1. Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 2. National Soil Fertility and Fertilizer Effects Long-term Monitoring Network, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China 3. The Key Laboratory of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing 100037, China
Screening of cost-effective soil amendments is important to develop “in situ” remediation techniques for cadmium (Cd) contaminated soils. In this study, different soil amendments, including red mud, a by-product of the alumina industry, and acid-treated, nano-treated by nano-particle milling, nano and acid-treated red muds, zeolite, corn straw, and rape straw, were evaluated to immobilize Cd in two added levels (2 and 5 mg Cd·kg-1 soil) in a calcareous soil by single and sequential extractions and by cucumber (Cucumis sativus L.) pot experiments. Results indicated that cruciferous rape straw significantly decreased the concentrations of water soluble, extractable Cd in soils, and Cd in cucumber plants, and it was more effective than gramineous corn straw. Also, red mud generally decreased the extractability and bioavailability of Cd added to calcareous soils more effectively than zeolite. Furthermore, the efficiency of red mud could be increased by the treatment of nano-particle milling due to the increase in specific surface area of red mud. It is potential to use rape straw and red mud as soil amendments to develop a cost-effective and efficient “in situ” remediation technology for Cd mildly contaminated calcareous soils.
. [J]. Frontiers of Environmental Science & Engineering, 2015, 9(3): 419-428.
Junxing YANG,Liqun WANG,Jumei LI,Dongpu WEI,Shibao CHEN,Qingjun GUO,Yibing MA. Effects of rape straw and red mud on extractability and bioavailability of cadmium in a calcareous soil. Front. Environ. Sci. Eng., 2015, 9(3): 419-428.
1% NaCaHEDTA in 1 mol·L-1 NH4OAc, pH 8.3, 1:10, shaking 2 h
easily reducible Mn
ERMn
4
0.2% quinol in 1 mol·L-1 NH4OAc, pH 7.0, 1:10, shaking 1 h
carbonate
CA
5
0.5 mol·L-1 NaOAc-0.5 mol·L-1 HOAc, pH 4.74, 1:10, soaking 15 hand shaking 3 h
organic matter
OM
6
5 mL 30% H2O2, pH 4.74, digested twice at 85°C and extracted by 0.5 mol·L-1 NaOAc-0.5 mol·L-1 HOAc for 1 h
Fe and Al oxides
FeOx
7
0.175 mol·L-1 (NH4)2C2O4 -0.100 mol·L-1 H2C2O4, pH 3.25, 1:10, soaking 15 h and shaking 2 h in daylight
residual forms
RES
8
total minus sum of the extractable
Tab.1
Fig.1
Cd addition /(mg·kg-1 soil)
amendments
shoot Cd concentration/(mg·kg-1)
shoot Cd uptake/(mg·plant-1)
shoot yield/(g·plant-1)
2
CK
0.193±0.003 a
0.220±0.013 a
1.14±0.12 a
RM
0.143±0.009 cd
0.168±0.021 c
1.18±0.07 a
RMn
0.128±0.008 e
0.150±0.017 d
1.17±0.16 a
RMa
0.138±0.007 d
0.157±0.023 d
1.14±0.08 a
RMna
0.133±0.006 de
0.150±0.011 d
1.13±0.13 a
ZT
0.171±0.010 b
0.195±0.015 b
1.14±0.13 a
CS
0.154±0.005 c
0.183±0.026 bc
1.19±0.13 a
RS
0.127±0.004 e
0.154±0.018 d
1.21±0.11 a
5
CK
0.388±0.009a
0.419±0.034 a
1.08±0.09 a
RM
0.266±0.004 c
0.295±0.025 d
1.11±0.17a
RMn
0.212±0.014 e
0.244±0.029 f
1.15±0.09 a
RMa
0.242±0.005 d
0.286±0.014 de
1.18±0.13 a
RMna
0.237±0.009 d
0.268±0.019 e
1.13±0.09 a
ZT
0.309±0.010 b
0.362±0.031 b
1.17±0.20 a
CS
0.278±0.008 bc
0.317±0.029 c
1.14±0.08 a
RS
0.214±0.006 e
0.248±0.024 f
1.16±0.07 a
Tab.2
Fig.2
Cd addition/(mg·kg-1 soil)
amendments
pH
WS
EXC
EDTA
ERMn
CA
OM
FeOx
RES
2
CK
8.11
0.009±0.002a
0.41±0.011a
0.51±0.020b
0.121±0.004a
0.120±0.006b
0.112±0.002b
0.306±0.005b
0.412±0.026b
RM
8.14
0.006±0.001bc
0.27±0.016bc
0.51±0.016b
0.125±0.010a
0.140±0.004a
0.111±0.003b
0.362±0.016a
0.476±0.008a
RMn
8.16
0.005±0.001c
0.25±0.006c
0.52±0.014b
0.122±0.003a
0.137±0.005a
0.110±0.007b
0.374±0.012a
0.482±0.022a
RMa
8.09
0.007±0.002b
0.29±0.009b
0.52±0.015b
0.122±0.007a
0.139±0.006a
0.102±0.004b
0.363±0.015a
0.457±0.018a
RMna
8.1
0.006±0.001bc
0.26±0.011bc
0.52±0.015b
0.122±0.017a
0.137±0.012a
0.110±0.005b
0.374±0.006a
0.471±0.021a
ZT
8.02
0.007±0.002b
0.30±0.015b
0.62±0.028a
0.113±0.009a
0.136±0.004a
0.106±0.003b
0.315±0.006b
0.403±0.023b
CS
8.08
0.007±0.002b
0.31±0.023b
0.63±0.022a
0.119±0.015a
0.124±0.012b
0.122±0.011a
0.300±0.026b
0.388±0.021b
RS
8.07
0.005±0.001c
0.24±0.026c
0.68±0.037a
0.114±0.016a
0.126±0.017b
0.129±0.009a
0.301±0.024b
0.405±0.032b
5
CK
8.1
0.014±0.003a
1.11±0.033a
1.22±0.042b
0.30±0.013a
0.27±0.011ab
0.37±0.016b
0.77±0.026a
0.95±0.025ab
RM
8.12
0.007±0.002c
0.88±0.026cd
1.26±0.028b
0.29±0.013a
0.29±0.015a
0.36±0.018b
0.81±0.011a
1.10±0.035a
RMn
8.14
0.006±0.001c
0.85±0.017cd
1.30±0.037b
0.30±0.017a
0.30±0.026a
0.34±0.020b
0.82±0.014a
1.08±0.034a
RMa
8.08
0.009±0.002b
0.87±0.019cd
1.30±0.036b
0.29±0.018a
0.28±0.013ab
0.36±0.011b
0.80±0.029a
1.09±0.059a
RMna
8.06
0.008±0.002bc
0.86±0.032cd
1.29±0.027b
0.29±0.016a
0.30±0.013a
0.34±0.012b
0.81±0.016a
1.10±0.033a
ZT
7.99
0.009±0.002b
0.91±0.021c
1.40±0.035a
0.29±0.021a
0.27±0.012ab
0.35±0.016b
0.78±0.023a
0.99±0.036ab
CS
8.03
0.009±0.002b
0.96±0.012bc
1.41±0.042a
0.26±0.018b
0.26±0.011b
0.49±0.027a
0.77±0.021a
0.84±0.025b
RS
8.05
0.006±0.001c
0.84±0.022d
1.46±0.036a
0.28±0.023ab
0.27±0.016ab
0.51±0.025a
0.78±0.034a
0.86±0.028b
Tab.3
1
McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients-food safe issues. Field Crops Research, 1999, 60(1–2): 143–163
2
Satarug S, Baker J R, Urbenjapol S, Haswell-Elkins M, Reilly P E B, Williams D J, Moore M R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters, 2003, 137(1–2): 65–83
pmid: 12505433
3
Hooda P S. Trace Elements in Soil. Chippenham: John Wiley and sons, 2010
4
Garau G, Castaldi P, Santona L, Deinan P, Melis P. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 2007, 142(1–2): 47–57
5
Garau G, Silvetti M, Deiana S, Deiana P, Castaldi P. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. Journal of Hazardous Materials, 2011, 185(2–3): 1241–1248
pmid: 21051138
6
Liu Y J, Naidu R, Ming H. Red mud as an amendment for pollutants in solid and liquid phases. Geoderma, 2011, 163(1–2): 1–12
7
Lombi E, Zhao F J, Wieshammer G, Zhang G, McGrath S P. In situ fixation of metals in soils using bauxite residue: biological effects. Environmental Pollution, 2002, 118(3): 445–452
pmid: 12009143
8
Friesl W, Lombi E, Horak O, Wenzel W. Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 191–196
9
Castaldi P, Melis P, Silvetti M, Deiana P, Garau G. Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma, 2009, 151(3–4): 241–248
10
Lee S H, Kim E Y, Park H, Yun J, Kim J G. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by products. Geoderma, 2011, 161(1–2): 1–7
11
Santona L, Castaldi P, Melis P. Evaluation of the interaction mechanisms between red muds and heavy metals. Journal of Hazardous Materials, 2006, 136(2): 324–329
pmid: 16426746
12
Mahler R J, Bingham F T, Page A L. Cadmium-enriched sewage sludge application to acid and calcareous soils: effect on yield and cadmium uptake by lettuce and chard. Journal of Environmental Quality, 1978, 7(2): 274–281
13
Mahler R J, Bingham F T. Sposito Garrison, Page A L.Cadmium-enriched sewage sludge application to acid and calcareous soils: relation between treatment, cadmium in saturation extracts, and cadmium uptake. Journal of Environmental Quality, 1980, 9(3): 359–364
14
Lombi E, Hamon R E, McGrath S P, McLaughlin M J. Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using istopic techniques. Environmental Science & Technology, 2003, 37(5): 979–984
pmid: 12666929
15
Luo L, Ma C Y, Ma Y B, Zhang S Z, Lv J T, Cui M Q. New insights into the sorption mechanism of cadmium on red mud. Environmental Pollution, 2011, 159(5): 1108–1113
pmid: 21367499
16
Harada E, Yamaguchi Y, Koizumi N, Hiroshi S. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. Journal of Plant Physiology, 2002, 159(4): 445–448
17
Jones M G, Hughes J, Tregova A, Milne J, Tomsett A B, Collin H A. Biosynthesis of the flavour precursors of onion and garlic. Journal of Experimental Botany, 2004, 55(404): 1903–1918
pmid: 15234988
18
Alexander P D, Alloway B J, Dourado A M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution, 2006, 144(3): 736– 745
pmid: 16647172
19
Ma Y B, Uren N C. Transformations of heavy metals added to soil - application of a new sequential extraction procedure. Geoderma, 1998, 84(1–3): 157–168
20
Zhu Y G, Chen S B, Yang J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environment International, 2004, 30(3): 351–356
pmid: 14987865
21
Blanchard G, Maunaye M, Martin G. Removal of heavy metals from waters by means of natural zeolites. Water Research, 1984, 18(12): 1501–1507
22
Chen S B, Xu M G, Ma Y B, Yang J C. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environmental Safety, 2007, 67(2): 278–285
pmid: 16887186
23
Cui Y S, Du X, Weng L P, Zhu Y G. Effect of rice straw on the speciation of cadmium (Cd) and copper (Cu) in soils. Geoderma, 2008, 146(1–2): 370–377
24
Almas A, Singh B R, Salbu B. Mobility of cadmium-109 and zinc-65 in soil influenced by equilibration time, temperature, and organic matter. Journal of Environmental Quality, 1999, 28(6): 1742–1750
25
Strobel B W, Borggaard O K, Hansen H C B, Andersen M K, Raulund-Rasmussen K. Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil. European Journal of Soil Science, 2005, 56(2): 189–196
26
Wang L Q. Remediation of Cd-contaminated soils by in situ immobilization techniques. Dissertation for the Doctoral Degree. Beijing: Capital Normal University, 2009 (in Chinese)
27
Chen H M, Zheng C R, Tu C, Shen Z G. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere, 2000, 41(1–2): 229–234
pmid: 10819205
28
Castaldi P, Santona L, Melis P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 2005, 60(3): 365–371
pmid: 15924955
29
Kashem M A, Kawai S, Kikuchi N, Takahashi H, Sugawara R, Singh B R. Effect of lherzolite on chemical fractions of Cd and Zn and their uptake by plants in contaminated soil. Water, Air, and Soil Pollution, 2009, 207(1–4): 241–251