1. Key Laboratory of Urban Environment and Health Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; 2. Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; 3. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
Pyrene, a representative polycyclic aromatic hydrocarbon (PAH) compound produced mainly from incomplete combustion of fossil fuels, is hazardous to ecosystem health. However, long-term exposure studies did not detect any significant effects of pyrene on soil microorganism. In this study, short-term microcosm experiments were conducted to identify the immediate effect of pyrene on soil bacterial communities. A freshly-collected pristine red soil was spiked with pyrene at 0, 10, 100, 200, and 500 mg·kg-1 and incubated for one day and seven days. The bacterial communities in the incubated soils were analyzed using 16S rRNA sequencing and terminal restriction fragment length polymorphism (T-RFLP) methods. The results revealed high bacterial diversity in both unspiked and pyrene-spiked soils. Only at the highest pyrene-spiking rate of 500 mg·kg-1, two minor bacteria groups of the identified 14 most abundant bacteria groups were completely suppressed. Short-term exposure to pyrene resulted in dominance of Proteobacteria in soil, followed by Acidobacteria, Firmutes, and Bacteroidetes. Our findings showed that bacterial community structure did respond to the presence of pyrene but recovered rapidly from the perturbation. The intensity of impact and the rate of recovery showed some pyrene dosage-dependent trends. Our results revealed that different levels of pyrene may affect the bacterial community structure by suppressing or selecting certain groups of bacteria. It was also found that the bacterial community was most susceptible to pyrene within one day of the chemical addition.
Corresponding Author(s):
CAI Chao,Email:ccai@iue.ac.cn
引用本文:
. Response of bacterial communities to short-term pyrene exposure in red soil[J]. Frontiers of Environmental Science & Engineering, 2013, 7(4): 559-567.
Jingjing PENG, Hong LI, Jianqiang SU, Qiufang ZHANG, Junpeng RUI, Chao CAI. Response of bacterial communities to short-term pyrene exposure in red soil. Front Envir Sci Eng, 2013, 7(4): 559-567.
relative abundance with 500 mg·kg-1 pyrene /(% of total taxa)
Acidobacteria
33
24
22.4
20.7
Verrucomicrobia
4
3
2.7
2.6
Cyanobacteria
6
1
4.1
0.9
Chloroflexi
1
3
0.7
2.6
Bacteroidetes
11
3
7.5
2.6
Planctomycetes
2
3
1.4
2.6
Gemmatimonadetes
2
2
1.4
1.7
Actinobacteria
5
0
3.4
0.0
Firmutes
11
19
7.5
16.4
α-Proteobacteria
24
19
16.3
16.4
β-Proteobacteria
27
26
18.4
22.4
Δ-Proteobacteria
9
10
6.1
8.6
γ-Proteobacteria
9
0
6.1
0.0
unclassified bacteria
3
3
2.0
2.6
total (all taxa)
147
116
100.0
100.0
Tab.1
Fig.2
Fig.3
Fig.4
pyrene concentration
day1st/day7th
day1st control/ day1st treatments
day7th control/day7th treatments
R
P
R
P
R
P
0 ppm
0.222
0.150
10 ppm
0.074
0.250
0.290
0.150
0.190
0.150
100 ppm
0.185
0.350
0.200
0.001a)
0.850
0.001a)
200 ppm
0.629
0.001a)
0.560
0.001a)
0.700
0.001a)
500 ppm
0.556
0.001a)
0.410
0.001a)
0.480
0.001a)
Tab.2
1
Head I M, Jones D M, R?ling W F M. Marine microorganisms make a meal of oil. Nature Reviews Microbiology , 2006, 4(3): 173–182 doi: 10.1038/nrmicro1348 pmid:16489346
2
Su Y H, Zhu Y G. Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution. Environmental Pollution , 2008, 155(2): 359–365 doi: 10.1016/j.envpol.2007.11.008 pmid:18331768
3
Tao Y Q, Zhang S Z, Zhu Y G, Christie P. Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (Triticum aestivum L.) grown in field-contaminated soil. Environmental Science & Technology , 2009, 43(10): 3556–3560 doi: 10.1021/es803368y pmid:19544854
4
Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation , 1992, 3(2-3): 351–368 doi: 10.1007/BF00129093
5
Vi?as M, Sabaté J, Espuny M J, Solanas A M. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Applied and Environmental Microbiology , 2005, 71(11): 7008–7018 doi: 10.1128/AEM.71.11.7008-7018.2005 pmid:16269736
6
Ben Said O, Go?i-Urriza M, El Bour M, Aissa P, Duran R. Bacterial community structure of sediments of the bizerte lagoon (Tunisia), a southern Mediterranean coastal anthropized lagoon. Microbial Ecology , 2010, 59(3): 445–456 doi: 10.1007/s00248-009-9585-x pmid:19789910
7
Deng H, Li X F, Cheng W D, Zhu Y G. Resistance and resilience of Cu-polluted soil after Cu perturbation, tested by a wide range of soil microbial parameters. FEMS Microbiology Ecology , 2009, 70(2): 137–148 doi: 10.1111/j.1574-6941.2009.00741.x pmid:19663920
8
Paissé S, Coulon F, Go?i-Urriza M, Peperzak L, McGenity T J, Duran R. Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiology Ecology , 2008, 66(2): 295–305 doi: 10.1111/j.1574-6941.2008.00589.x pmid:18803671
9
Yang H, Su Y H, Zhu Y G, Chen M M, Chen B D, Liu Y X. Influences of polycyclic aromatic hydrocarbons (PAHs) on soil microbial community composition with or without Vegetation. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering , 2007, 42(1): 65–72
10
Gao Y Z, Ling W T, Wong M H. Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant. Chemosphere , 2006, 63(9): 1560–1567 doi: 10.1016/j.chemosphere.2005.09.058 pmid:16581106
11
Lin Y T, Huang Y J, Tang S L, Whitman W B, Coleman D C, Chiu C Y. Bacterial community diversity in undisturbed perhumid montane forest soils in Taiwan. Microbial Ecology , 2010, 59(2): 369–378 doi: 10.1007/s00248-009-9574-0 pmid:19727930
12
Zhang W, Wang H, Zhang R, Yu X Z, Qian P Y, Wong M H. Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology (London, England) , 2010, 19(1): 96–104 doi: 10.1007/s10646-009-0393-3 pmid:19633954
13
Sverdrup L E, Ekelund F, Krogh P H, Nielsen T, Johnsen K. Soil microbial toxicity of eight polycyclic aromatic compounds: effects on nitrification, the genetic diversity of bacteria, and the total number of protozoans. Environmental Toxicology and Chemistry , 2002, 21(8): 1644–1650 doi: 10.1002/etc.5620210815 pmid:12152764
14
Peng J J, Cai C, Qiao M, Li H, Zhu Y G. Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils. Environmental Pollution , 2010, 158(9): 2872–2879 doi: 10.1016/j.envpol.2010.06.020 pmid:20615597
15
Ager D, Evans S, Li H, Lilley A K, van der Gast C J. Anthropogenic disturbance affects the structure of bacterial communities. Environmental Microbiology , 2010, 12(3): 670–678 doi: 10.1111/j.1462-2920.2009.02107.x pmid:20002134
16
Maliszewska-Kordybach B, Klimkowicz-Pawlas A, Smreczak B, Janusauskaite D. Ecotoxic effect of phenanthrene on nitrifying bacteria in soils of different properties. Journal of Environmental Quality , 2007, 36(6): 1635–1645 doi: 10.2134/jeq2007.0118 pmid:17940263
17
Weisburg W G, Barns S M, Pelletier D A, Lane D J. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology , 1991, 173(2): 697–703 pmid:1987160
18
Rui J P, Peng J J, Lu Y H. Succession of bacterial populations during plant residue decomposition in rice field soil. Applied and Environmental Microbiology , 2009, 75(14): 4879–4886 doi: 10.1128/AEM.00702-09 pmid:19465536
19
Osborne C A, Rees G N, Bernstein Y, Janssen P H. New threshold and confidence estimates for terminal restriction fragment length polymorphism analysis of complex bacterial communities. Applied and Environmental Microbiology , 2006, 72(2): 1270–1278 doi: 10.1128/AEM.72.2.1270-1278.2006 pmid:16461676
20
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution , 2007, 24(8): 1596–1599 doi: 10.1093/molbev/msm092 pmid:17488738
21
Lilley A K, Fry J C, Bailey M J, Day M J. Comparison of aerobic heterotrophic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiology Ecology , 1996, 21(3): 231–242 doi: 10.1111/j.1574-6941.1996.tb00350.x
23
van der Gast C J, Walker A W, Stressmann F A, Rogers G B, Scott P, Daniels T W, Carroll M P, Parkhill J, Bruce K D. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. The ISME Journal, 2011, 5(5): 780–791 doi: 10.1038/ismej.2010.175 pmid:21151003
24
Bell T, Ager D, Song J I, Newman J A, Thompson I P, Lilley A K, van der Gast C J. Larger islands house more bacterial taxa. Science , 2005, 308(5730): 1884 doi: 10.1126/science.1111318 pmid:15976296
25
Clarke K R. Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology , 1993, 18(1): 117–143 doi: 10.1111/j.1442-9993.1993.tb00438.x
26
Nakatsu C H, Torsvik V, Ovreas L. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Science Society of America Journal , 2000, 64(4): 1382–1388 doi: 10.2136/sssaj2000.6441382x
27
Wang X J, Yang J, Chen X P, Sun G X, Zhu Y G. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. Journal of Soils and Sediments , 2009, 9(6): 568–577 doi: 10.1007/s11368-009-0113-x
28
Singleton D R, Richardson S D, Aitken M D. Effects of enrichment with phthalate on polycyclic aromatic hydrocarbon biodegradation in contaminated soil. Biodegradation , 2008, 19(4): 577–587 doi: 10.1007/s10532-007-9163-1 pmid:17990065
29
Singleton D R, Sangaiah R, Gold A, Ball L M, Aitken M D. Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environmental Microbiology , 2006, 8(10): 1736–1745 doi: 10.1111/j.1462-2920.2006.01112.x pmid:16958754
30
Yrj?l? K, Keskinen A K, Akerman M L, Fortelius C, Sipil? T P. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil. Environmental Pollution , 2010, 158(5): 1680–1688 doi: 10.1016/j.envpol.2009.11.026 pmid:20022155
31
Macleod C J A, Semple K T. The adaptation of two similar soils to pyrene catabolism. Environmental Pollution , 2002, 119(3): 357–364 doi: 10.1016/S0269-7491(01)00343-8 pmid:12166669
32
Hartmann M, Widmer F. Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Applied and Environmental Microbiology , 2006, 72(12): 7804–7812 doi: 10.1128/AEM.01464-06 pmid:17041161
33
Girvan M S, Campbell C D, Killham K, Prosser J I, Glover L A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental Microbiology , 2005, 7(3): 301–313 doi: 10.1111/j.1462-2920.2005.00695.x pmid:15683391