Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats
Gastón Azziz1,2(), Matías Giménez1, Héctor Romero3, Patricia M. Valdespino-Castillo4, Luisa I. Falcón5,6, Lucas A. M. Ruberto7,8, Walter P. Mac Cormack7,8, Silvia Batista1
1. 1Molecular Microbiology Unit, Clemente Estable Biological Research Insitute, UdelaR, Montevideo 11600, Uruguay 2. Microbiology Laboratory, Faculty of Agronomy, UdelaR, Montevideo 12900, Uruguay 3. Genome Organization and Evolution Laboratory, Ecology and Evolution Department, Faculty of Sciences, UdelaR, Montevideo 11400, Uruguay 4. Molecular Biophysics and Integrated Bioimaging, BSISB Imaging Program, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 5. Bacteial Ecology Laboratory, Ecology Institute, National Autonomous University of Mexico, CDMX 04510, Mexico 6. UNAM, Yucatan Technology and Science Park, Merida 97302, Mexico 7. Argentine Antarctic Institute, Buenos Aires 1650, Argentina 8. Biotechnology Unit, Faculty of Pharmacy and Biochemistry, Nanobiotec Institute UBA-CONICET, Buenos Aires 1113, Argentina
• Beta-lactamase genes were found in all samples from distant places in Antarctica.
• Class C beta-lactamase coding genes were the most frequently found.
• Diversity of sequences exceeds that of the beta-lactamases from clinical environment.
Analysis of environmental samples for bacterial antibiotic resistance genes may have different objectives and analysis strategies. In some cases, the purpose was to study diversity and evolution of genes that could be grouped within a mechanism of antibiotic resistance. Different protocols have been designed for detection and confirmation that a functional gene was found. In this study, we present a sequence-based screening of candidate genes encoding beta-lactamases in 14 metagenomes of Antarctic microbial mats. The samples were obtained from different sites, representing diverse biogeographic regions of maritime and continental Antarctica. A protocol was designed based on generation of Hidden Markov Models from the four beta-lactamase classes by Ambler classification, using sequences from the Comprehensive Antibiotic Resistance Database (CARD). The models were used as queries for metagenome analysis and recovered contigs were subsequently annotated using RAST. According to our analysis, 14 metagenomes analyzed contain A, B and C beta-lactamase genes. Class D genes, however, were identified in 11 metagenomes. The most abundant was class C (46.8%), followed by classes B (35.5%), A (14.2%) and D (3.5%). A considerable number of sequences formed clusters which included, in some cases, contigs from different metagenomes. These assemblies are clearly separated from reference clusters, previously identified using CARD beta-lactamase sequences. While bacterial antibiotic resistance is a major challenge of public health worldwide, our results suggest that environmental diversity of beta-lactamase genes is higher than that currently reported, although this should be complemented with gene function analysis.
. [J]. Frontiers of Environmental Science & Engineering, 2019, 13(3): 44.
Gastón Azziz, Matías Giménez, Héctor Romero, Patricia M. Valdespino-Castillo, Luisa I. Falcón, Lucas A. M. Ruberto, Walter P. Mac Cormack, Silvia Batista. Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats. Front. Environ. Sci. Eng., 2019, 13(3): 44.
C Al Bayssari, A O Olaitan, F Dabboussi, M Hamze, J M Rolain (2015). Emergence of OXA-48-producing Escherichia coli clone ST38 in fowl. Antimicrobial Agents and Chemotherapy, 59(1): 745–746 https://doi.org/10.1128/AAC.03552-14
pmid: 25348536
2
H K Allen, J Donato, H H Wang, K A Cloud-Hansen, J Davies, J Handelsman (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nature Reviews. Microbiology, 8(4): 251–259 https://doi.org/10.1038/nrmicro2312
pmid: 20190823
3
H K Allen, L A Moe, J Rodbumrer, A Gaarder, J Handelsman (2009). Functional metagenomics reveals diverse b-lactamases in a remote Alaskan soil. The ISME Journal, 3(2): 243–251 https://doi.org/10.1038/ismej.2008.86
pmid: 18843302
4
R K Aziz, D Bartels, A A Best, M DeJongh, T Disz, R A Edwards, K Formsma, S Gerdes, E M Glass, M Kubal, F Meyer, G J Olsen, R Olson, A L Osterman, R A Overbeek, L K McNeil, D Paarmann, T Paczian, B Parrello, G D Pusch, C Reich, R Stevens, O Vassieva, V Vonstein, A Wilke, O Zagnitko (2008). The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 9(1): 75–90 https://doi.org/10.1186/1471-2164-9-75
pmid: 18261238
5
M Babic, A M Hujer, R A Bonomo (2006). What’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 9(3): 142–156 https://doi.org/10.1016/j.drup.2006.05.005
pmid: 16899402
F Berglund, T Österlund, F Boulund, N P Marathe, D G J Larsson, E Kristiansson (2019). Identification and reconstruction of novel antibiotic resistance genes from metagenomes. Microbiome, 7(1): 52–66 https://doi.org/10.1186/s40168-019-0670-1
pmid: 30935407
M Boolchandani, A W D’Souza, G Dantas (2019). Sequencing-based methods and resources to study antimicrobial resistance. Nature Reviews. Genetics, https://doi.org/10.1038/s41576-019-0108-4
pmid: 30886350
10
K Bush, P Courvalin, G Dantas, J Davies, B Eisenstein, P Huovinen, G A Jacoby, R Kishony, B N Kreiswirth, E Kutter, S A Lerner, S Levy, K Lewis, O Lomovskaya, J H Miller, S Mobashery, L J Piddock, S Projan, C M Thomas, A Tomasz, P M Tulkens, T R Walsh, J D Watson, J Witkowski, W Witte, G Wright, P Yeh, H I Zgurskaya (2011). Tackling antibiotic resistance. Nature Reviews. Microbiology, 9(12): 894–896 https://doi.org/10.1038/nrmicro2693
pmid: 22048738
11
Y P Chen, S H Lee, C H Chou, H J Tsai (2012). Detection of florfenicol resistance genes in Riemerella anatipestifer isolated from ducks and geese. Veterinary Microbiology, 154(3–4): 325–331 https://doi.org/10.1016/j.vetmic.2011.07.012
pmid: 21820820
12
P E Coudron, E S Moland, K S Thomson (2000). Occurrence and detection of AmpC beta-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. Journal of Clinical Microbiology, 38(5): 1791–1796
pmid: 10790101
13
J Davies, D Davies (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews : MMBR, 74(3): 417–433 https://doi.org/10.1128/MMBR.00016-10
pmid: 20805405
14
M de Been, V F Lanza, M de Toro, J Scharringa, W Dohmen, Y Du, J Hu, Y Lei, N Li, A Tooming-Klunderud, D J Heederik, A C Fluit, M J Bonten, R J Willems, F de la Cruz, W van Schaik (2014). Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLOS Genetics, 10(12): e1004776–e1004793 https://doi.org/10.1371/journal.pgen.1004776
pmid: 25522320
L Fu, B Niu, Z Zhu, S Wu, W Li (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England), 28(23): 3150–3152 https://doi.org/10.1093/bioinformatics/bts565
pmid: 23060610
17
G Garau, I García-Sáez, C Bebrone, C Anne, P Mercuri, M Galleni, J M Frère, O Dideberg (2004). Update of the standard numbering scheme for class B b-lactamases. Antimicrobial Agents and Chemotherapy, 48(7): 2347–2349 https://doi.org/10.1128/AAC.48.7.2347-2349.2004
pmid: 15215079
18
M K Gibson, K J Forsberg, G Dantas (2015). Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. The ISME Journal, 9(1): 207–216 https://doi.org/10.1038/ismej.2014.106
pmid: 25003965
19
B G Hall, M Barlow (2004). Evolution of the serine b-lactamases: Past, present and future. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 7(2): 111–123 doi:10.1016/j.drup.2004.02.003
pmid: 15158767
20
B G Hall, M Barlow (2005). Revised Ambler classification of b-lactamases. The Journal of Antimicrobial Chemotherapy, 55(6): 1050–1051 https://doi.org/10.1093/jac/dki130
pmid: 15872044
21
L D Högberg, A Heddini, O Cars (2010). The global need for effective antibiotics: Challenges and recent advances. Trends in Pharmacological Sciences, 31(11): 509–515 https://doi.org/10.1016/j.tips.2010.08.002
pmid: 20843562
22
K A Hughes, A Thompson (2004). Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers. Environmental Pollution (Barking, Essex: 1987), 127(3): 315–321 https://doi.org/10.1016/j.envpol.2003.09.004
pmid: 14638291
S H Jeong, I K Bae, J H Lee, S G Sohn, G H Kang, G J Jeon, Y H Kim, B C Jeong, S H Lee (2004). Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. Journal of Clinical Microbiology, 42(7): 2902–2906 https://doi.org/10.1128/JCM.42.7.2902-2906.2004
pmid: 15243036
25
C M June, B C Vallier, R A Bonomo, D A Leonard, R A Powers (2014). Structural origins of oxacillinase specificity in class D b-lactamases. Antimicrobial Agents and Chemotherapy, 58(1): 333–341 https://doi.org/10.1128/AAC.01483-13
pmid: 24165180
26
M N Lisa, A R Palacios, M Aitha, M M González, D M Moreno, M W Crowder, R A Bonomo, J Spencer, D L Tierney, L I Llarrull, A J Vila (2017). A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-b-lactamases. Nature Communications, 8(1): 538–549 https://doi.org/10.1038/s41467-017-00601-9
pmid: 28912448
J Nesme, S Cécillon, T O Delmont, J M Monier, T M Vogel, P Simonet (2014). Large-scale metagenomic-based study of antibiotic resistance in the environment. Current Biology: CB, 24(10): 1096–1100 https://doi.org/10.1016/j.cub.2014.03.036
pmid: 24814145
30
Y Peng, H C Leung, S M Yiu, F Y Chin (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics (Oxford, England), 28(11): 1420–1428 https://doi.org/10.1093/bioinformatics/bts174
pmid: 22495754
31
F J Pérez-Pérez, N D Hanson (2002). Detection of plasmid-mediated AmpC b-lactamase genes in clinical isolates by using multiplex PCR. Journal of Clinical Microbiology, 40(6): 2153–2162 https://doi.org/10.1128/JCM.40.6.2153-2162.2002
pmid: 12037080
32
C Quince, A W Walker, J T Simpson, N J Loman, N Segata (2017). Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9): 833–844 https://doi.org/10.1038/nbt.3935
pmid: 28898207
33
E Ruppé, A Ghozlane, J Tap, N Pons, A S Alvarez, N Maziers, T Cuesta, S Hernando-Amado, I Clares, J L Martínez, T M Coque, F Baquero, V F Lanza, L Máiz, T Goulenok, V de Lastours, N Amor, B Fantin, I Wieder, A Andremont, W van Schaik, M Rogers, X Zhang, R J L Willems, A G de Brevern, J M Batto, H M Blottière, P Léonard, V Léjard, A Letur, F Levenez, K Weiszer, F Haimet, J Doré, S P Kennedy, S D Ehrlich (2019). Prediction of the intestinal resistome by a three-dimensional structure-based method. Nature Microbiology, 4(1): 112–123 https://doi.org/10.1038/s41564-018-0292-6
pmid: 30478291
34
T Segawa, N Takeuchi, A Rivera, A Yamada, Y Yoshimura, G Barcaza, K Shinbori, H Motoyama, S Kohshima, K Ushida (2013). Distribution of antibiotic resistance genes in glacier environments. Environmental Microbiology Reports, 5(1): 127–134 https://doi.org/10.1111/1758-2229.12011
pmid: 23757141
35
S Shaikh, J Fatima, S Shakil, S M D Rizvi, M A Kamal (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1): 90–101 https://doi.org/10.1016/j.sjbs.2014.08.002
pmid: 25561890
36
M W Van Goethem, R Pierneef, O K I Bezuidt, Y Van De Peer, D A Cowan, T P Makhalanyane (2018). A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 6(1): 40–52 https://doi.org/10.1186/s40168-018-0424-5
pmid: 29471872
37
J C Wallace, J A Port, M N Smith, E M Faustman (2017). FARME DB: A functional antibiotic resistance element database. Database (Oxford), 2017: baw165–7 https://doi.org/10.1093/database/baw165
pmid: 28077567