Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2013, Vol. 7 Issue (4): 518-525   https://doi.org/10.1007/s11783-013-0500-9
  RESEARCH ARTICLE 本期目录
Adsorption of sulfonamides on lake sediments
Adsorption of sulfonamides on lake sediments
Zhenxing ZHONG1,2, Jian XU1,3, Yuan ZHANG1,3(), Lei LI1,3, Changsheng GUO1,3, Yan HE1,3, Wenhong FAN4, Beiping ZHANG2
1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 2. School of Environmental Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; 3. Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 4. Department of Environmental Science and Engineering, School of Chemistry and Environment, Beihang University, Beijing 100191, China
 全文: PDF(150 KB)   HTML
Abstract

Sulfonamides (SAs) are one class of the most widely used antibiotics around the world. Their fate and transport in the aquatic environment is of great concern. In this study, adsorption of four SAs—sulfadiazine (SD), sulfamethoxazole (SMZ), sulfadimethoxine (SDM) and sulfamethazine (SM2)—in single-solute and multi-solute systems on sediments of Dianchi (DC) Lake and Taihu (TH) Lake, China was investigated with batch experiments. In the single-solute adsorption system, the Langmuir model and the dual-mode model described the adsorption process better than the Freundlich model. Model fitness was better on DC sediment than on TH sediment. The order of adsorption capacity approximately followed a decreasing order of SDM>SD>SM2>SMZ on both sediments, which was likely attributed to the distinctly different water solubility of the four SAs. In the multi-solute system, the order of adsorption capacity was SM2>SDM>SD>SMZ, which was probably related to the compound speciation caused by the pH values of the experimental solution. In the multi-solute system, both competitive and cooperative adsorption played important roles in the adsorption of sulfonamides on sediments.

Key wordssulfonamides    sediments    competitive adsorption    cooperative adsorption
收稿日期: 2011-09-25      出版日期: 2013-08-01
Corresponding Author(s): ZHANG Yuan,Email:zhangyuan@craes.org.cn   
 引用本文:   
. Adsorption of sulfonamides on lake sediments[J]. Frontiers of Environmental Science & Engineering, 2013, 7(4): 518-525.
Zhenxing ZHONG, Jian XU, Yuan ZHANG, Lei LI, Changsheng GUO, Yan HE, Wenhong FAN, Beiping ZHANG. Adsorption of sulfonamides on lake sediments. Front Envir Sci Eng, 2013, 7(4): 518-525.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-013-0500-9
https://academic.hep.com.cn/fese/CN/Y2013/V7/I4/518
structureMWa)/(g·mol-1)pKa1b)pKa2 b)water solubilityc)/(mg·L-1)
SD250.281.6 d)6.4 d)66.85
SMZ253.281.4 e)5.6e)383.72
SM2278.332.7 f)7.7f)452.89
SDM310.332.4d)6.0d)66.81
Tab.1  
sedimentOM a)/(mg·g-1)pH b)zeta c)/mvSSA d)/(m2·g-1)specific porevolume /(cm3·g-1)pore diameter/nm
Taihu Lake13. 266.53-10.316.99640.051912.21
Dianchi Lake59.747.18-8.920.47020.098119.17
Tab.2  
Fig.1  
sorptionFreundlich modelLangmuir modelDMM modelNc)
KFa)nR2KLQmb)R2KdQmR2
DC sedimentSD4.620.6090.9150.2226.250.9890.3595.560.98912
SM24.030.5220.9880.5412.760.9870.0515.840.99712
SMZ2.610.5110.9780.488.760.9960.384.740.99612
SDM2.230.6620.9120.0733.900.9560.0610.110.98812
TH sedimentSD1.560.7170.9700.302.920.9290.234.170.98312
SM21.190.2590.5540.912.460.8880.143.460.95112
SMZ2.040.0570.3957.702.340.7531.521.520.98712
SDM0.950.7370.8420.652.890.7290.2311.080.99012
Tab.3  
Fig.2  
adsorptionFreundlich modelLangmuir modelNc)
KFa)nR2KLQmb)R2
DC sedimentSD2.440.5370.8700.31910.370.96512
SM22.960.7790.9430.011250.000.97912
SMZ1.880.5630.8870.2497.520.98112
SDM2.900.7310.9340.03483.330.97812
TH sedimentSD0.530.4280.8380.5031.670.92112
SM21.100.7760.9020.07116.720.93112
SMZ0.740.7120.8110.2781.580.91412
SDM1.400.7270.8750.2437.630.93912
Tab.4  
1 Kurwadkar S T, Adams C D, Meyer M T, Kolpin D W. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. Journal of Agricultural and Food Chemistry , 2007, 55(4): 1370–1376
doi: 10.1021/jf060612o pmid:17300155
2 Zhang L. The current situation in production, marketing and tendency of sulfonamides. China Pharmacy , 2005, 16(8): 571–573 (in Chinese)
3 McEvoy G K. AHFS Drug Information. Bethesda, MD: American Society of Health-System Pharmacists , 2004
4 Ingerslev F, Halling-S?rensen B. Biodegradability properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry, 2000, 19(10): 2467–2473
doi: 10.1002/etc.5620191011
5 Miao X S, Bishay F, Chen M, Metcalfe C D. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental Science & Technology , 2004, 38(13): 3533–3541
doi: 10.1021/es030653q pmid:15296302
6 Chang H, Hu J Y, Wang L Z, Shao B. Occurrence of sulfonamide antibiotics in sewage treatment plants. Chinese Science Bulletin , 2008, 53(4): 514–520
doi: 10.1007/s11434-008-0123-x
7 Kolpin D W, Furlong E T, Meyer M T, Thurman E M, Zaugg S D, Barber L B, Buxton H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environmental Science & Technology , 2002, 36(6): 1202–1211
doi: 10.1021/es011055j pmid:11944670
8 Managaki S, Murata A, Takada H, Tuyen B C, Chiem N H. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environmental Science & Technology , 2007, 41(23): 8004–8010
doi: 10.1021/es0709021 pmid:18186329
9 Holm J V, Ruegge K, Bjerg P L, Christensen T H. Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (grindsted, denmark). Environmental Science & Technology , 1995, 29(5): 1415–1420
doi: 10.1021/es00005a039 pmid:22192041
10 Hirsch R, Ternes T, Haberer K, Kratz K L. Occurrence of antibiotics in the aquatic environment. The Science of the Total Environment , 1999, 225(1-2): 109–118
doi: 10.1016/S0048-9697(98)00337-4 pmid:10028708
11 Sacher F, Gabriel S, Metzinger M, Stretz A, Wenz M, Lange F T, Brauch H J, Blankenhorn I. Arzneimittelwirkstoffe im grundwasser—ergebnisseines monitoring-programms in Baden-Württemberg (Active pharmaceutical ingredients in groundwater—the results of a monitoring program in Baden-Württemberg [Germany]). Vom Wasser , 2002, 99: 183–196 (in German)
12 Kim S C, Carlson K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environmental Science & Technology , 2007, 41(1): 50–57
doi: 10.1021/es060737+ pmid:17265926
13 Uno K, Aoki T, Kleechaya W, Ruangpan L, Tanasomwang V. Pharmacokinetics of oxolinic acid in black tiger shrimp, Penaeus monodon Fabricius, and the effect of cooking on residues. Aquaculture and Research , 2006, 37(8): 826–833
doi: 10.1111/j.1365-2109.2006.01500.x
14 Xu J, Wu L S, Chang A C. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere , 2009, 77(10): 1299–1305
doi: 10.1016/j.chemosphere.2009.09.063 pmid:19853275
15 Xu J, Chen W P, Wu L S, Green R, Chang A C. Leachability of some emerging contaminants in reclaimed municipal wastewater-irrigated turf grass fields. Environmental Toxicology and Chemistry , 2009, 28(9): 1842–1850
doi: 10.1897/08-471.1 pmid:19355791
16 Xu J, Chen W, Wu L,Chang A C. Adsorption and degradation of ketoprofen in soils. Journal of Environmental Quality , 2009, 38(3): 1177–1182
doi: 10.2134/jeq2008.0347 pmid:19398515
17 Zhang G, Liu X, Sun K, Zhao Y, Lin C. Sorption of tetracycline to sediments and soils: assessing the roles of pH, the presence of cadmium and properties of sediments and soils. Frontiers of Environmental Science & Engineering in China , 2010, 4(4): 421-429
18 Wang B, Huang J, Deng S, Yang X, Yu G. Addressing the environmental risk of persistent organic pollutants in China. Frontiers of Environmental Science & Engineering , 2012, 6(1): 2–16
19 Wang Z H, Ding S Y, Zhang S X, Shen J Z. Structure-activity relationship of 17 sulfonamides binding to antibody by molecular modeling technique. Acta Chimica Sinica , 2008, 66(23): 2613–2619 (in Chinese)
20 Thiele-Bruhn S, Seibicke T, Schulten H R, Leinweber P. Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. Journal of Environmental Quality , 2004, 33(4): 1331–1342
doi: 10.2134/jeq2004.1331 pmid:15254115
21 Gao J, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science & Technology , 2005, 39(24): 9509–9516
doi: 10.1021/es050644c pmid:16475329
22 Lin C E, Chang C C, Lin W C. Migration behavior and separation of sulfonamides in capillary zone electrophoresis III Citrate buffer as a background electrolyte. Journal of Chromatography A , 1997, 768(1): 105–112
doi: 10.1016/S0021-9673(97)00010-1
23 Xu X R, Li X Y. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere , 2010, 78(4): 430–436
doi: 10.1016/j.chemosphere.2009.10.045 pmid:19913873
24 Jin C X, Chen Q Y, Liu J J, Zhou Q X. Research on the adsorption/ desorption characteristics of sulfamonomethoxine on the soil. Environmental Pollution and Control , 2010, 32(5): 47–51 (in Chinese)
25 Chen H, Zhang J Q, Zhong M, Li S S, Dong Y H. Adsorption of sulfonamides on paddy soil of Taihu Lake region. China Environmental Science , 2008, 28(4): 309–312 (in Chinese)
26 Kong J J, Pei Z G, Wen B, Shan X Q, Chen Z L. Adsorption of sulfadiazine and sulfathiazole by soils. Environmental Chemistry , 2008, 27(6): 736–741 (in Chinese)
27 Pignatello J J, Xing B. Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science & Technology , 1995, 30(1): 1–11
doi: 10.1021/es940683g
28 28.Xing B, Pignatello J J. Time-dependent isotherm shape of organic compounds in soil organic matter: Implications for sorption mechanism. Environmental Toxicology and Chemistry, 1996, 15(8): 1282–1288
doi: 10.1002/etc.5620150805
29 Gu B, Mehlhorn T L, Liang L, McCarthy J F. Competitive adsorption, displacement, and transport of organic matter on iron oxide: I. Competitive adsorption. Geochimica et Cosmochimica Acta , 1996, 60(11): 1943–1950
doi: 10.1016/0016-7037(96)00059-2
30 Xin M H,Li M C, Lan X R, Xie Y, Zhang X S. Competitive absorption of modified chitosan to phenolic pollutants. Environmental Science and Technology , 2007, 30(7): 71–74 (in Chinese)
31 Zhang W M, Xu Z W, Pan B C, Zhang Q J, Du W, Zhang Q R, Zheng K, Zhang Q X, Chen J L. Adsorption enhancement of laterally interacting phenol/aniline mixtures onto nonpolar adsorbents. Chemosphere , 2007, 66(11): 2044–2049
doi: 10.1016/j.chemosphere.2006.09.082 pmid:17113622
32 Zhang W M, Xu Z W, Pan B C, Zhang Q J, Zhang Q R, Du W, Pan B J, Zhang Q X. Cooperative effect of lateral acid-base interaction on 1-naphthol/1-naphthylamine binary adsorption onto nonpolar polymer adsorbents. Separation and Purification Technology , 2007, 55(2): 141–146
doi: 10.1016/j.seppur.2006.11.011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed