Applications of nanomaterials in water treatment and environmental remediation
Gholamreza GHASEMZADEH1,*(),Mahdiye MOMENPOUR2,Fakhriye OMIDI3,Mohammad R. HOSSEINI4,Monireh AHANI5,Abolfazl BARZEGARI6,*()
1. Department of Agriculture, Payame Noor University, Tehran 19569, Iran 2. Department of Environmental Biodiversity, Lahijan Branch, Islamic Azad University, Lahijan 4491874551, Iran 3. Department of Fisheries, Agricultural Science & Natural Resources University, Gorgan 1439955471, Iran 4. Department of Environmental Science, University of Pune, Pune 411007, India 5. Department of Agriculture, Takestan Branch, Islamic Azad University, Takestan 18610307, Iran 6. Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
Nanotechnology has revolutionized plethora of scientific and technological fields; environmental safety is no exception. One of the most promising and well-developed environmental applications of nanotechnology has been in water remediation and treatment where different nanomaterials can help purify water through different mechanisms including adsorption of heavy metals and other pollutants, removal and inactivation of pathogens and transformation of toxic materials into less toxic compounds. For this purpose, nanomaterials have been produced in different shapes, integrated into various composites and functionalized with active components. Nanomaterials have also been incorporated in nanostructured catalytic membranes which can in turn help enhance water treatment. In this article, we have provided a succinct review of the most common and popular nanomaterials (titania, carbon nanotubes (CNTs), zero-valent iron, dendrimers and silver nanomaterials) which are currently used in environmental remediation and particularly in water purification. The catalytic properties and functionalities of the mentioned materials have also been discussed.
appropriate oxidationpotential of Mg coupled with low cost, high effectiveness and environmentalfriendliness
akaganeite-type nanocrystals
As(V), Cd ions and Cr(VI)
sorption
inorganic adsorbent material
nano/microscale FeO and Fe3O4
2,4-dichlorophenoxyacetic acid (2,4-D)
reductive transformation
smaller negative impact on the ecological environment compared to Fe0 NPs
granular activated carbon/Fe/Pd bimetallics
polychlorinated biphenyls
adsorption-mediated dechlorination and electrochemical catalysis
adsorption-mediated dechlorination is a unique feature of this material
Bi0.5Na0.5TiO3 (BNT) micro/nanostructure
organic pollutants
photodegradation
high activity, high degradation efficiency for organic pollutants
cuprous ferrite (CuFeO2)
heavy metal ions
photocatalytic reduction
p-type semiconductor characterized by a low optical gap- matched to the sun spectrum- long-term chemical stability in neutral solution
CuCrO2
heavy metal ions such as Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Ag+
photocatalytic reduction
p-type semiconductor characterized by a low band gap- long-term chemical stability
Co3O4
chlorinated compounds
decomposition by dechlorination
among the best dechlorination materials
nano-CeO2-modified CNTs (CeO2-CNTs)
As(V)
Adsorption
effective pH-dependent adsorbent for arsenate
ZnO NPs
chlorinated phenols
photocatalytic degradation
little photocorrosion of ZnO- ZnO can be reused
Tab.1
membrane structure
class
properties gained by addition of nano-component
nano TiO2
polymeric membranes
improvements in thermal stability, mechanical strength and mass transfer acceleration in exposure time, smoother surfaces
nano-alumina (Al2O3)
Polymeric membranes
significant differences in surface and intrinsic properties
silica NPs
polymeric membranes
superior thermal stabilityhigher separation efficiency and productivity fluxrelatively large pore sizes as well as higher pore number density
zeolite
polymeric membranes
–
CNT
polymeric membranes
diffusivity
TiO2
ceramic membranes
chemical resistance and high water permeability photocatalysis
silver NPs
ceramic membranes
mitigation of biofouling
iron oxide
ceramic membranes
functioning in sorbent catalysismore resistance to acids, corrosive media and oxidants than alumina-based NPsimprovement in water quality by significantly reducing the concentration of disinfection by-product precursorsreduction in ozonation by-products such as aldehydes, ketones and ketoacids
Al2O3 (Alumoxane)
ceramic membranes
high water permeability, narrow size distribution and good porosity- increase in selectivity and increased fluxretention coefficients and flux values could be altered by chemical functionalization
ferric oxide materials
ceramic membranes
resistant to acid, corrosive media and oxidantadvantage of no involvement of hazardous chemicals during the fabrication procedure
CNT
ceramic membranes
unique structure, sorbent, electric and thermal conductivity
Tab.2
1
ShanG, SurampalliR Y, TyagiR D, ZhangT C. Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control: a review. Frontiers of Environmental Science & Engineering in China, 2009, 3(3): 249–264 doi: 10.1007/s11783-009-0029-0
2
MangunC L, YueZ, EconomyJ, MaloneyS, KemmeP, CropekD. Adsorption of organic contaminants from water using tailored ACFs. Chemistry of Materials, 2001, 13(7): 2356–2360 doi: 10.1021/cm000880g
3
RaiM, YadavA, GadeA. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 2009, 27(1): 76–83 doi: 10.1016/j.biotechadv.2008.09.002 pmid: 18854209
4
LowryG V, JohnsonK M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 2004, 38(19): 5208–5216 doi: 10.1021/es049835q pmid: 15506219
5
StoneV, NowackB, BaunA, van den BrinkN, KammerFv, DusinskaM, HandyR, HankinS, HassellövM, JonerE, FernandesT F. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. The Science of the Total Environment, 2010, 408(7): 1745–1754 doi: 10.1016/j.scitotenv.2009.10.035 pmid: 19903569
6
HuJ S, ZhongL S, SongW G, WanL J. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Advanced Materials, 2008, 20(15): 2977–2982 doi: 10.1002/adma.200800623
7
CaiW, YuJ, ChengB, SuB L, JaroniecM. Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment. Journal of Physical Chemistry C, 2009, 113(33): 14739–14746 doi: 10.1021/jp904570z
8
ZhangY X, JiaY, JinZ, YuX Y, XuW H, LuoT, ZhuB J, LiuJ H, HuangX J. Self-assembled, monodispersed, flower-like γ-AlOOH hierarchical superstructures for efficient and fast removal of heavy metal ions from water. CrystEngComm, 2012, 14(9): 3005–3007 doi: 10.1039/c2ce06545b
9
CarpO, HuismanC, RellerA. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32(1–2): 33–177 doi: 10.1016/j.progsolidstchem.2004.08.001
10
ParamasivamI, JhaH, LiuN, SchmukiP. A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small, 2012, 8(20): 3073–3103 doi: 10.1002/smll.201200564 pmid: 22961930
11
NakataK, FujishimaA. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 13(3): 169–189 doi: 10.1016/j.jphotochemrev.2012.06.001
12
ZhanqiG, ShaoguiY, NaT, ChengS. Microwave assisted rapid and complete degradation of atrazine using TiO(2) nanotube photocatalyst suspensions. Journal of Hazardous Materials, 2007, 145(3): 424–430 doi: 10.1016/j.jhazmat.2006.11.042 pmid: 17188429
13
YuB, ZengJ, GongL, ZhangM, ZhangL, ChenX. Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta, 2007, 72(5): 1667–1674 doi: 10.1016/j.talanta.2007.03.013 pmid: 19071814
14
GeM, GuoC, ZhuX, MaL, HanZ, HuW, WangY.Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Frontiers of Environmental Science & Engineering in China, 2009, 3(3): 271–280 doi: 10.1007/s11783-009-0035-2
15
MalatoS, Fernández-IbáñezP, MaldonadoM, BlancoJ, GernjakW. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 2009, 147(1): 1–59 doi: 10.1016/j.cattod.2009.06.018
16
LiouJ W, ChangH H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Archivum Immunologiae et Therapiae Experimentalis, 2012, 60(4): 267–275 doi: 10.1007/s00005-012-0178-x pmid: 22678625
17
BrezováV, GabcováS, DvoranováD, StaškoA. Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study). Journal of Photochemistry and Photobiology. B, Biology, 2005, 79(2): 121–134 doi: 10.1016/j.jphotobiol.2004.12.006 pmid: 15878117
18
WeiC, LinW Y, ZainalZ, WilliamsN E, ZhuK, KruzicA P, SmithR L, RajeshwarK. Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environmental Science & Technology, 1994, 28(5): 934–938 doi: 10.1021/es00054a027 pmid: 22191837
19
SuwanchawalitC, WongnawaS. Triblock copolymer-templated synthesis of porous TiO2 and its photocatalytic activity. Journal of Nanoparticle Research, 2010, 12(8): 2895–2906 doi: 10.1007/s11051-010-9880-y
20
EngatesK E, ShipleyH J. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environmental Science and Pollution Research International, 2011, 18(3): 386–395 doi: 10.1007/s11356-010-0382-3 pmid: 20694836
21
LeungP S. Removal and recovery of heavy metals by amorphous TiO2 nanoparticles and Ca-alginate immobilized TiO2 beads. Dissertation for the Master of Philosophy Degree. Department of Applied Biology and Chemical Technology, HongKong: The Hong Kong Polytechnic University, 2009
22
LiangP, QinY, HuB, PengT, JiangZ. Nanometer-size titanium dioxide microcolumn on-line preconcentration of trace metals and their determination by inductively coupled plasma atomic emission spectrometry in water. Analytica Chimica Acta, 2001, 440(2): 207–213 doi: 10.1016/S0003-2670(01)01010-8
AcevedoA, CarpioE A, RodriguezJ, ManzanoM A. Disinfection of natural water by solar photocatalysis using immobilized TiO2 devices: efficiency in eliminating indicator bacteria and operating life of the system. Journal of Solar Energy Engineering, 2012, 134(1): 011008 doi: 10.1115/1.4005338
27
LearyR, WestwoodA. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 2011, 49(3): 741–772 doi: 10.1016/j.carbon.2010.10.010
28
LsP, ElhaddadF, FacioD S.Mosquera MJ. A novel TiO2-SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Applied Surface Science, 2012, 258(24): 10123–10127 pmid: 23482867
29
SavageN, DialloM S. Nanomaterials and water purification: opportunities and challenges. Journal of Nanoparticle Research, 2005, 7(4–5): 331–342 doi: 10.1007/s11051-005-7523-5
30
KrotoH W, AllafA W, BalmS P. C60 Buckminsterfullerene. Chemical Reviews, 1991, 91(6): 1213–1235 doi: 10.1021/cr00006a005
FaganS B, Souza FilhoA, LimaJ, FilhoJ M, FerreiraO P, MazaliI O, AlvesO L, DresselhausM S. 1,2-dichlorobenzene interacting with carbon nanotubes. Nano Letters, 2004, 4(7): 1285–1288 doi: 10.1021/nl0493895
33
LuC, ChungY L, ChangK F. Adsorption of trihalomethanes from water with carbon nanotubes. Water Research, 2005, 39(6): 1183–1189 doi: 10.1016/j.watres.2004.12.033 pmid: 15766973
34
LongR Q, YangR T. Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society, 2001, 123(9): 2058–2059 doi: 10.1021/ja003830l pmid: 11456830
WangX, LuJ, XingB. Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environmental Science & Technology, 2008, 42(9): 3207–3212 doi: 10.1021/es702971g pmid: 18522095
37
ZhouQ, XiaoJ, WangW. Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. Journal of Chromatography. A, 2006, 1125(2): 152–158 doi: 10.1016/j.chroma.2006.05.047 pmid: 16797570
38
ShiB, ZhuangX, YanX, LuJ, TangH. Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes. Journal of Environmental Sciences-China, 2010, 22(8): 1195–1202 doi: 10.1016/S1001-0742(09)60238-2 pmid: 21179958
39
HildingJ, GrulkeE A, SinnottS B, QianD, AndrewsR, JagtoyenM. Sorption of butane on carbon multiwall nanotubes at room temperature. Langmuir, 2001, 17(24): 7540–7544 doi: 10.1021/la010131t
40
YuF, MaJ, WuY. Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl. Frontiers of Environmental Science & Engineering, 2012, 6(3): 320–329
LiY H, DingJ, LuanZ, DiZ, ZhuY, XuC, WuD, WeiB. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 2003, 41(14): 2787–2792 doi: 10.1016/S0008-6223(03)00392-0
43
KandahM I, MeunierJ L. Removal of nickel ions from water by multi-walled carbon nanotubes. Journal of Hazardous Materials, 2007, 146(1–2): 283–288 doi: 10.1016/j.jhazmat.2006.12.019 pmid: 17196328
44
PengX, LuanZ, DingJ, DiZ, LiY, TianB. Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Materials Letters, 2005, 59(4): 399–403 doi: 10.1016/j.matlet.2004.05.090
BystrzejewskiM, PyrzynskaK. Kinetics of copper ions sorption onto activated carbon, carbon nanotubes and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377(1–3): 402–408 doi: 10.1016/j.colsurfa.2011.01.041
47
TianX, ZhouS, ZhangZ, HeX, YuM, LinD. Metal impurities dominate the sorption of a commercially available carbon nanotube for Pb(II) from water. Environmental Science & Technology, 2010, 44(21): 8144–8149 doi: 10.1021/es102156u pmid: 20919734
48
XuD, TanX, ChenC, WangX. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2008, 154(1–3): 407–416 doi: 10.1016/j.jhazmat.2007.10.059 pmid: 18053642
49
AfzaliD, GhaseminezhadS, TaherM A. Separation and preconcentration of trace amounts of gold(III) ions using modified multiwalled carbon nanotube sorbent prior to flame atomic absorption spectrometry determination. Journal of AOAC International, 2010, 93(4): 1287–1292 pmid: 20922963
50
LuoG, YaoH, XuM, CuiX, ChenW, GuptaR, XuZ. Carbon nanotube-silver composite for mercury capture and analysis. Energy & Fuels, 2010, 24(1): 419–426 doi: 10.1021/ef900777v
51
LuC, LiuC. Removal of nickel (II) from aqueous solution by carbon nanotubes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2006, 81(12): 1932–1940 doi: 10.1002/jctb.1626
52
ZhangX, PanB, YangK, ZhangD, HouJ. Adsorption of sulfamethoxazole on different types of carbon nanotubes in comparison to other natural adsorbents. Journal of Environmental Science and Health Part A, Toxic/hazardous substances & environmental engineering, 2010, 45(12): 1625–1634 doi: 10.1080/10934529.2010.506127 pmid: 20730655
53
YangK, WuW, JingQ, JiangW, XingB. Competitive adsorption of naphthalene with 2,4-dichlorophenol and 4-chloroaniline on multiwalled carbon nanotubes. Environmental Science & Technology, 2010, 44(8): 3021–3027 doi: 10.1021/es100018a pmid: 20201557
54
YangK, WangX, ZhuL, XingB. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environmental Science & Technology, 2006, 40(18): 5804–5810 doi: 10.1021/es061081n pmid: 17007144
55
TanX, FangM, ChenC, YuS, WangX. Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution. Carbon, 2008, 46(13): 1741–1750 doi: 10.1016/j.carbon.2008.07.023
ZhangW. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 2003, 5(3/4): 323–332 doi: 10.1023/A:1025520116015
63
ZhangW, ElliottD W. Applications of iron nanoparticles for groundwater remediation. Remediation Journal, 2006, 16(2): 7–21 doi: 10.1002/rem.20078
64
DrorI, BaramD, BerkowitzB. Use of nanosized catalysts for transformation of chloro-organic pollutants. Environmental Science & Technology, 2005, 39(5): 1283–1290 doi: 10.1021/es0490222 pmid: 15787368
KimH Y, KimI K, ShimJ H, KimY C, HanT H, ChungK C, KimP I, OhB T, KimI S. Removal of alachlor and pretilachlor by laboratory-synthesized zerovalent iron in pesticide formulation solution. Bulletin of Environmental Contamination and Toxicology, 2006, 77(6): 826–833 doi: 10.1007/s00128-006-1218-1 pmid: 17219301
67
MeyerD, WoodK, BachasL, BhattacharyyaD. Degradation of chlorinated organics by membrane‐immobilized nanosized metals. Environment and Progress, 2004, 23(3): 232–242 doi: 10.1002/ep.10031
68
ChengI F, FernandoQ, KorteN. Electrochemical dechlorination of 4-chlorophenol to phenol. Environmental Science & Technology, 1997, 31(4): 1074–1078 doi: 10.1021/es960602b
69
KimJ H, TratnyekP G, ChangY S. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environmental Science & Technology, 2008, 42(11): 4106–4112 doi: 10.1021/es702560k pmid: 18589973
70
BoyerC, WhittakerM R, BulmusV, LiuJ, DavisT P. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Materials, 2010, 2(1): 23–30 doi: 10.1038/asiamat.2010.6
71
TiraferriA, ChenK L, SethiR, ElimelechM. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 2008, 324(1–2): 71– doi: 10.1016/j.jcis.2008.04.064 pmid: 18508073
72
ChengM D. Effects of nanophase materials (≤20 nm) on biological responses.Journal of Environmental Science and Health. Part A, 2004, 39(10): 2691–2705
73
KreylingW G, Semmler-BehnkeM, MöllerW. Health implications of nanoparticles. Journal of Nanoparticle Research, 2006, 8(5): 543–562 doi: 10.1007/s11051-005-9068-z
74
MedinaS H, El-SayedM E. Dendrimers as carriers for delivery of chemotherapeutic agents. Chemical Reviews, 2009, 109(7): 3141–3157 doi: 10.1021/cr900174j pmid: 19534493
75
TomaliaD A, NaylorA M, GoddardW A. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angewandte Chemie International Edition in English, 1990, 29(2): 138–175 doi: 10.1002/anie.199001381
76
DialloM S, ChristieS, SwaminathanP, BaloghL, ShiX, UmW, PapelisC, GoddardW A 3rd, JohnsonJ H Jr. Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir, 2004, 20(7): 2640–2651 doi: 10.1021/la036108k pmid: 15835132
77
SunC, QuR, JiC, WangC, SunY, YueZ, ChengG. Preparation and adsorption properties of crosslinked polystyrene-supported low-generation diethanolamine-typed dendrimer for metal ions. Talanta, 2006, 70(1): 14–19 doi: 10.1016/j.talanta.2006.01.011 pmid: 18970721
78
ShahbaziA, YounesiH, BadieiA. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chemical Engineering Journal, 2011, 168(2): 505–518 doi: 10.1016/j.cej.2010.11.053
79
SonW K, YoukJ H, LeeT S, ParkW H. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromolecular Rapid Communications, 2004, 25(18): 1632–1637 doi: 10.1002/marc.200400323
80
Marambio-JonesC, HoekE M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010, 12(5): 1531–1551 doi: 10.1007/s11051-010-9900-y
81
StoimenovP K, KlingerR L, MarchinG L, KlabundeK J. Metal oxide nanoparticles as bactericidal agents. Langmuir, 2002, 18(17): 6679–6686 doi: 10.1021/la0202374
82
MartinsonC A, ReddyK J. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science, 2009, 336(2): 406–411 doi: 10.1016/j.jcis.2009.04.075 pmid: 19477461
83
ZhuD, PignatelloJ J. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environmental Science & Technology, 2005, 39(7): 2033–2041 doi: 10.1021/es0491376 pmid: 15871234
84
IonA C, AlpatovaA, IonI, CuletuA. Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Materials Science and Engineering B, 2011, 176(7): 588–595 doi: 10.1016/j.mseb.2011.01.018
85
QiL, XuZ. Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 251(1–3): 183–190 doi: 10.1016/j.colsurfa.2004.10.010
86
HuX, MuL, WenJ, ZhouQ. Immobilized smart RNA on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water. Journal of Hazardous Materials, 2012, 213–214 (213–214): 387–392 doi: 10.1016/j.jhazmat.2012.02.012 pmid: 22366314
87
YuanG. Natural and modified nanomaterials as sorbents of environmental contaminants. Journal of Environmental Science and Health. Part A, 2004, 39(10): 2661–2670
88
MuellerN C, van der BruggenB, KeuterV, LuisP, MelinT, PronkW, ReisewitzR, RickerbyD, RiosG M, WennekesW, NowackB. Nanofiltration and nanostructured membranes—should they be considered nanotechnology or not? Journal of Hazardous Materials, 2012, 211–212: 275–280 doi: 10.1016/j.jhazmat.2011.10.096 pmid: 22154870
89
LiJ H, XuY Y, ZhuL P, WangJ H, DuC H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. Journal of Membrane Science, 2009, 326(2): 659–666 doi: 10.1016/j.memsci.2008.10.049
90
CortalezziM M, RoseJ, WellsG F, BotteroJ Y, BarronA R, WiesnerM R. Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes. Journal of Membrane Science, 2003, 227(1–2): 207–217 doi: 10.1016/j.memsci.2003.08.027
91
KimS H, KwakS Y, SohnB H, ParkT H. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. Journal of Membrane Science, 2003, 211(1): 157–165 doi: 10.1016/S0376-7388(02)00418-0
92
DeFriendK A, WiesnerM R, BarronA R. Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. Journal of Membrane Science, 2003, 224(1–2): 11–28 doi: 10.1016/S0376-7388(03)00344-2
93
KimJ, DaviesS H R, BaumannM J, TarabaraV V, MastenS J. Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation ceramic ultrafiltration system treating natural waters. Journal of Membrane Science, 2008, 311(1–2): 165–172 doi: 10.1016/j.memsci.2007.12.010
94
ChaeS R, WangS, HendrenZ D, WiesnerM R, WatanabeY, GunschC K. Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. Journal of Membrane Science, 2009, 329(1–2): 68–74 doi: 10.1016/j.memsci.2008.12.023
95
VerweijH, SchilloM C, LiJ. Fast mass transport through carbon nanotube membranes. Small, 2007, 3(12): 1996–2004 doi: 10.1002/smll.200700368 pmid: 18022891
96
KimJ, Van der BruggenB. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environmental Pollution (Barking, Essex: 1987), 2010, 158(7): 2335–2349 doi: 10.1016/j.envpol.2010.03.024 pmid: 20430495