Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2013, Vol. 7 Issue (5): 769-776   https://doi.org/10.1007/s11783-013-0542-z
  RESEARCH ARTICLE 本期目录
Land use/cover change effects on floods with different return periods: a case study of Beijing, China
Land use/cover change effects on floods with different return periods: a case study of Beijing, China
Yueling WANG1, Xiaoliu YANG2()
1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2. College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
 全文: PDF(553 KB)   HTML
Abstract

In this study, an approach integrating digital land use/cover change (LUCC) analysis, hydraulic modeling and statistical methods was applied to quantify the effect of LUCC on floods in terms of inundation extent, flood arrival time and maximum water depth. The study took Beijing as an example and analyzed five specific floods with return periods of 20-year, 50-year, 100-year, 1000-year and 10000-year on the basis of LUCC over a nine-year period from 1996 to 2004. The analysis reveals that 1) during the period of analysis Beijing experienced unprecedented LUCC; 2) LUCC can affect inundation extent and flood arrival time, and floods with longer return periods are more influenced; 3) LUCC can affect maximum water depth and floods with shorter return periods are more influenced; and 4) LUCC is a major flood security stressor for Beijing. It warns that those cities having experienced rapid expansion during recent decades in China are in danger of more serious floods and recommends that their actual land use patterns should be carefully assessed considering flood security. This integrated approach is demonstrated to be a useful tool for joint assessment, planning and management of land and water.

Key wordsinundation extent    flood arrival time    maximum water depth    shallow flow model
收稿日期: 2012-12-02      出版日期: 2013-10-01
Corresponding Author(s): YANG Xiaoliu,Email:xlyang@urban.pku.edu.cn   
 引用本文:   
. Land use/cover change effects on floods with different return periods: a case study of Beijing, China[J]. Frontiers of Environmental Science & Engineering, 2013, 7(5): 769-776.
Yueling WANG, Xiaoliu YANG. Land use/cover change effects on floods with different return periods: a case study of Beijing, China. Front Envir Sci Eng, 2013, 7(5): 769-776.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-013-0542-z
https://academic.hep.com.cn/fese/CN/Y2013/V7/I5/769
Fig.1  
Fig.2  
from1996to 2004
1234567total 1996
11199.9247.4131.7237.26252.6682.42138.021789.41
245.16167.024.130.0429.778.3383.9368.32
334.516.9537.832.9639.146.5212.33140.24
467.192.35.14636.36114.8473.75598.061587.55
5533.7182.9283.16173.11936.94191.77327.553329.15
6110.9427.257.5374.56152.98421.83221.321016.41
7116.12216.885.04538.46189.97218.464782.376067.3
total 20042107.46640.73174.521492.742716.31003.086163.55
C0.180.740.24-0.06-0.18-0.010.02
A318.05272.4134.28-94.81-612.85-13.3396.25
B35.3430.273.81-10.53-68.09-1.4810.69
Tab.1  
land use/coverManning roughness coefficient
urban land (incl. rural road, town land, rural residence and mining land, railway, highway, airports, ports and wharfs)0.016
bare land (incl. saline alkali land, swamp, sand land, bare rock, threshing ground specially designated land and unutilized land)0.025
ponds (incl. aquaculture)0.027
grassland (incl. reed and mudflat)0.03
cultivated land (incl. pasture, irrigation and water conservancy works, ridge, river, lake, reservoir, confined feeding operations, green house and aquatic operations)0.035
heavy brush0.075
forest0.15
Tab.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Priess J A, Schweitzer C, Wimmer F, Batkhishig O, Mimler M. The consequences of land-use change and water demands in Central Mongolia. Land Use Policy , 2011, 28(1): 4–10
doi: 10.1016/j.landusepol.2010.03.002
2 Moss T. The governance of land use in river basins: prospects for overcoming problems of institutional interplay with the EU Water Framework Directive. Land Use Policy , 2004, 21(1): 85–94
doi: 10.1016/j.landusepol.2003.10.001
3 Masek J G, Lindsey F E, Goward S N. Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996, from land sat observations. International Journal of Remote Sensing , 2000, 21(18): 3473–3486
doi: 10.1080/014311600750037507
4 Nie W, Yuan Y, Kepner W, Nash M S, Jackson M, Erickson C. Assessing impacts of landuse and landcover changes on hydrology for the upper San Pedro watershed. Journal of Hydrology (Amsterdam) , 2001, 407(1-4): 105–114
doi: 10.1016/j.jhydrol.2011.07.012
5 Bossio D, Geheb K, Critchley W. Managing water by managing land: addressing land degradation to improve water productivity and rural livelihoods. Agricultural Water Management , 2010, 97(4): 536–542
doi: 10.1016/j.agwat.2008.12.001
6 Thanapakpawin P, Richey J, Thomas D, Rodda S, Campbell B, Logsdon M. Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thailand. Journal of Hydrology (Amsterdam) , 2006, 334(1-2): 215–230
doi: 10.1016/j.jhydrol.2006.10.012
7 Naef F, Scherrer S, Weiler M. A process based assessment of the potential to reduce flood runoff by land use change. Journal of Hydrology (Amsterdam) , 2002, 267(1-2): 74–79
doi: 10.1016/S0022-1694(02)00141-5
8 Lambin E F, Turner B L, Geist H J, Agbola S B, Angelsen A, Bruce J W, Coomes O, Dirzo R, Fischer G, Folke C, George P S, Homewood K, Imbernon J, Leemans R, Li X, Moran E F, Mortimore M, Ramakrishnan P S, Richards J F, Skanes H, Steffen W, Stone G, Svedin U, Veldkamp T A, Vogel C, Xu J. The causes of land-use and land cover change: moving beyond the myths. Global Environmental Change , 2001, 11(4): 261–269
doi: 10.1016/S0959-3780(01)00007-3
9 Chase T N, Pielke R A Sr, Kittel T G F, Nemani R R, Running S W. Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dynamics , 1999, 16(2-3): 93–105
doi: 10.1007/s003820050007
10 Sivanappan R K. Land and water use in India. Land Use Policy , 1984, 1(1): 34–38
doi: 10.1016/0264-8377(84)90036-X
11 Warburton M L, Schulze R E, Jewitt G P W. Hydrological impacts of land use change in three diverse South African catchments. Journal of Hydrology (Amsterdam) , 2012, 414-415: 118–135
doi: 10.1016/j.jhydrol.2011.10.028
12 Emelko M B, Silins U, Bladon K D, Stone M. Implications of land disturbance on drinking water treatability in a changing climate: demonstrating the need for “source water supply and protection” strategies. Water Research , 2011, 45(2): 461–472
doi: 10.1016/j.watres.2010.08.051 pmid:20951401
13 Leitinger G, Tasser E, Newesely C, Obojes N, Tappeiner U. Seasonal dynamics of surface runoff in mountain grassland ecosystems differing in land use. Journal of Hydrology (Amsterdam) , 2010, 385(1-4): 95–104
doi: 10.1016/j.jhydrol.2010.02.006
14 Mao D, Cherkauer K A. Impacts of land-use change on hydrologic responses in the Great Lakes region. Journal of Hydrology (Amsterdam) , 2009, 374(1-2): 71–82
doi: 10.1016/j.jhydrol.2009.06.016
15 White M D, Greer K A. The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Pe?asquitos Creek, California. Landscape and Urban Planning , 2006, 74(2): 125–138
doi: 10.1016/j.landurbplan.2004.11.015
16 Tu M, Hall M J, de Laat P J M, de Wit M J M. Extreme floods in the Meuse river over the past century: aggravated by land-use changes? Physics and Chemistry of the Earth , 2005, 30(4-5): 267–276
doi: 10.1016/j.pce.2004.10.001
17 Ferronato M, Gambolati G, Teatini P, Baù D. Land surface uplift above compacting over consolidated reservoirs. International Journal of Solids and Structures , 2001, 38(46-47): 8155–8169
doi: 10.1016/S0020-7683(01)00122-6
18 Suriya S, Mudgal B V. Impact of urbanization on flooding: The Thirusoolam sub watershed-A case study. Journal of Hydrology (Amsterdam) , 2012, 412 - 413: 210–219
doi: 10.1016/j.jhydrol.2011.05.008
19 Eakin H, Lerner A M, Murtinho F. Adaptive capacity in evolving peri-urban spaces: Responses to flood risk in the Upper Lerma River Valley, Mexico. Global Environmental Change , 2010, 20(1): 14–22
doi: 10.1016/j.gloenvcha.2009.08.005
20 Wheater H, Evans E. Land use, water management and future flood risk. Land Use Policy , 2009, 26(Supplement 1): S251–S264
doi: 10.1016/j.landusepol.2009.08.019
21 Villarini G, Smith J A, Serinaldi F, Bales J, Bates P D, Krajewski W F. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Advances in Water Resources , 2009, 32(8): 1255–1266
doi: 10.1016/j.advwatres.2009.05.003
22 Brath A, Montanari A, Moretti G. Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). Journal of Hydrology (Amsterdam) , 2006, 324(1-4): 141–153
doi: 10.1016/j.jhydrol.2005.10.001
23 Pottier N, Penning-Rowsell E, Tunstall S, Hubert G. Land use and flood protection: contrasting approaches and outcomes in France and in England and Wales. Applied Geography (Sevenoaks, England) , 2005, 25(1): 1–27
doi: 10.1016/j.apgeog.2004.11.003
24 de Roo A, Odijk M, Schmuck G, Koster E, Lucieer A. Assessing the effects of land use changes on floods in the meuse and oder catchment. Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere , 2001, 26(7-8): 593–599
doi: 10.1016/S1464-1909(01)00054-5
25 de Roo A, Schmuck G, Perdigao V, Thielen J. The influence of historic land use changes and future planned land use scenarios on floods in the Oder catchment. Physics and Chemistry of the Earth , 2003, 28(33-36): 1291–1300
doi: 10.1016/j.pce.2003.09.005
26 Alcrudo F, García-Navarro P. A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations. International Journal for Numerical Methods in Fluids , 1993, 16(6): 489–505
doi: 10.1002/fld.1650160604
27 Horritt M. Development and testing of a simple 2D finite volume model of sub-critical shallow water flow. International Journal for Numerical Methods in Fluids , 2004, 44(11): 1231–1255
doi: 10.1002/fld.684
28 Liang D, Lin B, Falconer R A. A boundary-fitted numerical model for flood routing with shock-capturing capability. Journal of Hydrology (Amsterdam) , 2007, 332(3-4): 477–486
doi: 10.1016/j.jhydrol.2006.08.002
29 Marche F, Bonneton P, Fabrie P, Seguin N. Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes. International Journal for Numerical Methods in Fluids , 2007, 53(5): 867–894
doi: 10.1002/fld.1311
30 Wang Y, Liang Q, Kesserwani G, Hall J W. A 2D shallow flow model for practical dam-break simulations. Journal of Hydraulic Research , 2011, 49(3): 307–316
doi: 10.1080/00221686.2011.566248
31 Liang Q, Wang Y, Archetti R. A well-balanced shallow flow solver for coastal simulations. International Journal of Offshore and Polar Engineering , 2010, 20(1): 41–47
32 Liang Q, Marche F. Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources , 2009, 32(6): 873–884
doi: 10.1016/j.advwatres.2009.02.010
33 Guo H, Han Y, Bai X. Hydrological effects of littet on different forest stands and study about surface roughness coefficient. Journal of Soil and Water Conservation , 2010, 24(2): 179–183 (in Chinese)
34 Liu Z, Li Z, Sun Z, Zheng Z. Calculation of field Manning’s roughness coefficient. Journal of Irrigation and Drainage , 1998, 17(3): 5–9 (in Chinese)
35 Gao H. Study on design flood reexamination of the Miyun Reservoir. China Water Resources , 2011, 3: 55–57 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed