1. College of Environmental Science, Anhui Normal University, Wuhu 241000, China; 2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 3. College of Resource and Environment, Southwest University, Chongqing 400716, China
The biosorption of Cd2+ and Cu2+ onto the immobilized Saccharomyces cerevisiae (S. cerevisiae) was investigated in this study. Adsorption kinetics, isotherms and the effect of pH were studied. The results indicated that the biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae was fast at initial stage and then became slow. The maximum biosorption of heavy metal ions on immobilized S. cerevisiae were observed at pH 4 for Cd2+ and Cu2+. by the pseudo-second-order model described the sorption kinetic data well according to the high correlation coefficient (R2) obtained. The biosorption isotherm was fitted well by the Langmuir model, indicating possible mono-layer biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae. Moreover, the immobilized S. cerevisiae after the sorption of Cd2+ and Cu2+ could be regenerated and reused.
Saygideger S, Gulnaz O, Istifli E S, Yucel N. Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment. Journal of Hazardous Materials , 2005, 126(1-3): 96–104 doi: 10.1016/j.jhazmat.2005.06.012 pmid:16051430
2
Malkoc E, Nuhoglu Y. Investigations of nickel (II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Materials , 2005, 127(1-3): 120–128 doi: 10.1016/j.jhazmat.2005.06.030 pmid:16125314
3
Mashitah M D, Azila Y, Bhatia S. Biosorption of cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution. Bioresource Technology , 2008, 99(11): 4742–4748 doi: 10.1016/j.biortech.2007.09.062 pmid:17981460
4
Vasudevan P, Padmavathy V, Dhingra S C. Kinetics of biosorption of cadmium on Baker’s yeast. Bioresource Technology , 2003, 89(3): 281–287 doi: 10.1016/S0960-8524(03)00067-1 pmid:12798119
5
Aksu Z, Egretli G, Kutsal T. A comparative study for the biosorption characteristics of chromium(VI) on ca-alginate, agarose and immobilized C. vulgaris in a continous packed bed column. Journal of Environmental Science and Health , 1999, A32(2): 295–316 doi: 10.1080/10934529909376837
6
Say R, Denizli A, Arica M Y. Biosorption of cadmium(II), lead (II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresource Technology , 2001, 76(1): 67–70 doi: 10.1016/S0960-8524(00)00071-7 pmid:11315813
7
Ghorbani., Younesi H, Ghasempouri S M, Zinatizadeh A A, Amini M, Daneshi A. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by S. cerevisiae. Chemical Engineering Journal , 2008, 145: 267–275
8
Dang V B H, Doan H D, Dang-Vu T, Lohi A. Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresource Technology , 2009, 100(1): 211–219 doi: 10.1016/j.biortech.2008.05.031 pmid:18599289
9
Veglio F, Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy , 1997, 44(3): 301–316 doi: 10.1016/S0304-386X(96)00059-X
Tunali S, Akar T, Ozcan A S, Kiran I, Ozcan A. Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Separation and Purification Technology , 2006, 47(3): 105–112 doi: 10.1016/j.seppur.2005.06.009
12
Vilar V J P, Botelho C M S, Loureiro J M, Boaventura R A R. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column. Bioresource Technology , 2008, 99(13): 5830–5838 doi: 10.1016/j.biortech.2007.10.007 pmid:18053711
13
Cochrane E L, Lu S, Gibb S W, Villaescusa I. A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. Journal of Hazardous Materials , 2006, 137(1): 198–206 doi: 10.1016/j.jhazmat.2006.01.054 pmid:16530940
14
Wang J L, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances , 2006, 24(5): 427–451 doi: 10.1016/j.biotechadv.2006.03.001 pmid:16737792
15
G?ksungur Y, üren S, Güven? U. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technology , 2005, 96(1): 103–109 doi: 10.1016/j.biortech.2003.04.002 pmid:15364087
16
Wang J L. Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry , 2002, 37(8): 847–850 doi: 10.1016/S0032-9592(01)00284-9
17
Vianna L L N, Andrade M C, Jacques R N. Screening ofwaste biomass from saccharomayces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentation for removal of Cu, Zn and Cd by biosorption, World Journal of Microbiology Biotechnology . 2000, 16: 437–440
18
?zer A, ?zer D, Ekiz H I. The equilibrium and kinetic modelling of the biosorption of copper(II) ions on Cladophora crispata. Adsorpt-J Int Adsorpt Soc , 2004, 10: 317–326
19
Bakkaloglu I, Butter T J, Evison L M, Holland F S, Hancock I C. Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation and desorption. Water Science and Technology , 1998, 38(6): 269–277 doi: 10.1016/S0273-1223(98)00587-3
20
Matheickal J T, Yu Q. Biosorption of lead from aqueous solutions by marine algae Ecklonia radiata. Water Science and Technology , 1996, 34(9): 1–7
21
Chang J S, Huang J C, Chang C C, Tarn T J. Removal and recovery of lead fixed-bed biosorption with immobilized bacterial biomass.Water Science and Technology , 1998, 38(4-5): 171–178
22
Kratochvil D, Volesky B, Demopoulos G. Optimizing Cu removal/recovery in a biosorption column. Water Research , 1997, 31(9): 2327–1339
23
Arica M Y, Ka?ar Y, Gen? O. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource Technology , 2001, 80(2): 121–129 doi: 10.1016/S0960-8524(01)00084-0 pmid:11563702
24
Bayramoglu G, Bektas S, Arica M Y. Biosorption of heavy metals on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Matererals . 2003, 101: 285–300.
25
Volesky B, Weber J, Park J M. Continuous-flow metal biosorption in a regenerable Sargassum column. Water Resarch , 2003, 37: 297–306
26
Cussler E L. Diffusion-Mass Transfer in Fluid Systems (trans. Wang X Y, Jiang Z Y). 2th ed. Beijing: Chemical Industry Press, 2002, 199 (in Chinese)
27
Ho Y S, McKay G. The sorption of lead(II) ions on peat response to comment. Water Resarch , 1999, 33: 578–584
28
McKay G, Ho Y S. Pseudo-second-order model for sorption processes. Process Biochemstry , 1999, 34: 451–465
29
Aksu Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochemistry , 2002, 38(1): 89–99 doi: 10.1016/S0032-9592(02)00051-1
30
Cruz C, Costa A, Henriques C, Luna A. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. Biomass. Bioresource Technology , 2004, 91: 249–257
31
Sag Y, Kutsal T. The selective biosorption of chromium(VI) and copper(II) ions from binary metal mixtures by R. arrhizus. Process Biochemstry , 1996, 31: 561–572
32
Módenes A N, de Abreu Pietrobelli J M T, Espinoza-Qui?ones F R. Cadmium biosorption by non-living aquatic macrophytes Egeria densa. Water Science and Technology , 2009, 60(2): 293–300
33
de Abreu Pietrobelli J M T, Módenes A N, Espinoza-Qui?ones F R, Fagundes-Klen M R, Kroumov A. Removal of copper ions by non-living aquatic macrophytes egeria densa. International Journal Bioautomation , 2009, 12(1): 21–32
34
Saeed A, Iqbal M. Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Research , 2003, 37(14): 3472–3480 doi: 10.1016/S0043-1354(03)00175-1 pmid:12834740
35
Kratochvil D, Volesky B. Biosorption of Cu from ferruginous wastewater by algal biomass. Water Resarch , 1998, 32(9): 2760–2768
36
Chu K H, Hashim M A, Phang S M, Samuel V B. Biosorption of cadmium by algal biomass: adsorption and desorption characteristics. Water Science and Technology , 1997, 35(7): 115–122
37
Pradhan S, Rai L C. Copper removal by immobilized M. aeruginosa in continuous flow columns at different bed heights: study of the adsorption/desorption cycle. World Journal of Microbiology Biotechnology , 2001, 17: 829–832
38
Lázaro N, Sevilla A L, Morales S, Marqúes A M. Heavy metal biosorption by gellan gum gel beads. Water Resarch , 2003, 37: 2118–2126
39
Davis T A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Resarch , 2003, 37: 4311–4330