Heterologous expression of LamA gene encoded endo-β-1,3-glucanase and CO2 fixation by bioengineered Synechococcus sp. PCC 7002
Di Li1,Swati Yewalkar2,Xiaotao Bi2(),Sheldon Duff2,Dusko Posarac2,Heli Wang1,Layne A. Woodfin3,Jan-Hendrik Hehemann3,Sheila C. Potter3,Francis E. Nano3
1. School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China 2. Department of Chemical and Biological Engineering, University of British Columbia, Vancouve, V6T 1Z3, Canada 3. Department of Biochemistry and Microbiology, University of Victoria, Victoria, V5Z 4H4, Canada
Maximum growth rate of Synechococcus mutant was 0.083 h−1 with 5% CO2.
Maximum biomass concentration of Synechococcus mutant was 3.697 g·L−1.
Synechococcus mutant can tolerate gas aeration with 15% CO2.
Maximum specific activity of laminarinase was 4.325 U·mg−1 dry mass.
Optimal pH and temperature of laminarinase activity were 8.0 and 70°C.
The gene for the catalytic domain of thermostable endo-β-1,3-glucanase (laminarinase) LamA was cloned from Thermotoga maritima MSB8 and heterologously expressed in a bioengineered Synechococcus sp. PCC 7002. The mutant strain was cultured in a photobioreactor to assess biomass yield, recombinant laminarinase activity, and CO2 uptake. The maximum enzyme activity was observed at a pH of 8.0 and a temperature of 70°C. At a CO2 concentration of 5%, we obtained a maximum specific growth rate of 0.083 h−1, a biomass productivity of 0.42 g·L−1·d−1, a biomass concentration of 3.697 g·L−1, and a specific enzyme activity of the mutant strain of 4.325 U·mg−1 dry mass. All parameters decreased as CO2 concentration increased from 5% to 10% and further to 15% CO2, except enzyme activity, which increased from 5% to 10% CO2. However, the mutant culture still grew at 15% CO2 concentration, as reflected by the biomass productivity (0.26 g·L−1·d−1), biomass concentration (2.416 g·L−1), and specific enzyme activity (3.247 U·mg−1 dry mass).
. [J]. Frontiers of Environmental Science & Engineering, 2017, 11(2): 9.
Di Li,Swati Yewalkar,Xiaotao Bi,Sheldon Duff,Dusko Posarac,Heli Wang,Layne A. Woodfin,Jan-Hendrik Hehemann,Sheila C. Potter,Francis E. Nano. Heterologous expression of LamA gene encoded endo-β-1,3-glucanase and CO2 fixation by bioengineered Synechococcus sp. PCC 7002. Front. Environ. Sci. Eng., 2017, 11(2): 9.
Badger M R, Price G D, Long B M, Woodger F J. The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. Journal of Experimental Botany, 2005, 57(2): 249–265 https://doi.org/10.1093/jxb/eri286
2
Rothschild L J, Mancinelli R L. Life in extreme environments. Nature, 2001, 409(6823): 1092–1101 https://doi.org/10.1038/35059215
3
Rajhi H, Puyol D, Martínez M C, Díaz E E, Sanz L J. Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems. Frontiers of Environmental Science & Engineering, 2016, 10(3): 513–521 https://doi.org/10.1007/s11783-015-0777-y
4
Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 2006, 101(2): 87–96 https://doi.org/10.1263/jbb.101.87
5
Xu Y, Alvey R M, Byrne P O, Graham J E, Shen G, Bryant D A. Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. Methods in Molecular Biology (Clifton, N.J.), 2011, 684: 273–293 https://doi.org/10.1007/978-1-60761-925-3_21
6
Thiel T. Genetic analysis of cyanobacteria. In: Bryant D A, ed. The Molecular Biology of Cyanobacteria. 5th ed . Dordrecht, Netherlands: Kluwer Academic Publishers, 1994, 581–611
7
Golden S S, Brusslan J, Haselkorn R. Genetic engineering of the cyanobacterial chromosome. Methods in Enzymology, 1987, 153(1): 215–231 https://doi.org/10.1016/0076-6879(87)53055-5
8
Pires J C M, Alvim-Ferraz M C M, Martins F G, Simões M. Wastewater treatment to enhance the economic viability of microalgae culture. Environmental Science and Pollution Research International, 2013, 20(8): 5096–5105 https://doi.org/10.1007/s11356-013-1791-x
9
Romera E, González F, Ballester A, Blázquez M L, Muñoz J Á. Biosorption of Cd, Ni, and Zn with mixtures of different types of algae. Environmental Engineering Science, 2008, 25(7): 999–1008 https://doi.org/10.1089/ees.2007.0122
10
Pang J, Matsuda M, Kuroda M, Inoue D, Sei K, Nishida K, Ike M. Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR. Frontiers of Environmental Science & Engineering, 2016, 10(4): 07 https://doi.org/10.1007/s11783-016-0846-x
11
Jacob-Lopes E, Gimenes Scoparo C H, Queiroz M I, Franco T T. Biotransformations of carbon dioxide in photobioreactors. Energy Conversion and Management, 2010, 51(5): 894–900 https://doi.org/10.1016/j.enconman.2009.11.027
12
de Castro Araújo S, Garcia V M T. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture (Amsterdam, Netherlands), 2005, 246(1–4): 405–412 https://doi.org/10.1016/j.aquaculture.2005.02.051
13
de Morais M G, Costa J A. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 2007, 129(3): 439–445 https://doi.org/10.1016/j.jbiotec.2007.01.009
14
Gonçalves A L, Rodrigues C M, Pires J C M, Simões M. The effect of increasing CO2 concentrations on its capture, biomass production and wastewater bioremediation by microalgae and cyanobacteria. Algal Research, 2016, 14: 127–136 https://doi.org/10.1016/j.algal.2016.01.008
15
Sung K D, Lee J S, Shin C S, Park S C, Choi M J. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technology, 1999, 68(3): 269–273 https://doi.org/10.1016/S0960-8524(98)00152-7
16
Yue L, Chen W. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Conversion and Management, 2005, 46(11–12): 1868–1876 https://doi.org/10.1016/j.enconman.2004.10.010
17
Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 1993, 293(3): 781–788 https://doi.org/10.1042/bj2930781
18
Ryan E M, Ward O P. Study of the effect of β-1,3-glucanase from Basidiomycete QM 806 on yeast extract production. Biotechnology Letters, 1985, 7(6): 409–412 https://doi.org/10.1007/BF01166213
19
Kim K H, Kim Y W, Kim H B, Lee B J, Lee D S. Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnology Letters, 2006, 28(6): 439–446 https://doi.org/10.1007/s10529-005-6177-9
20
Woo C B, Kang H N, Lee S B. Molecular cloning and anti-fungal effect of endo-b-1,3-glucanase from Thermotoga maritima. Food Science and Biotechnology, 2014, 23(4): 1243–1246 https://doi.org/10.1007/s10068-014-0170-9
21
Gueguen Y, Voorhorst W G B, van der OostJ, de Vos W M. Molecular and biochemical characterization of an endo-b-1,3-glucanase of the hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 1997, 272(50): 31258–31264 https://doi.org/10.1074/jbc.272.50.31258
22
Liu W C, Lin Y S, Jeng W Y, Chen J H, Wang H J, Shyur L F. Engineering of dual-functional hybrid glucanases. Protein Engineering, Design & Selection, 2012, 25(11): 771–780 https://doi.org/10.1093/protein/gzs083
23
Zverlov V V, Volkov Y, Velikodvorskaya T V, Schwarz W H. Highly thermostable endo-1,3-b-glucanase (laminarinase) LamA from Thermotoga neapolitana: nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology, 1997, 143(5): 1701–1708 https://doi.org/10.1099/00221287-143-5-1701
24
Frigaard N U, Sakuragi Y, Bryant D A. Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. Methods in Molecular Biology (Clifton, N.J.), 2004, 274(24): 325–340
25
Minteer S D. Enzyme Stabilization and Immobilization: Methods and Protocols. New York: Humana, 2011
26
Stevens S E, Patterson C O P, Myers J. The production of hydrogen peroxide by blue-green algae: a survey. Journal of Phycology, 1973, 9(4): 427–430
27
Nelson K E, Clayton R A, Gill S R, Gwinn M L, Dodson R J, Haft D H, Hickey E K, Peterson J D, Nelson W C, Ketchum K A, McDonald L, Utterback T R, Malek J A, Linher K D, Garrett M M, Stewart A M, Cotton M D, Pratt M S, Phillips C A, Richardson D, Heidelberg J, Sutton G G, Fleischmann R D, Eisen J A, White O, Salzberg S L, Smith H O, Venter J C, Fraser C M. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature, 1999, 99(6734): 323–339
28
Duan R, Lu Y, Hou L, Du L, Sun L, Tang X. U-shaped microRNA expression pattern could be a new concept biomarker for environmental estrogen. Frontiers of Environmental Science & Engineering, 2016, 10(6): 11 https://doi.org/10.1007/s11783-016-0880-8
29
Baladrón V, Ufano S, Dueñas E, Martín-Cuadrado A B, del Rey F, Vázquez de Aldana C R. Eng1p, an endo-1,3-b-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryotic Cell, 2002, 1(5): 774–786 https://doi.org/10.1128/EC.1.5.774-786.2002
Planas A. Bacterial 1,3–1,4-b-glucanases: structure, function and protein engineering. Methods in Enzymology, 2000, 1543(2): 361–382
33
Sun L, Gurnon J R, Adams B J, Graves M V, Van Etten J L. Characterization of a b-1,3-glucanase encoded by chlorella virus PBCV-1. Virology, 2000, 276(1): 27–36 https://doi.org/10.1006/viro.2000.0500
34
Spilliaert R, Hreggvidsson G O, Kristjansson J K, Eggertsson G, Palsdottir A. Cloning and sequencing of a Rhodothermus marinus gene, bglA, coding for a thermostable b-glucanase and its expression in Escherichia coli. European Journal of Biochemistry, 1994, 224(3): 923–930 https://doi.org/10.1111/j.1432-1033.1994.00923.x
35
Kikuchi T, Shibuya H, Jones J T. Molecular and biochemical characterization of an endo-b-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. Biochemical Journal, 2005, 389(1): 117–125 https://doi.org/10.1042/BJ20042042