures. Front Envir Sci Eng, 2012, 6(2): 156-161.
Bosch H, Janssen F. Formation and Control of Nitrogen Oxides. Catalysis Today , 1988, 2(4): 369–379 doi: 10.1016/0920-5861(88)80002-6
2
Teng H, Tu Y T, Lai Y C, Lin C C. Reduction of NO with NH3 over carbon catalysts The effects of treating carbon with H2SO4 and HNO3. Carbon , 2001, 39(4): 575–582 doi: 10.1016/S0008-6223(00)00171-8
3
Severino F, Brito J L, Laine J, Fierro J L G, L?pez A A. Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl2O4 and CuCr2O4 Spinel Type Catalysts. Journal of Catalysis , 1998, 177(1): 82–95 doi: 10.1006/jcat.1998.2094
4
Wood S C. Select the Right NOx Control Technology. Chemical Engineering Progress , 1994, 90: 32–38
5
Ha H P, Jung S H, Lee J Y, Hong S H. Study on SCR De NO, mechanism through in situ electrical conductivity measurements on V2O5-WO3/TiO2 catalysts. Rare Metals , 2006, 25(9): 77–83
6
Djerad S, Crocoll M, Kureti S, Tifouti L, Weisweiler W. Effect of oxygen concentration on the NOx reduction with ammonia over V2O5-WO3/TiO2 catalyst. Catalysis Today , 2006, 113(3-4): 208–214 doi: 10.1016/j.cattod.2005.11.067
7
Kijlstra W, Brands D, Smit H, Poels E, Bliek A. Mechanism of the Selective Catalytic Reduction of NO with NH3 over MnOx/Al2O3 II, Reactivity of Adsorbed NH3 and NO Complexes. Journal of Catalysis , 1997, 171(1): 219–230 doi: 10.1006/jcat.1997.1789
8
Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey R J. Adsorption, Activation, and Oxidation of Ammonia over SCR Catalysts. Journal of Catalysis , 1995, 157(2): 523–535 doi: 10.1006/jcat.1995.1316
9
Kasaoka S, Sasaoka E, Iwasaki H. Vanadium Oxides(V2Ox) Catalysts for Dry-Type and Simultaneous Removal of Sulfur Oxides and Nitrogen Oxides with Ammonia at Low Temperature. Chemical Society of Japan , 1989, 62(4): 1226–1232 doi: 10.1246/bcsj.62.1226
10
W?llner A, Lange F, Schmelz H, Kn?zinger H. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Applied Catalysis A, General , 1993, 94(2): 181–203 doi: 10.1016/0926-860X(93)85007-C
11
Kijlstra W, Daamen J, Graaf J, Linden B, Poels E, Bliek A. Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3. Applied Catalysis B: Environmental , 1996, 7(3-4): 337–357 doi: 10.1016/0926-3373(95)00052-6
12
Zhu Z P, Liu Z Y, Niu H X, Liu S J. Promoting Effect of SO2 on Activated Carbon-Supported Vanadia Catalyst for NO Reduction by NH3 at Low Temperature. Journal of Catalysis , 1999, 187(1): 245–248 doi: 10.1006/jcat.1999.2605
13
Richter M, Trunschke A, Bentrup U, Brzezinka K W, Schreier E, Schneider M, Pohl M M, Fricke R. Selection Catalytic Reduction of Nitric Oxide by Ammonia over Egg-Shell MnOx/NaY Composite Catalysts. Journal of Catalysis , 2002, 206(1): 98–113 doi: 10.1006/jcat.2001.3468
14
Fabrizioli P, Bürgi T, Baiker A. Environmental Catalysis on Iron Oxide-Silica Aerogels: Selective Oxidation of NH3 and Reduction of NO by NH3. Journal of Catalysis , 2002, 206(1): 143–154 doi: 10.1006/jcat.2001.3475
15
Qi G S, Yang T R. Characterization and FTIR Studies of MnOx-CeO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO with NH3. Journal of Physical Chemistry B , 2004, 108(40): 15738–15747 doi: 10.1021/jp048431h
16
Qi G S, Yang T R, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental , 2004, 51(2): 93–106 doi: 10.1016/j.apcatb.2004.01.023
17
Tikhomirov K, Kr?cher O, Elsener M, Wokaun A. MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot. Applied Catalysis B: Environmental , 2006, 64(1-2): 72–78 doi: 10.1016/j.apcatb.2005.11.003
18
Machida M, Uto M, Kurogi D, Kijima T. MnOx-CeO2 Binary Oxides for Catalytic NOx Sorption at Low Temperatures. Sorptive Removal of NOx. Chemistry of Materials , 2000, 12(10): 3158–3164 doi: 10.1021/cm000207r
19
Li J H, Chen J J, Ke R, Luo C K, Hao J M. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts. Catalysis Communications , 2007, 8(12): 1896–1900 doi: 10.1016/j.catcom.2007.03.007
20
Tang X L, Hao J M, Xu W G, Li J H. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods. Catalysis Communications , 2007, 8(3): 329–334 doi: 10.1016/j.catcom.2006.06.025
21
Cousin R, Capelle S, Abi-Aad E, Courcot D, Abouka?s A. Copper-Vanadium-Cerium oxide catalysts for carbon blank oxidation. Applied Catalysis B: Environmental , 2007, 70(1-4): 247–253 doi: 10.1016/j.apcatb.2006.01.019
22
Ka?par J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today , 1999, 50(2): 285–298 doi: 10.1016/S0920-5861(98)00510-0
23
Trovarelli A. Catalytic properties of Ceria and CeO2-containing materials. Catalysis Reviews. Science and Engineering , 1996, 38(4): 439–520 doi: 10.1080/01614949608006464
24
Gu X D, Ge J Z, Zhang H L, Auroux A, Shen J Y. Structureal, redox and acid-base properties of V2O5/CeO2 catalysts. Thermochimica Acta , 2006, 451(1-2): 84–93 doi: 10.1016/j.tca.2006.09.007
25
Chen L, Li J H, Ge M F. Promotional Effect of Ce-doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by NH3. Journal of Physical Chemistry C , 2009, 113(50): 21177–21184 doi: 10.1021/jp907109e
26
Chen L, Li J H, Ge M F, Zhu R H. Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia. Catalysis Today , 2010, 153(3-4): 77–83 doi: 10.1016/j.cattod.2010.01.062
27
Daniell W, Ponchel A, Kuba S, Anderle F, Weingand T, Gregory D H, Kn?zinger H. Characterization and Catalytic Behavior of VOx-CeO2 Catalysts for the Oxidative Dehydrogenation of Propane. Topics in Catalysis , 2002, 20(1-4): 64–74
28
Xu W Q, Yu Y B, Zhang C B, He H. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catalysis Communications , 2008, 9(6): 1453–1457 doi: 10.1016/j.catcom.2007.12.012
29
Zhu Z P, Liu Z Y, Niu H X, Liu S J, Hu T D, Liu T, Xie Y N. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst. Journal of Catalysis , 2001, 197(1): 6–16 doi: 10.1006/jcat.2000.3052
30
Zhu Z P, Liu Z Y, Liu S J, Niu H X. A novel carbon-supported vanadium oxide catalyst for NO reduction with NH3 at low temperatures. Applied Catalysis B: Environmental , 1999, 23(4): L229-L233 doi: 10.1016/S0926-3373(99)00085-5