Microbial community structure and dynamics of starch-fed and glucose-fed chemostats during two years of continuous operation
Min GOU1,Jing ZENG1,Huizhong WANG1,Yueqin TANG1,*(),Toru SHIGEMATSU2,Shigeru MORIMURA3,Kenji KIDA1
1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China 2. Department of Food Science, Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), Niigata 956-8603, Japan 3. Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-0862, Japan
The microbial community structures of two mesophilic anaerobic chemostats, one fed with glucose, the other with starch as sole carbon sources, were studied at various dilution rates (0.05–0.25 d−1 for glucose and 0.025–0.1 d−1 for starch) during two years continuous operation. In the glucose-fed chemostat, the aceticlastic methanogen Methanosaeta spp. and hydrogenotrophic methanogen Methanoculleus spp. predominated at low dilution rates, whereas Methanosaeta spp. and the hydrogenotrophic Methanobacterium spp. predominated together when dilution rates were greater than 0.1 d−1. Bacteria affiliated with the phyla Bacteroidetes, Spirochaetes, and Actinobacteria predominated at dilution rates of 0.05, 0.1, and 0.15 d−1, respectively, while Firmicutes predominated at higher dilution rates (0.2 and 0.25 d−1). In the starch-fed chemostat, the aceticlastic and hydrogenotrophic methanogens coexisted at all dilution rates. Although bacteria belonging to only two phyla were mainly responsible for starch degradation (Spirochaetes at the dilution rate of 0.08 d−1 and Firmicutes at other dilution rates), different bacterial genera were identified at different dilution rates. With the exception of Archaea in the glucose-fed chemostat, the band patterns revealed by denaturing gradient gel electrophoresis (DGGE) of the microbial communities in the two chemostats displayed marked changes during long-term operation at a constant dilution rate. The bacterial community changed with changes in the dilution rate, and was erratic during long-term operation in both glucose-fed and starch-fed chemostats.
. [J]. Frontiers of Environmental Science & Engineering, 2016, 10(2): 368-380.
Min GOU,Jing ZENG,Huizhong WANG,Yueqin TANG,Toru SHIGEMATSU,Shigeru MORIMURA,Kenji KIDA. Microbial community structure and dynamics of starch-fed and glucose-fed chemostats during two years of continuous operation. Front. Environ. Sci. Eng., 2016, 10(2): 368-380.
Tang S Y, Dai Y Z, Liu Z Y. Food Industrial Wastewater Treatment. Beijing: Chemical Industry Press, 2001 (in Chinese)
2
Abbasi T, Tauseef S M, Abbasi S A. Anaerobic digestion for global warming control and energy generation—An overview. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3228–3242
https://doi.org/10.1016/j.rser.2012.02.046
3
Ito T, Yoshiguchi K, Ariesyady H D, Okabe S. Identification and quantification of key microbial trophic groups of methanogenic glucose degradation in an anaerobic digester sludge. Bioresource Technology, 2012, 123: 599–607
https://doi.org/10.1016/j.biortech.2012.07.108
pmid: 22944494
4
Fernández A, Huang S, Seston S, Xing J, Hickey R, Criddle C, Tiedje J. How stable is stable? Function versus community composition. Applied and Environmental Microbiology, 1999, 65(8): 3697–3704
pmid: 10427068
5
Yu Z T, Schanbacher F L. Production of methane biogas as fuel through anaerobic digestion. In: Singh OV, Harvey SP, eds. Sustainable Biotechnology. Netherlands: Springer, 2010, 106–127
6
Ferry J G. Fermentation of acetate. In: Ferry JG, ed. Methanogenesis: Ecology, Physiology, Biochemistry & Genetics. New York: Springer, 1993, 304–334
7
Cheng C H, Hung C H, Lee K S, Liau P Y, Liang C M, Yang L H, Lin P J, Lin C Y. Microbial community structure of a starch-feeding fermentative hydrogen production reactor operated under different incubation conditions. International Journal of Hydrogen Energy, 2008, 33(19): 5242–5249
https://doi.org/10.1016/j.ijhydene.2008.05.017
8
Angenent L T, Karim K, Al-Dahhan M H, Wrenn B A, Domíguez-Espinosa R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 2004, 22(9): 477–485
https://doi.org/10.1016/j.tibtech.2004.07.001
pmid: 15331229
9
Ahring B K, Ibrahim A A, Mladenovska Z. Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Research, 2001, 35(10): 2446–2452
https://doi.org/10.1016/S0043-1354(00)00526-1
pmid: 11394779
10
Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Applied and Environmental Microbiology, 2006, 72(2): 1623–1630
https://doi.org/10.1128/AEM.72.2.1623-1630.2006
pmid: 16461718
11
Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K. Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Applied Microbiology and Biotechnology, 2006, 72(2): 401–415
https://doi.org/10.1007/s00253-005-0275-4
pmid: 16496142
12
Tang Y Q, Shigematsu T, Morimura S, Kida K. Effect of dilution rate on the microbial structure of a mesophilic butyrate-degrading methanogenic community during continuous cultivation. Applied Microbiology and Biotechnology, 2007, 75(2): 451–465
https://doi.org/10.1007/s00253-006-0819-2
pmid: 17221191
13
Ovreås L, Forney L, Daae F L, Torsvik V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 1997, 63(9): 3367–3373
pmid: 9292986
14
Tang Y Y, Shigematsu T, Ikbal, Morimura S, Kida K. The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Research, 2004, 38(10): 2537–2550
https://doi.org/10.1016/j.watres.2004.03.012
pmid: 15159157
15
Huber T, Faulkner G, Hugenholtz P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics, 2004, 20(14): 2317–2319
https://doi.org/10.1093/bioinformatics/bth226
pmid: 15073015
16
Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(24): 4876–4882
https://doi.org/10.1093/nar/25.24.4876
pmid: 9396791
17
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596–1599
https://doi.org/10.1093/molbev/msm092
pmid: 17488738
18
Bräuer S L, Cadillo-Quiroz H, Yashiro E, Yavitt J B, Zinder S H. Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature, 2006, 442(7099): 192–194
https://doi.org/10.1038/nature04810
pmid: 16699521
19
Zellner G, Messner P, Winter J, Stackebrandt E. Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in north-Sumatra, Indonesia. International Journal of Systematic Bacteriology, 1998, 48(4): 1111–1117
https://doi.org/10.1099/00207713-48-4-1111
pmid: 9828413
20
Tarasov A L, Borzenkov I A, Chernyh N A, Belyaev S S. Isolation and investigation of anaerobic microorganisms involved in methanol transformation in an underground gas storage facility. Mikrobiologiia, 2011, 80(2): 184–191
21
Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME Journal, 2009, 3(6): 700–714
https://doi.org/10.1038/ismej.2009.2
pmid: 19242531
22
Rattanachomsri U, Kanokratana P, Eurwilaichitr L, Igarashi Y, Champreda V. Culture-independent phylogenetic analysis of the microbial community in industrial sugarcane bagasse feedstock piles. Bioscience, Biotechnology, and Biochemistry, 2011, 75(2): 232–239
https://doi.org/10.1271/bbb.100429
pmid: 21307603
23
Allen-Vercoe E, Daigneault M, White A, Panaccione R, Duncan S H, Flint H J, O’Neal L, Lawson P A. Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Anaerobe, 2012, 18(5): 523–529
https://doi.org/10.1016/j.anaerobe.2012.09.002
pmid: 22982042
24
Jiménez N, Barcenilla J M, de Felipe F L, de Las Rivas B, Muñoz R. Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation. Applied Microbiology and Biotechnology, 2014, 98(14): 6329–6337
pmid: 24577784
25
Briones A M, Daugherty B J, Angenent L T, Rausch K D, Tumbleson M E, Raskin L. Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams. Environmental Microbiology, 2007, 9(1): 93–106
https://doi.org/10.1111/j.1462-2920.2006.01119.x
pmid: 17227415
26
Zhang P, Chen Y G, Zhou Q, Zheng X, Zhu X Y, Zhao Y X. Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology. Environmental Science & Technology, 2010, 44(24): 9343–9348
https://doi.org/10.1021/es102878m
pmid: 21105739
27
Krakat N, Schmidt S, Scherer P. Mesophilic fermentation of renewable biomass: does hydraulic retention time regulate methanogen diversity? Applied and Environmental Microbiology, 2010, 76(18): 6322–6326
https://doi.org/10.1128/AEM.00927-10
pmid: 20675458
28
Roest K, Heilig H G, Smidt H, de Vos W M, Stams A J, Akkermans A D. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Systematic and Applied Microbiology, 2005, 28(2): 175–185
https://doi.org/10.1016/j.syapm.2004.10.006
pmid: 15830810
29
Gagliano M C, Braguglia C M, Gallipoli A, Gianico A, Rossetti S. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environmental Science and Pollution Research International, 2015, 22(10): 7339–7348
https://doi.org/10.1007/s11356-014-3061-y
pmid: 24875310
30
Braguglia C M, Gagliano M C, Rossetti S. High frequency ultrasound pretreatment for sludge anaerobic digestion: effect on floc structure and microbial population. Bioresource Technology, 2012, 110: 43–49
https://doi.org/10.1016/j.biortech.2012.01.074
pmid: 22326112
31
Nelson K E, Zinder S H, Hance I, Burr P, Odongo D, Wasawo D, Odenyo A, Bishop R. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environmental Microbiology, 2003, 5(11): 1212–1220
https://doi.org/10.1046/j.1462-2920.2003.00526.x
pmid: 14641599
32
Fernandez A S, Hashsham S A, Dollhopf S L, Raskin L, Glagoleva O, Dazzo F B, Hickey R F, Criddle C S, Tiedje J M. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology, 2000, 66(9): 4058–4067
https://doi.org/10.1128/AEM.66.9.4058-4067.2000
pmid: 10966429
33
Nesbø C L, Dlutek M, Zhaxybayeva O, Doolittle W F. Evidence for existence of “mesotogas,” members of the order Thermotogales adapted to low-temperature environments. Applied and Environmental Microbiology, 2006, 72(7): 5061–5068
https://doi.org/10.1128/AEM.00342-06
pmid: 16820506
34
Kundu K, Bergmann I, Hahnke S, Klocke M, Sharma S, Sreekrishnan T R. Carbon source—a strong determinant of microbial community structure and performance of an anaerobic reactor. Journal of Biotechnology, 2013, 168(4): 616–624
https://doi.org/10.1016/j.jbiotec.2013.08.023
pmid: 23994689
35
Zumstein E, Moletta R, Godon J J. Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environmental Microbiology, 2000, 2(1): 69–78
https://doi.org/10.1046/j.1462-2920.2000.00072.x
pmid: 11243264