Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2013, Vol. 7 Issue (4): 559-567   https://doi.org/10.1007/s11783-013-0501-8
  RESEARCH ARTICLE 本期目录
Response of bacterial communities to short-term pyrene exposure in red soil
Response of bacterial communities to short-term pyrene exposure in red soil
Jingjing PENG1, Hong LI2, Jianqiang SU1, Qiufang ZHANG1, Junpeng RUI3, Chao CAI1()
1. Key Laboratory of Urban Environment and Health Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; 2. Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; 3. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
 全文: PDF(331 KB)   HTML
Abstract

Pyrene, a representative polycyclic aromatic hydrocarbon (PAH) compound produced mainly from incomplete combustion of fossil fuels, is hazardous to ecosystem health. However, long-term exposure studies did not detect any significant effects of pyrene on soil microorganism. In this study, short-term microcosm experiments were conducted to identify the immediate effect of pyrene on soil bacterial communities. A freshly-collected pristine red soil was spiked with pyrene at 0, 10, 100, 200, and 500 mg·kg-1 and incubated for one day and seven days. The bacterial communities in the incubated soils were analyzed using 16S rRNA sequencing and terminal restriction fragment length polymorphism (T-RFLP) methods. The results revealed high bacterial diversity in both unspiked and pyrene-spiked soils. Only at the highest pyrene-spiking rate of 500 mg·kg-1, two minor bacteria groups of the identified 14 most abundant bacteria groups were completely suppressed. Short-term exposure to pyrene resulted in dominance of Proteobacteria in soil, followed by Acidobacteria, Firmutes, and Bacteroidetes. Our findings showed that bacterial community structure did respond to the presence of pyrene but recovered rapidly from the perturbation. The intensity of impact and the rate of recovery showed some pyrene dosage-dependent trends. Our results revealed that different levels of pyrene may affect the bacterial community structure by suppressing or selecting certain groups of bacteria. It was also found that the bacterial community was most susceptible to pyrene within one day of the chemical addition.

Key wordspyrene    bacterial communities    terminal restriction fragment length polymorphism    short-term exposure    rank-abundance plots
收稿日期: 2012-05-13      出版日期: 2013-08-01
Corresponding Author(s): CAI Chao,Email:ccai@iue.ac.cn   
 引用本文:   
. Response of bacterial communities to short-term pyrene exposure in red soil[J]. Frontiers of Environmental Science & Engineering, 2013, 7(4): 559-567.
Jingjing PENG, Hong LI, Jianqiang SU, Qiufang ZHANG, Junpeng RUI, Chao CAI. Response of bacterial communities to short-term pyrene exposure in red soil. Front Envir Sci Eng, 2013, 7(4): 559-567.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-013-0501-8
https://academic.hep.com.cn/fese/CN/Y2013/V7/I4/559
Fig.1  
phylogenetic groupcontrol500 mg·kg-1 pyrenerelative abundance of control /(% of total taxa)relative abundance with 500 mg·kg-1 pyrene /(% of total taxa)
Acidobacteria332422.420.7
Verrucomicrobia432.72.6
Cyanobacteria614.10.9
Chloroflexi130.72.6
Bacteroidetes1137.52.6
Planctomycetes231.42.6
Gemmatimonadetes221.41.7
Actinobacteria503.40.0
Firmutes11197.516.4
α-Proteobacteria241916.316.4
β-Proteobacteria272618.422.4
Δ-Proteobacteria9106.18.6
γ-Proteobacteria906.10.0
unclassified bacteria332.02.6
total (all taxa)147116100.0100.0
Tab.1  
Fig.2  
Fig.3  
Fig.4  
pyrene concentrationday1st/day7thday1st control/ day1st treatmentsday7th control/day7th treatments
RPRPRP
0 ppm0.2220.150
10 ppm0.0740.2500.2900.1500.1900.150
100 ppm0.1850.3500.2000.001a)0.8500.001a)
200 ppm0.6290.001a)0.5600.001a)0.7000.001a)
500 ppm0.5560.001a)0.4100.001a)0.4800.001a)
Tab.2  
1 Head I M, Jones D M, R?ling W F M. Marine microorganisms make a meal of oil. Nature Reviews Microbiology , 2006, 4(3): 173–182
doi: 10.1038/nrmicro1348 pmid:16489346
2 Su Y H, Zhu Y G. Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution. Environmental Pollution , 2008, 155(2): 359–365
doi: 10.1016/j.envpol.2007.11.008 pmid:18331768
3 Tao Y Q, Zhang S Z, Zhu Y G, Christie P. Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (Triticum aestivum L.) grown in field-contaminated soil. Environmental Science & Technology , 2009, 43(10): 3556–3560
doi: 10.1021/es803368y pmid:19544854
4 Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation , 1992, 3(2-3): 351–368
doi: 10.1007/BF00129093
5 Vi?as M, Sabaté J, Espuny M J, Solanas A M. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Applied and Environmental Microbiology , 2005, 71(11): 7008–7018
doi: 10.1128/AEM.71.11.7008-7018.2005 pmid:16269736
6 Ben Said O, Go?i-Urriza M, El Bour M, Aissa P, Duran R. Bacterial community structure of sediments of the bizerte lagoon (Tunisia), a southern Mediterranean coastal anthropized lagoon. Microbial Ecology , 2010, 59(3): 445–456
doi: 10.1007/s00248-009-9585-x pmid:19789910
7 Deng H, Li X F, Cheng W D, Zhu Y G. Resistance and resilience of Cu-polluted soil after Cu perturbation, tested by a wide range of soil microbial parameters. FEMS Microbiology Ecology , 2009, 70(2): 137–148
doi: 10.1111/j.1574-6941.2009.00741.x pmid:19663920
8 Paissé S, Coulon F, Go?i-Urriza M, Peperzak L, McGenity T J, Duran R. Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiology Ecology , 2008, 66(2): 295–305
doi: 10.1111/j.1574-6941.2008.00589.x pmid:18803671
9 Yang H, Su Y H, Zhu Y G, Chen M M, Chen B D, Liu Y X. Influences of polycyclic aromatic hydrocarbons (PAHs) on soil microbial community composition with or without Vegetation. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering , 2007, 42(1): 65–72
10 Gao Y Z, Ling W T, Wong M H. Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant. Chemosphere , 2006, 63(9): 1560–1567
doi: 10.1016/j.chemosphere.2005.09.058 pmid:16581106
11 Lin Y T, Huang Y J, Tang S L, Whitman W B, Coleman D C, Chiu C Y. Bacterial community diversity in undisturbed perhumid montane forest soils in Taiwan. Microbial Ecology , 2010, 59(2): 369–378
doi: 10.1007/s00248-009-9574-0 pmid:19727930
12 Zhang W, Wang H, Zhang R, Yu X Z, Qian P Y, Wong M H. Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology (London, England) , 2010, 19(1): 96–104
doi: 10.1007/s10646-009-0393-3 pmid:19633954
13 Sverdrup L E, Ekelund F, Krogh P H, Nielsen T, Johnsen K. Soil microbial toxicity of eight polycyclic aromatic compounds: effects on nitrification, the genetic diversity of bacteria, and the total number of protozoans. Environmental Toxicology and Chemistry , 2002, 21(8): 1644–1650
doi: 10.1002/etc.5620210815 pmid:12152764
14 Peng J J, Cai C, Qiao M, Li H, Zhu Y G. Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils. Environmental Pollution , 2010, 158(9): 2872–2879
doi: 10.1016/j.envpol.2010.06.020 pmid:20615597
15 Ager D, Evans S, Li H, Lilley A K, van der Gast C J. Anthropogenic disturbance affects the structure of bacterial communities. Environmental Microbiology , 2010, 12(3): 670–678
doi: 10.1111/j.1462-2920.2009.02107.x pmid:20002134
16 Maliszewska-Kordybach B, Klimkowicz-Pawlas A, Smreczak B, Janusauskaite D. Ecotoxic effect of phenanthrene on nitrifying bacteria in soils of different properties. Journal of Environmental Quality , 2007, 36(6): 1635–1645
doi: 10.2134/jeq2007.0118 pmid:17940263
17 Weisburg W G, Barns S M, Pelletier D A, Lane D J. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology , 1991, 173(2): 697–703
pmid:1987160
18 Rui J P, Peng J J, Lu Y H. Succession of bacterial populations during plant residue decomposition in rice field soil. Applied and Environmental Microbiology , 2009, 75(14): 4879–4886
doi: 10.1128/AEM.00702-09 pmid:19465536
19 Osborne C A, Rees G N, Bernstein Y, Janssen P H. New threshold and confidence estimates for terminal restriction fragment length polymorphism analysis of complex bacterial communities. Applied and Environmental Microbiology , 2006, 72(2): 1270–1278
doi: 10.1128/AEM.72.2.1270-1278.2006 pmid:16461676
20 Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution , 2007, 24(8): 1596–1599
doi: 10.1093/molbev/msm092 pmid:17488738
21 Lilley A K, Fry J C, Bailey M J, Day M J. Comparison of aerobic heterotrophic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiology Ecology , 1996, 21(3): 231–242
doi: 10.1111/j.1574-6941.1996.tb00350.x
23 van der Gast C J, Walker A W, Stressmann F A, Rogers G B, Scott P, Daniels T W, Carroll M P, Parkhill J, Bruce K D. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. The ISME Journal, 2011, 5(5): 780–791
doi: 10.1038/ismej.2010.175 pmid:21151003
24 Bell T, Ager D, Song J I, Newman J A, Thompson I P, Lilley A K, van der Gast C J. Larger islands house more bacterial taxa. Science , 2005, 308(5730): 1884
doi: 10.1126/science.1111318 pmid:15976296
25 Clarke K R. Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology , 1993, 18(1): 117–143
doi: 10.1111/j.1442-9993.1993.tb00438.x
26 Nakatsu C H, Torsvik V, Ovreas L. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Science Society of America Journal , 2000, 64(4): 1382–1388
doi: 10.2136/sssaj2000.6441382x
27 Wang X J, Yang J, Chen X P, Sun G X, Zhu Y G. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. Journal of Soils and Sediments , 2009, 9(6): 568–577
doi: 10.1007/s11368-009-0113-x
28 Singleton D R, Richardson S D, Aitken M D. Effects of enrichment with phthalate on polycyclic aromatic hydrocarbon biodegradation in contaminated soil. Biodegradation , 2008, 19(4): 577–587
doi: 10.1007/s10532-007-9163-1 pmid:17990065
29 Singleton D R, Sangaiah R, Gold A, Ball L M, Aitken M D. Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environmental Microbiology , 2006, 8(10): 1736–1745
doi: 10.1111/j.1462-2920.2006.01112.x pmid:16958754
30 Yrj?l? K, Keskinen A K, Akerman M L, Fortelius C, Sipil? T P. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil. Environmental Pollution , 2010, 158(5): 1680–1688
doi: 10.1016/j.envpol.2009.11.026 pmid:20022155
31 Macleod C J A, Semple K T. The adaptation of two similar soils to pyrene catabolism. Environmental Pollution , 2002, 119(3): 357–364
doi: 10.1016/S0269-7491(01)00343-8 pmid:12166669
32 Hartmann M, Widmer F. Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Applied and Environmental Microbiology , 2006, 72(12): 7804–7812
doi: 10.1128/AEM.01464-06 pmid:17041161
33 Girvan M S, Campbell C D, Killham K, Prosser J I, Glover L A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental Microbiology , 2005, 7(3): 301–313
doi: 10.1111/j.1462-2920.2005.00695.x pmid:15683391
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed