Benzene removal from aqueous solutions was evaluated using Fe3O4 nano magnetic particles (NM) in continuous condition. A 44 factorial design including initial benzene concentration, NM dose, contact time and pH was investigated in 16 experiments (Taguchi OA design). The results indicated that all factors were significant and the optimum condition was: pH 8, NM dose of 2000 mg·L-1, benzene concentrations of 100 mg·L-1 and contact time of 14 min. The maximum benzene uptake and distribution ratio in the optimum situation were 49.4 mg·g-1 and 38.4 L·g-1, respectively. The nano particles were shown to capture 98.7% of the benzene in optimum batch condition and 94.5% in continuous condition. The isotherm data proved that the Brunauer-Emmett-Teller model fit more closely and produced an isotherm constant (b) less than one, indicating favorable adsorption. Regeneration studies verified that the benzene adsorbed by the NM could be easily desorbed by temperature, and thereby, NM can be employed repeatedly in water and wastewater management.
. [J]. Frontiers of Environmental Science & Engineering, 2014, 8(3): 345-356.
Amin Mohammad Mehdi,Bina Bijan,Majd Amir Masoud Samani,Pourzamani Hamidreza. Benzene removal by nano magnetic particles under continuous condition from aqueous solutions. Front.Environ.Sci.Eng., 2014, 8(3): 345-356.
Tang X, Xu Y, Shen W. Promoting effect of copper on the catalytic activity of MnOx–CeO2 mixed oxide for complete oxidation of benzene. Chemical Engineering Journal, 2008, 144(2): 175–180 doi: 10.1016/j.cej.2008.01.016
2
Aly Hassan A A, Sorial G A. Removal of benzene under acidic conditions in a controlled Trickle Bed Air Biofilter. Journal of Hazardous Materials, 2010, 184(1–3): 345–349 doi: 10.1016/j.jhazmat.2010.08.042 pmid: 20869171
3
van Afferden M, Rahman K Z, Mosig P, De Biase C, Thullner M, Oswald S E, Müller R A. Remediation of groundwater contaminated with MTBE and benzene: the potential of vertical-flow soil filter systems. Water Research, 2011, 45(16): 5063–5074 doi: 10.1016/j.watres.2011.07.010 pmid: 21794890
4
Aurell J, Gullett B K, Tabor D, Touati A, Oudejans L. Semivolatile and volatile organic compound emissions from wood-fired hydronic heaters. Environmental Science & Technology, 2012, 46(14): 7898–7904 doi: 10.1021/es301197d pmid: 22765760
5
Juretic D, Kusic H, Koprivanac N, Loncaric Bozic A.Photooxidation of benzene-structured compounds: Influence of substituent type on degradation kinetic and sum water parameters. Water Research, 2012, 46(9): 3074–3084
6
Mathur A K, Majumder C B, Chatterjee S. Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media. Journal of Hazardous Materials, 2007, 148(1–2): 64–74 doi: 10.1016/j.jhazmat.2007.02.030 pmid: 17397996
7
Aivalioti M, Vamvasakis I, Gidarakos E. BTEX and MTBE adsorption onto raw and thermally modified diatomite. Journal of Hazardous Materials, 2010, 178(1–3): 136–143 doi: 10.1016/j.jhazmat.2010.01.053 pmid: 20133057
8
Shim H, Shin E, Yang S T. A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens. Advances in Environmental Research, 2002, 7(1): 203–216 doi: 10.1016/S1093-0191(01)00132-0
9
Changsuphan A, Wahab M I B A, Kim Oanh N T. Removal of benzene by ZnO nanoparticles coated on porous adsorbents in presence of ozone and UV. Chemical Engineering Journal, 2012, 181–182(0): 215–221 doi: 10.1016/j.cej.2011.11.064
10
Long C, Li Q, Li Y, Liu Y, Li A, Zhang Q. Adsorption characteristics of benzene–chlorobenzene vapor on hypercrosslinked polystyrene adsorbent and a pilot-scale application study. Chemical Engineering Journal, 2010, 160(2): 723–728 doi: 10.1016/j.cej.2010.03.074
11
Lu C, Su F, Hu S. Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Applied Surface Science, 2008, 254(21): 7035–7041 doi: 10.1016/j.apsusc.2008.05.282
12
Zhang M, He F, Zhao D, Hao X. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Research, 2011, 45(7): 2401–2414 doi: 10.1016/j.watres.2011.01.028 pmid: 21376362
13
Wagner A, Cooper M, Ferdi S, Seifert J, Adrian L. Growth of Dehalococcoides mccartyi strain CBDB1 by reductive dehalogenation of brominated benzenes to benzene. Environmental Science & Technology, 2012, 46(16): 2318–2323 doi: 10.1021/es3003519 pmid: 22800291
14
Lin S H, Huang C Y. Adsorption of BTEX from aqueous solution by macroreticular resins. Journal of Hazardous Materials, 1999, 70(1–2): 21–37 doi: 10.1016/S0304-3894(99)00148-X pmid: 10611426
15
Carmody O, Frost R, Xi Y, Kokot S. Adsorption of hydrocarbons on organo-clays—implications for oil spill remediation. Journal of Colloid and Interface Science, 2007, 305(1): 17–24 doi: 10.1016/j.jcis.2006.09.032 pmid: 17046013
16
Bina B, Pourzamani H, Rashidi A, Amin M M. Ethylbenzene removal by carbon nanotubes from aqueous solution. Journal of Environmental and Public Health, 2011, 2012(2012): 1–8 doi: 10.1155/2012/817187
17
Pourzamani H, Bina B, Rashidi A, Amin M M. Performance of raw and regenerated multi-and single-walled carbon nanotubes in xylene removal from aqueous solutions. International Journal of Environmental Health Engineering, 2012, 1(4): 20–23 doi: 10.4103/2277-9183.94388
18
Wang Y H, Lin S H, Juang R S. Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. Journal of Hazardous Materials, 2003, 102(2–3): 291–302 doi: 10.1016/S0304-3894(03)00218-8 pmid: 12972244
19
Daifullah A A M, Girgis B S. Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214(1–3): 181–193 doi: 10.1016/S0927-7757(02)00392-8
20
Koh S M, Dixon J B. Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Applied Clay Science, 2001, 18(3–4): 111–122 doi: 10.1016/S0169-1317(00)00040-5
21
Bina B, Amin M M, Rashidi A, Pourzamani H. Benzene and toluene removal by carbon nanotubes from aqueous solution. Archives of Environmental Protection, 2012, 38(1): 3–25 doi: 10.2478/v10265-012-0001-0
22
Matott L S, Rabideau A J. ISOFIT–a program for fitting sorption isotherms to experimental data. Environmental Modelling & Software, 2008, 23(5): 670–676 doi: 10.1016/j.envsoft.2007.08.005
23
Qadri S, Ganoe A, Haik Y. Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. Journal of Hazardous Materials, 2009, 169(1–3): 318–323 doi: 10.1016/j.jhazmat.2009.03.103 pmid: 19406571
24
Brasil J L, Ev R R, Milcharek C D, Martins L C, Pavan F A, dos Santos A A Jr, Dias S L, Dupont J, Zapata Noreña C P, Lima E C. Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes. Journal of Hazardous Materials, 2006, 133(1–3): 143–153 doi: 10.1016/j.jhazmat.2005.10.002 pmid: 16297543
25
Chen J, Li G, Huang Y, Zhang H, Zhao H, An T. Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Applied Catalysis B: Environmental, 2012, 123–124(0): 69–77 doi: 10.1016/j.apcatb.2012.04.020
26
Sun L, An T C, Wan S G, Li G Y, Bao N Z, Hu X H, Fu J M, Sheng G Y. Effect of synthesis conditions on photocatalytic activities of nanoparticulate TiO2 thin films. Separation and Purification Technology, 2009, 68(1): 83–89 doi: 10.1016/j.seppur.2009.04.011
27
Yang Y K, Chuang M T, Lin S S. Optimization of dry machining parameters for high-purity graphite in end milling process via design of experiments methods. Journal of Materials Processing Technology, 2009, 209(9): 4395–4400 doi: 10.1016/j.jmatprotec.2008.11.021
28
Bystrzejewski M, Pyrzynska K, Huczko A, Lange H. Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon, 2009, 47(4): 1201–1204 doi: 10.1016/j.carbon.2009.01.007
29
Shen Y F, Tang J, Nie Z H, Wang Y D, Ren Y, Zuo L. Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water. Bioresource Technology, 2009, 100(18): 4139–4146 doi: 10.1016/j.biortech.2009.04.004 pmid: 19414249