Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2018, Vol. 12 Issue (3): 7   https://doi.org/10.1007/s11783-018-1015-1
  本期目录
Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed
Zhi-Long Ye, Yujun Deng, Yaoyin Lou, Xin Ye, Shaohua Chen()
Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
 全文: PDF(325 KB)   HTML
Abstract

Antibiotics in wastewater pose pharmacological threats to phosphorous recovery.

Recovered struvite particles possessed significantly antibiotic residues.

Smaller granules contained much more antibiotics than the larger ones.

Organic matters and struvite granulation process exerted significant impacts.

Recovering phosphorus from livestock wastewater has gained extensive attention. The residue of veterinary antibiotics in the wastewater may be present in the recovered products, thereby posing pharmacological threats to the agricultural planting and human health. This study investigated antibiotic occurrence in the struvite particles recovered from swine wastewater by using a fluidized bed. Results revealed that tetracyclines possessed significant residues in the struvite granules, with the values ranging from 195.2 mg·kg1 to 1995.0 mg·kg1. As for fluoroquinolones, their concentrations varied from 0.4 mg·kg1 to 1104.0 mg·kg1. Struvite particles were of various sizes and shapes and displayed different antibiotic adsorption capacities. The data also showed that the smaller granules contained much more antibiotics than the larger ones, indicating that the fluidized granulation process of struvite crystals plays an important role on the accumulation of antibiotics. For tetracyclines, organic matters and struvite adsorption exerted significant impacts on tetracyclines migration. The outcomes underscore the need to consider the residues of antibiotics in resource recovery from wastewater because they exert pharmacological impacts on the utilization of recovered products.

Key wordsAntibiotic    Struvite    Phosphorus recovery    Swine wastewater    Fluidized bed
收稿日期: 2017-07-06      出版日期: 2018-06-10
Corresponding Author(s): Shaohua Chen   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 7.
Zhi-Long Ye, Yujun Deng, Yaoyin Lou, Xin Ye, Shaohua Chen. Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed. Front. Environ. Sci. Eng., 2018, 12(3): 7.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-018-1015-1
https://academic.hep.com.cn/fese/CN/Y2018/V12/I3/7
Fig.1  
Day Section Composition (mg·g1) d0.5d
Struvite K-struvite a ACP b TOC c
20 Top 861.04 35.24 76.19 11.41 1129.01
Middle 825.39 34.38 77.10 10.20 1158.64
Bottom 815.33 35.85 82.00 9.38 1413.57
30 Top 901.72 32.78 61.44 10.73 977.5
Middle 897.70 33.30 60.41 11.71 1141.11
Bottom 892.61 33.51 54.73 9.57 1618.01
40 Top 933.50 31.03 37.67 10.12 971.29
Middle 865.03 32.16 37.42 8.40 1342.38
Bottom 874.29 32.79 35.47 7.95 1938.76
50 Top 936.82 31.56 23.24 6.55 1200.95
Middle 947.34 32.03 20.40 6.03 1505.00
Bottom 918.06 33.68 21.69 5.54 2440.43
60 Top 907.98 31.12 47.53 10.57 1050.55
Middle 927.33 31.54 33.99 6.40 1570.53
Bottom 931.28 32.97 13.34 5.58 3260.38
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Antibiotics Term Regression equation R2
TCs OTC y = 1621.4x – 315.46 0.6714
TC y = 1776.7x –450.59 0.7168
CTC y = 422.32x + 59.237 0.3803
DXC y = 1705.1x –349.14 0.5875
FLQs CIP y = 878.78x –188.04 0.298
ENX y = 60.418x + 74.719 0.0395
OFL y = 31.488x + 95.111 0.0223
Tab.2  
1 Bai Z H, Ma  L, Qin W,  Chen Q, Oenema  O, Zhang F S. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses. Environmental Science & Technology, 2014, 48(21): 12742–12749
https://doi.org/10.1021/es502160v pmid: 25292109
2 Li W, Ding  X, Liu M,  Guo Y, Liu  L. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation. Frontiers of Environmental Science & Engineering, 2012, 6(6): 892–900
https://doi.org/10.1007/s11783-012-0440-9
3 Guedes P, Mateus  E P, Almeida  J, Ferreira A R,  Gouto N,  Ribeiro A B. Electrodialytic treatment of sewage sludge: Current intensity influence on phosphorus recovery and organic contaminants removal. Chemical Engineering Journal, 2016, 306(11): 1058–1066
https://doi.org/10.1016/j.cej.2016.08.040
4 Zhu Y G, Johnson  T A, Su  J Q, Qiao  M, Guo G X,  Stedtfeld R D,  Hashsham S A,  Tiedje J M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435–3440
https://doi.org/10.1073/pnas.1222743110 pmid: 23401528
5 Li X, Shi  H, Li K,  Zhang L,  Gan Y. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(6): 888–894
https://doi.org/10.1007/s11783-014-0735-0
6 Liu L, Liu  C, Zheng J,  Huang X,  Wang Z, Liu  Y, Zhu G. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands. Chemosphere, 2013, 91(8): 1088–1093
https://doi.org/10.1016/j.chemosphere.2013.01.007 pmid: 23380031
7 Lou Y, Deng  Y, Ye Z,  Ye X, Chen  S. Residues of veterinary antibiotics and heavy metals in precipitated prodcuts during struvite recovery from swine wastewater. Chinese Journal of Environmental Engineering, 2015, 9(11): 5341–5347 (in Chinese)
8 Álvarez-Torrellas S,  Ribeiro R S,  Gomes H T,  Ovejero G,  García J. Removal of antibiotic compounds by adsorption using glycerol-based carbon materials. Chemical Engineering Journal, 2016, 296: 277–288
https://doi.org/10.1016/j.cej.2016.03.112
9 Chen Y, Xi  X, Cao Q,  Wang B, Vince  F, Hong Y. Pharmaceutical compounds in aquatic environment in China: Locally screening and environmental risk assessment. Frontiers of Environmental Science & Engineering, 2015, 9(3): 394–401
https://doi.org/10.1007/s11783-014-0653-1
10 Wu H, Xie  H, He G,  Guan Y, Zhang  Y. Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite. Applied Clay Science, 2016, 119(S1): 161–169
https://doi.org/10.1016/j.clay.2015.08.001
11 Desmidt E, Ghyselbrecht  K, Zhang Y,  Pinoy L,  Van der Bruggen B,  Verstraete W,  Rabaey K,  Meesschaert B. Global phosphorus scarcity and full-scale P-recovery techniques: A review. Critical Reviews in Environmental Science and Technology, 2015, 45(4): 336–384
https://doi.org/10.1080/10643389.2013.866531
12 Fattah K P, Mavinic  D S, Koch  F A. Influence of process parameters on the characteristics of struvite pellets. Journal of Environmental Engineering, 2012, 138(12): 1200–1209
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000576
13 da Silva C A M,  Butzge J J,  Nitz M, Taranto  O P. Monitoring and control of coating and granulation processes in fluidized beds: A review. Advanced Powder Technology, 2014, 25(1): 195–210
https://doi.org/10.1016/j.apt.2013.04.008
14 APHA. Awwa, WEF. Standard Methods for the Examination of Water And Wastewater, 20th, ed. Washington DC: American Public Health Association, 1998
15 Ilić M, Budak  I, Vasić M V,  Nagode A,  Kozmidis-Luburić U,  Hodolič J,  Puškar T. Size and shape particle analysis by applying image analysis and laser diffraction—Inhalable dust in a dental laboratory. Measurement, 2015, 66: 109–117
https://doi.org/10.1016/j.measurement.2015.01.028
16 Ye Z, Shen  Y, Ye X,  Zhang Z,  Chen S, Shi  J. Phosphorus recovery from wastewater by struvite crystallization: property of aggregates. Journal of Environmental Sciences (China), 2014, 26(5): 991–1000
https://doi.org/10.1016/S1001-0742(13)60536-7 pmid: 25079629
17 Luo Y, Xu  L, Rysz M,  Wang Y, Zhang  H, Alvarez P J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental Science & Technology, 2011, 45(5): 1827–1833
https://doi.org/10.1021/es104009s pmid: 21309601
18 Zhao L, Dong  Y H, Wang  H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Science of the Total Environment, 2010, 408(5): 1069–1075
https://doi.org/10.1016/j.scitotenv.2009.11.014 pmid: 19954821
19 Yamada N, Mise  R, Ishida M,  Iwao Y, Noguchi  S, Itai S. Effects of the centrifugal coating and centrifugal fluidized bed coating methods on the physicochemical properties of sustained-release microparticles using a multi-functional rotor processor. Advanced Powder Technology, 2014, 25(1): 430–435
https://doi.org/10.1016/j.apt.2013.07.007
20 Shen Y, Ye  Z, Ye X,  Wu J, Chen  S. Phosphorus recovery from swine wastewater by struvite precipitation: the composition and heavy metals in the precipitates. Desalination and Water Treatment, 2016, 57(22): 10361–10369
https://doi.org/10.1080/19443994.2015.1035342
21 Loftin K A, Adams  C D, Meyer  M T, Surampalli  R. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. Journal of Environmental Quality, 2008, 37(2): 378–386
https://doi.org/10.2134/jeq2007.0230 pmid: 18268300
22 Martins A C, Pezoti  O, Cazetta A L,  Bedin K C,  Yamazaki D A S,  Bandoch G F G,  Asefa T,  Visentainer J V,  Almeida V C. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chemical Engineering Journal, 2015, 260: 291–299
https://doi.org/10.1016/j.cej.2014.09.017
23 Prywer J, Torzewska  A. Bacterially induced struvite growth from synthetic urine: Experimental and theoretical characterization of crystal morphology. Crystal Growth & Design, 2009, 9(8): 3538–3543
https://doi.org/10.1021/cg900281g
24 Ye Z, Deng  Y, Lou Y,  Ye X, Chen  S. Adsorption behaviour of tetracyclines by struvite particles in the process of phosphorus recovery from swine wastewater. Chemical Engineering Journal, 2017, 313: 1633–1638
https://doi.org/10.1016/j.cej.2016.11.062
25 Kemacheevakul P, Chuangchote  S, Otani S,  Matsuda T,  Shimizu Y. Effect of magnesium dose on amount of pharmaceuticals in struvite recovered from urine. Water Science and Technology, 2015, 72(7): 1102–1110
https://doi.org/10.2166/wst.2015.313 pmid: 26398025
26 Ding Y, Teppen  B J, Boyd  S A, Li  H. Measurement of associations of pharmaceuticals with dissolved humic substances using solid phase extraction. Chemosphere, 2013, 91(3): 314–319
https://doi.org/10.1016/j.chemosphere.2012.11.039 pmid: 23260244
27 Zhou L J, Ying  G G, Liu  S, Zhao J L,  Chen F, Zhang  R Q, Peng  F Q, Zhang  Q Q. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography. A, 2012, 1244: 123–138
https://doi.org/10.1016/j.chroma.2012.04.076 pmid: 22625208
28 Michael I, Rizzo  L, McArdell C S,  Manaia C M,  Merlin C,  Schwartz T,  Dagot C,  Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 2013, 47(3): 957–995
https://doi.org/10.1016/j.watres.2012.11.027 pmid: 23266388
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed