Airborne bacteria associated with particulate matter from a highly urbanised metropolis: A potential risk to the population’s health
María del Carmen Calderón-Ezquerro1(), Elizabeth Selene Gómez-Acata1, Carolina Brunner-Mendoza2
1. Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico 2. Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
• The airborne bacteria of Mexico City are representative of urban environments.
• Particle material<10 µm influenced the type and quantity of airborne bacteria.
• The diversity and richness of bacteria were higher in the rainy season.
• The emission & transport of airborne bacteria determine the atmosphere’s microbiome.
• Bacterias as Kocuria, Paracoccus, and Staphylococcus were in the air of Mexico City.
Bacteria in the air present patterns in space and time produced by different sources and environmental factors. Few studies have focused on the link between airborne pathogenic bacteria in densely populated cities, and the risk to the population’s health. Bacteria associated with particulate matter (PM) were monitored from the air of Mexico City (Mexico). We employed a metagenomic approach to characterise bacteria using the 16S rRNA gene. Airborne bacteria sampling was carried out in the north, centre, and south of Mexico City, with different urbanisation rates, during 2017. Bacteria added to the particles were sampled using high-volume PM10 samplers. To ascertain significant differences in bacterial diversity between zones and seasons, the Kruskal-Wallis, Wilcoxon tests were done on alpha diversity parameters. Sixty-three air samples were collected, and DNA was sequenced using next-generation sequencing. The results indicated that the bacterial phyla in the north and south of the city were Firmicutes, Cyanobacteria, Proteobacteria, and Actinobacteria, while in the central zone there were more Actinobacteria. There were no differences in the alpha diversity indices between the sampled areas. According to the OTUs, the richness of bacteria was higher in the central zone. Alpha diversity was higher in the rainy season than in the dry season; the Shannon index and the OTUs observed were higher in the central zone in the dry season. Pathogenic bacteria such as Kocuria, Paracoccus, and Micrococcus predominated in both seasonal times, while Staphylococcus, Corynebacterium, and Nocardioides were found during the rainy season, with a presence in the central zone.
Corresponding Author(s):
María del Carmen Calderón-Ezquerro
引用本文:
. [J]. Frontiers of Environmental Science & Engineering, 2022, 16(9): 120.
María del Carmen Calderón-Ezquerro, Elizabeth Selene Gómez-Acata, Carolina Brunner-Mendoza. Airborne bacteria associated with particulate matter from a highly urbanised metropolis: A potential risk to the population’s health. Front. Environ. Sci. Eng., 2022, 16(9): 120.
Urbanisation rate& (9209944 Inhabitants of Mexico City***)
Area (km2)*
Coyoacán (S)
93.05%
6.95%
0.00%
100%
620416
6.74
53.62
Gustavo A. Madero (N)
83.53%
16.31%
0.16%
100%
1185772
12.9
87.38
Cuauhtémoc (C)
100.00%
0.00%
0.00%
100%
521348
5.66
32.34
Tab.1
Fig.1
Fig.2
Alpha diversity parameter
Zone
Kruskal-Wallis test
Mean North
Mean Centre
Mean South
p value
Simpson
0.846
0.924
0.923
0.789
Shannon
5.004
5.689
5.199
0.134
Observed OTUs
226.000
253.000
199.000
0.007*
Tab.2
Alpha diversity parameter
Season
Wilcoxon test
Mean Dry
Mean Rainy
p value
Simpson
0.868
0.938
<0.001
Shannon
4.908
5.800
<0.001
Observed OTUs
208.000
248.000
<0.001
Season
Alpha diversity parameter
Zone
Kruskal-Wallis test
North
Centre
South
p value
Dry
Simpson
0.769
0.903
0.918
0.011*
Shannon
4.277
5.400
4.948
0.007**
Observed OTUs
201.000
242.000
179.000
0.002***
Rainy
Simpson
0.939
0.948
0.929
0.268
Shannon
5.893
6.027
5.498
0.424
Observed OTUs
257.000
266.000
223.000
0.183
Tab.3
Fig.3
Fig.4
1
V Acosta-Martinez, S Van Pelt, J Moore-Kucera, M C Baddock, T M Zobeck (2015). Microbiology of wind-eroded sediments: Current knowledge and future research directions. Aeolian Research, 18: 99–113 https://doi.org/10.1016/j.aeolia.2015.06.001
2
M A Alghamdi, M Shamy, M A Redal, M Khoder, A H Awad, S Elserougy (2014). Microorganisms associated particulate matter: A prelimi-nary study. Science of the Total Environment, 479–480: 109–116 https://doi.org/10.1016/j.scitotenv.2014.02.006
pmid: 24561289
3
M Antoinette van Overeem (1937). On green organisms occurring in the lower troposphere. Recueil des Travaux Botaniques Néerlandais, 34(1): 388–442
4
L C Backer, S V McNeel, T Barber, B Kirkpatrick, C Williams, M Irvin, Y Zhou, T B Johnson, K Nierenberg, M Aubel, R LePrell, A Chapman, A Foss, S Corum, V R Hill, S M Kieszak, Y S Cheng (2010). Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon, 55(5): 909–921 https://doi.org/10.1016/j.toxicon.2009.07.006
pmid: 19615396
5
N A Be, J B Thissen, V Y Fofanov, J E Allen, M Rojas, G Golovko, Y Fofanov, H Koshinsky, C J Jaing (2015). Metagenomic analysis of the airborne environment in urban spaces. Microbial Ecology, 69(2): 346–355 https://doi.org/10.1007/s00248-014-0517-z
pmid: 25351142
6
J M Benson, J A Hutt, K Rein, S E Boggs, E B Barr, L E Fleming (2005). The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon, 45(6): 691–698 https://doi.org/10.1016/j.toxicon.2005.01.004
pmid: 15804518
7
G Berg, D Rybakova, D Fischer, T Cernava, M C C Vergès, T Charles, X Chen, L Cocolin, K Eversole, G H Corral, M Kazou, L Kinkel, L Lange, N Lima, A Loy, J A Macklin, E Maguin, T Mauchline, R McClure, B Mitter, M Ryan, I Sarand, H Smidt, B Schelkle, H Roume, G S Kiran, J Selvin, R S C Souza, L van Overbeek, B K Singh, M Wagner, A Walsh, A Sessitsch, M Schloter (2020). Microbiome, definition re-visited: Old concepts and new challenges. Microbiome, 8(1): 1–22 https://doi.org/10.1186/s40168-020-00875-0
pmid: 31901242
8
V Bertolini, I Gandolfi, R Ambrosini, G Bestetti, E Innocente, G Rampazzo, A Franzetti (2013). Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Applied Microbiology and Biotechnology, 97(14): 6561–6570 https://doi.org/10.1007/s00253-012-4450-0
pmid: 23053100
9
R M Bowers, N Clements, J B Emerson, C Wiedinmyer, M P Hannigan, N Fierer (2013). Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environmental Science & Techno-logy, 47(21): 12097–12106 https://doi.org/10.1021/es402970s
pmid: 24083487
10
R M Bowers, A P Sullivan, E K Costello, J L Collett Jr, R Knight, N Fierer (2011). Sources of bacteria in outdoor air across cities in the midwestern United States. Applied and Environmental Microbio-logy, 77(18): 6350–6356 https://doi.org/10.1128/AEM.05498-11
pmid: 21803902
11
H Bravo-Alvarez, R Torres-Jardón (2002). Air pollution levels and trends in the Mexico City metropolitan area. In: Fenn M de B L, Hernández-Tejeda T, eds. Urban Air Pollution and Forests. Resources at risk in the Mexico City air basin. New York: Springer–Verlag, 121–159
12
S M Burrows, T Butler, P Jockel, H Tost, A Kerkweg, U Poschl, M G Lawrence (2009a). Bacteria in the global atmosphere–Part 2: Modeling of emissions and transport between different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9281–9297 https://doi.org/10.5194/acp-9-9281-2009
13
S M Burrows, W Elbert, M G Lawrence, U Poschl (2009b). Bacteria in the global atmosphere–Part 1: Review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9263–9280 https://doi.org/10.5194/acp-9-9263-2009
14
M C Calderón-Ezquerro, C Guerrero-Guerra, B Martínez-López, F Fuentes-Rojas, F Téllez-Unzueta, E D López-Espinoza, M E Calderón-Segura, A Martínez-Arroyo, M M Trigo-Pérez (2016). First airbornepollen calendar for Mexico City and its relationship withbioclimatic factors. Aerobiologia, 32(2): 225–244 https://doi.org/10.1007/s10453-015-9392-4
15
M C Calderón-Ezquerro, N Serrano-Silva, C Brunner-Mendoza (2020). Metagenomic characterisation of bioaerosols during the dry season in Mexico City. Aerobiologia, 36(3): 493–505 https://doi.org/10.1007/s10453-020-09649-5
16
M C Calderón-Ezquerro, B Martinez-Lopez, C Guerrero-Guerra, E D López-Espinosa, W D Cabos-Narvaez (2018). Behaviour of Quercus pollen in the air, determination of its sources and transport through the atmosphere of Mexico City and conurbated areas. International Journal of Biometeorology, 62(9): 1721–1732
17
M D C Calderón-Ezquerro, N Serrano-Silva, C Brunner-Mendoza (2021). Aerobiological study of bacterial and fungal community composition in the atmosphere of Mexico City throughout an annual cycle. Environmental Pollution, 278: 116858 https://doi.org/10.1016/j.envpol.2021.116858
pmid: 33740598
18
M Camatini, V Corvaja, E Pezzolato, P Mantecca, M Gualtieri (2012). PM10-biogenic fraction drives the seasonal variation of proinflammatory response in A549 cells. Environmental Toxicology, 27(2): 63–73 https://doi.org/10.1002/tox.20611
pmid: 20549640
19
J G Caporaso, J Kuczynski, J Stombaugh, K Bittinger, F D Bushman, E K Costello, N Fierer, A G Peña, J K Goodrich, J I Gordon, G A Huttley, S T Kelley, D Knights, J E Koenig, R E Ley, C A Lozupone, D McDonald, B D Muegge, M Pirrung, J Reeder, J R Sevinsky, P J Turnbaugh, W A Walters, J Widmann, T Yatsunenko, J Zaneveld, R Knight, G A Huttley (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336 https://doi.org/10.1038/nmeth.f.303
pmid: 20383131
20
J L Carson, R M Brown Jr (1976). The correlation of soil algae airborne algae and fern spores with meteorological conditions on the Island of Hawaii. USA. Pacific Science, 30: 197–205
21
S Cha, S Srinivasan, J H Jang, D Lee, S Lim, K S Kim, W Jheong, D W Lee, E R Park, H M Chung, J Choe, M K Kim, T Seo (2017). Metagenomic analysis of airborne bacterial community and diversity in Seoul Korea during December 2014 Asian dust event. PLoS One, 12(1): e0170693 https://doi.org/10.1371/journal.pone.0170693
pmid: 28122054
22
K Chatterjee, V Sigler (2015). Evaluation of airborne microbial densities and assemblages following extended impaction onto a modified collection surface. Aerobiologia, 31(1): 21–32 https://doi.org/10.1007/s10453-014-9343-5
23
X Chen, D Kumari, V Achal (2020). A review on airborne microbes: The characteristics of sources pathogenicity and geography. Atmosphere, 11(9): 919 https://doi.org/10.3390/atmos11090919
24
I Chorus, M Welker (2021). Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences Monitoring and Management. London: Taylor & Francis, 858
25
A Chrisostomou, M Moustaka-Gouni, S Sgardelis, T Lanaras (2009). Air-dispersed phytoplankton in a Mediterranean river-reservoir system (Aliakmon-Polyphytos Greece). Journal of Plankton Research, 31(8): 877–884 https://doi.org/10.1093/plankt/fbp038
26
M Clauß (2015). Particle size distribution of airborne microorganisms in the environment: A review. Landbauforsch. Applied Agricultural and Forestry Research, 65(2): 77–100 https://doi.org/10.3220/LBF1444216736000
L Després, J P David, C Gallet (2007). The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology & Evolution, 22(6): 298–307 https://doi.org/10.1016/j.tree.2007.02.010
pmid: 17324485
29
V R Després, J A Huffman, S M Burrows, C Hoose, A S Savatov, G Buryak (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus Series B-Chemical and Physical Meteorology, 64(1): 15598 https://doi.org/10.3402/tellusb.v64i0.15598
30
P Du, R Du, W Ren, Z Lu, P Fu (2018). Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Science of the Total Environment, 610– 611: 308–315 https://doi.org/10.1016/j.scitotenv.2017.07.097
pmid: 28806548
31
M Dufrêne, P Legendre (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3): 345–366 https://doi.org/10.2307/2963459
32
S A Edgerton, X Bian, J C Doran, J D Fast, J M Hubbe, E L Malone, W J Shaw, C D Whiteman, S Zhong, J L Arriaga, E Ortiz, M Ruiz, G Sosa, E Vega, T Limon, F Guzman, J Archuleta, J E Bossert, S M Elliot, J T Lee, L A McNair, J C Chow, J G Watson, R L Coulter, P V Doskey, J S Gaffney, N A Marley, W Neff, R Petty (1999). Particulate air pollution in Mexico City: A collaborative research project. Journal of the Air & Waste Management Association, 49(10): 1221–1229 https://doi.org/10.1080/10473289.1999.10463915
pmid: 28060672
33
D W Ehresmann, M T Hatch (1975). Effect of relative humidity on the survival of airborne unicellular algae. Journal of Applied Microbiology, 29(3): 352–357 https://doi.org/10.1128/am.29.3.352-357.1975
pmid: 1115506
34
F Estrada, A Martínez-Arroyo, A Fernández-Eguiarte, E Luyando, C Gay (2009). Defining climate zones in Mexico City using multivariate analysis. Atmosfera, 22: 175–193
35
Z Fang, Z Ouyang, H Zheng, X Wang, L Hu (2007). Culturable airborne bacteria in outdoor environments in Beijing, China. Microbial Ecology, 54(3): 487–496 https://doi.org/10.1007/s00248-007-9216-3
pmid: 17308950
36
E J Flies, L J Clarke, B W Brook, P Jones (2020). Urbanisation reduces the abundance and diversity of airborne microbes–but what does that mean for our health? A systematic review. Science of the Total Environment, 738: 140337 https://doi.org/10.1016/j.scitotenv.2020.140337
pmid: 32806360
37
E J Flies, S Mavoa, G R Zosky, E Mantzioris, C Williams, R Eri, B W Brook, J C Buettel (2019). Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environment International, 133(Pt A): 105187 https://doi.org/10.1016/j.envint.2019.105187
pmid: 31648161
38
E J Flies, C Skelly, R Lovell, M F Breed, D Phillips, P Weinstein (2018). Cities biodiversity and health: We need healthy urban Microbiome, initiatives. Cities & Health, 2(2): 143–150 https://doi.org/10.1080/23748834.2018.1546641
39
E J Flies, C Skelly, S S Negi, P Prabhakaran, Q Liu, K Liu, F C Goldizen, C Lease, P Weinstein (2017). Biodiverse green spaces: A prescription for global urban health. Frontiers in Ecology and the Environment, 15(9): 510–516 https://doi.org/10.1002/fee.1630
40
A Franzetti, I Gandolfi, E Gaspari, R Ambrosini, G Bestetti (2011). Seasonal variability of bacteria in fine and coarse urban air particulate matter. Applied Microbiology and Biotechnology, 90(2): 745–753 https://doi.org/10.1007/s00253-010-3048-7
pmid: 21184061
41
J Fröhlich-Nowoisky, C J Kampf, B Weber, J A Huffman, C Pöhlker, M O Andreae, N Lang-Yona, S M Burrows, S S Gunthe, W Elbert, H Su, P Hoor, E Thines, T Hoffmann, V R Després, U Pöschl (2016). Bioaerosols in the Earth system: Climate health and ecosystem interactions. Atmospheric Research, 182: 346–376 https://doi.org/10.1016/j.atmosres.2016.07.018
42
I Gandolfi, V Bertolini, R Ambrosini, G Bestetti, A Franzetti (2013). Unravelling the bacterial diversity in the atmosphere. Applied Microbiology and Biotechnology, 97(11): 4727–4736 https://doi.org/10.1007/s00253-013-4901-2
pmid: 23604562
43
I Gandolfi, V Bertolini, G Bestetti, R Ambrosini, E Innocente, G Rampazzo, M Papacchini, A Franzetti (2015). Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. Applied Microbiology and Biotechnology, 99(11): 4867–4877 https://doi.org/10.1007/s00253-014-6348-5
pmid: 25592734
44
M Gao, R Jia, T Qiu, M Han, Y Song, X Wang (2015). Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days. Atmospheric Environment, 118: 203–210 https://doi.org/10.1016/j.atmosenv.2015.08.004
45
S Genitsaris, K A Kormas, M Moustaka-Gouni (2011). Airborne algae and cyanobacteria: Occurrence and related health effects. Frontiers in Bioscience, 3(2): 772–787
pmid: 21196350
46
T L Gonzáles (2007). Perspectives of environmental, geological risk in the Los Remedios river, the border area between the Federal District and Edo.From Mexico. Bachelor’s Thesis. Mexico City: School of Engineering and Architecture. National Polytechnic Institute
47
M R González (2015). Identificación de cianobacterias potencialmente productoras de cianotoxinas en la curva de salguero del río Cesar. Revista Luna Azul, 31: 17–25
48
N C Gouveia, M Maisonet (2006). Health effects of air pollution: An overview. In: World Health Organization, ed. Regional Office for Europe. Air Quality Guidelines: Global Update 2005: Particulate Matter Ozone Nitrogen Dioxide and Sulfur Dioxide. Copenhagen: World Health Organization. Regional Office for Europe
49
D W Griffin (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews, 20(3): 459–477 https://doi.org/10.1128/CMR.00039-06
pmid: 17630335
50
W Hesse (1884). t’ber quantitative Bestimmung der in der Luft enhaltenen Mikroorganismen. Mitt. aus dem kais. Gesundht. Berlin, 2: 182–207
51
W Hesse (1888). Bemerkungen zur quantitativen Bestimmung der Mikroorganismen in der Luft. Zeitschrift für Hygiene, 4(1): 19–21 https://doi.org/10.1007/BF02188079
H M Ho, C Y Rao, H H Hsu, Y H Chiu, C M Liu, H J Chao (2005). Characteristics and determinants of ambient fungal spores in Hualien China. Atmospheric Environment, 39(32): 5839–5850 https://doi.org/10.1016/j.atmosenv.2005.06.034
54
INEGI (2017). Anuario estadístico y geográfico de la Ciudad de México. 2017 / / Instituto nacional de Estadística y Geografía. Ciudad de México: INEGI, Instituto Nacional de Estadística y Geografía (México), 506
55
INEGI (2020). Panorama sociodemográfico de Ciudad de México: Censo de Población y Vivienda 2020: CPV / Instituto nacional de estadística y Geografía. Ciudad de México: INEGI, 51
56
E Innocente, S Squizzato, F Visin, C Facca, G Rampazzo, V Bertolini, I Gandolfi, A Franzetti, R Ambrosini, G Bestetti (2017). Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. Science of the Total Environment, 593–594: 677–687 https://doi.org/10.1016/j.scitotenv.2017.03.199
pmid: 28363180
57
Y Y Iossifova, T Reponen, D I Bernstein, L Levin, H Kalra, P Campo, M Villareal, J Lockey, G K K Hershey, G LeMasters (2007). House dust (1-3)-beta-D-glucan and wheezing in infants. Allergy, 62(5): 504–513 https://doi.org/10.1111/j.1398-9995.2007.01340.x
pmid: 17441791
58
T A Jackson (1978). The biogeochemistry of heavy metals in polluted lakes and streams at Flin Flon Canada and a proposed method for limiting heavy-metal pollution of natural waters. Environmental Geology, 2(3): 173–189 https://doi.org/10.1007/BF02430671
59
Joint Research Centre (2019). The Future of Cities-Opportunities, Challanges and the Way Forward. Luxembourg: Union EUR 29752 EN, Publications Office
60
A M Jones, R M Harrison (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations: A review. Science of the Total Environment, 326(1–3): 151–180 https://doi.org/10.1016/j.scitotenv.2003.11.021
pmid: 15142773
61
A Klindworth, E Pruesse, T Schweer, J Peplies, C Quast, M Horn, F O Glöckner (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1): e1 https://doi.org/10.1093/nar/gks808
pmid: 22933715
62
K R Kolde (2015). Maintainer Raivo. Package ‘pheatmap’. Version. 20151:0.8. Date: 2015-07-02. Tallinn: University of Tartu
63
N R Krieg, W Ludwig, W Whitman, B P Hedlund, B J Paster, J T Staley, N Ward, D Brown, A Parte ( 2010 ). Bergey’s Manual of Systematic Bacterioly: Volume Four The Bacteroidetes Spirochaetes Tenericutes (Mollicutes) Acidobacteria Fibrobacteres Fusobacteria Dictyoglomi Gemmatimonadetes Lentisphaerae Verrucomicrobia Chlamydiae and Planctomycetes. 2nd. ed. New York: Springer, 397
64
A U Lewandowska, S Śliwińska-Wilczewska, D Woźniczka (2017). Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Marine Pollution Bulletin, 125(1–2): 30–38 https://doi.org/10.1016/j.marpolbul.2017.07.064
pmid: 28823424
65
W Li, L Fu, B Niu, S Wu, J Wooley (2012). Ultrafast clustering algorithms for metagenomic sequence analysis. Briefings in Bioinformatics, 13(6): 656–668 https://doi.org/10.1093/bib/bbs035
pmid: 22772836
66
Y Li, H Liao, H Yao (2019). Prevalence of antibiotic resistance genes in air-conditioning systems in hospitals farms and residences. International Journal of Environmental Research and Public Health, 16(5): 683 https://doi.org/10.3390/ijerph16050683
pmid: 30813565
H Liu, X Zhang, H Zhang, X Yao, M Zhou, J Wang, Z He, H Zhang, L Lou, W Mao, P Zheng, B Hu (2018). Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environmental Pollution, 233: 483–493 https://doi.org/10.1016/j.envpol.2017.10.070
pmid: 29101891
69
D S Lymperopoulou, R I Adams, S E Lindow (2016). Contribution of vegetation to the microbial composition of nearby outdoor air. Applied and Environmental Microbiology, 82(13): 3822–3833 https://doi.org/10.1128/AEM.00610-16
pmid: 27107117
70
T Magoč, S L Salzberg (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England), 27(21): 2957–2963 https://doi.org/10.1093/bioinformatics/btr507
pmid: 21903629
71
S Matthias-Maser, R Jaenicke (1994). Examination of atmospheric bioaerosol particles with radii > 0.2 μm. Journal of Aerosol Science, 25(8): 1605–1613 https://doi.org/10.1016/0021-8502(94)90228-3
72
S Matthias-Maser, R Jaenicke (2000). The size distribution of primary biological aerosol particles in the multiphase atmosphere. Aerobiologia, 16(2): 207–210 https://doi.org/10.1023/A:1007607614544
73
N W May, N E Olson, M Panas, J L Axson, P S Tirella, R M Kirpes, R L Craig, M J Gunsch, S China, A Laskin, A P Ault, K A Pratt (2018). Aerosol emissions from great lakes harmful algal blooms. Environmental Science & Technology, 52(2): 397–405 https://doi.org/10.1021/acs.est.7b03609
pmid: 29169236
74
T Meklin, T Reponen, M Toivola, V Koponen, T Husman, A Hyvärinen, A Nevalainen (2002). Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment, 36(39–40): 39–40 https://doi.org/10.1016/S1352-2310(02)00769-0
pmid: 12244747
75
G Mhuireach, B R Johnson, A E Altrichter, J Ladau, J F Meadow, K S Pollard, J L Green (2016). Urban greenness influences airborne bacterial community composition. Science of the Total Environment, 571: 680–687 https://doi.org/10.1016/j.scitotenv.2016.07.037
pmid: 27418518
76
T L Molina, B de Foy, O Vázquez-Martínez, V H Páramo-Figueroa (2009). Air Quality Weather and Climate in Mexico City. Geneva, Switzerland: WMO Bulletin n, 58
77
F Mu, Y Li, R Lu, Y Qi, W Xie, W Bai (2020). Source identification of airborne bacteria in the mountainous area and the urban areas. Atmospheric Research, 231: 104676 https://doi.org/10.1016/j.atmosres.2019.104676
J Oksanen, F G Blanchet, M Friendly, R Kindt, P Legendre, D McGlinn, P R Minchin, R B O’Hara, G L Simpson, P Solymos, M Henry, H Stevens, E Szoecs, H Wagner (2017). Vegan: Community Ecology Package. R Package Version. 2 4–3. Oulu: University of Oulu
80
M Paściak, K Pawlik, A Gamian, B Szponar, J Skóra, B Gutarowska (2014). An airborne actinobacteria Nocardiopsis alba isolated from bioaerosol of a mushroom compost facility. Aerobiologia, 30(4): 413–422 https://doi.org/10.1007/s10453-014-9336-4
pmid: 25382928
81
S D Pillai, S C Ricke (2002). Bioaerosols from municipal and animal wastes: Background and contemporary issues. Canadian Journal of Microbiology, 48(8): 681–696 https://doi.org/10.1139/w02-070
pmid: 12381025
82
P N Polymenakou (2012). Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere, 3(1): 87–102 https://doi.org/10.3390/atmos3010087
T Ruiz-Gil, J J Acuña, S Fujiyoshi, D Tanaka, J Noda, F Maruyama, M A Jorquera (2020). Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145: 106156 https://doi.org/10.1016/j.envint.2020.106156
pmid: 33039877
85
C Santos-Burgoa, I Rosas, A Yela (1994). Occurrence of airborne enteric bacteria in Mexico City. Aerobiologia, 10(1): 39–45 https://doi.org/10.1007/BF02066745
86
N Serrano-Silva, M C Calderón-Ezquerro (2018). Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods. Environmental Pollution, 235: 20e29 https://doi.org/10.1016/j.envpol.2017.12.035
87
N K Sharma, A Rai, S Singh (2006a). Meteorological factors affecting the diversity of airborne algae in an urban atmosphere. Ecography, 29(5): 766–772 https://doi.org/10.1111/j.2006.0906-7590.04554.x
N K Sharma, S Singh (2010). Differential aerosolization of algal and cyanobacterial particles in the atmosphere. Indian Journal of Microbiology, 50(4): 468–473 https://doi.org/10.1007/s12088-011-0146-x
pmid: 22282617
90
N K Sharma, S Singh, A K Rai (2006b). Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. Environmental Research, 102(3): 252–259 https://doi.org/10.1016/j.envres.2006.04.003
pmid: 16780831
91
W Smets, S Moretti, S Denys, S Lebeer (2016). Airborne bacteria in the atmosphere: Presence purpose and potential. Atmospheric Environment, 139: 214–221 https://doi.org/10.1016/j.atmosenv.2016.05.038
92
E Stackebrandt, C Koch, O Gvozdiak, P Schumann (1995). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Neste-renkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. International Journal of Systematic Bacteriology, 45(4): 682–692 https://doi.org/10.1099/00207713-45-4-682
pmid: 7547287
93
M M Stein, C L Hrusch, J Gozdz, C Igartua, V Pivniouk, S E Murray, J G Ledford, M Marques Dos Santos, R L Anderson, N Metwali, J W Neilson, R M Maier, J A Gilbert, M Holbreich, P S Thorne, F D Martinez, E von Mutius, D Vercelli, C Ober, A I Sperling (2016). Innate immunity and asthma risk in Amish and Hutterite Farm Children. New England Journal of Medicine, 375(5): 411–421 https://doi.org/10.1056/NEJMoa1508749
pmid: 27518660
94
L D Stetzenbach(2009). Airborne Infectious Microorganisms. Encyclopedia of Microbiology. Elsevier Public Health Emergency Collection. Amsterdam: Elsevier, 175–182 https://doi.org/10.1016/B978-012373944-5.00177-2
95
D Tanaka, K Sato, M Goto, S Fujiyoshi, F Maruyama, S Takato, T Shimada, A Sakatoku, K Aoki, S Nakamura (2019). Airborne microbial communities at high-altitude and suburban sites in Toyama Japan suggest a new perspective for bioprospecting. Frontiers in Bioengineering and Biotechnology, 7: 12 https://doi.org/10.3389/fbioe.2019.00012
pmid: 30805335
96
R Team (2020). “Core 2020.” R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Compu-ting
97
C Tomasi, S Fuzzi, A Kokhanovsky (2017). Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate. Hoboken,: John Wiley & Sons, First, 704
98
UNIATMOS (2020). Bases de datos y metadatos de la Unidad de Informática para las Ciencias Atmosféricas y Ambientales. Repositorio Institucional Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM. Mexico City: Institute of Atmospheric Sciences and Climate Change
99
K Wiśniewska, A U Lewandowska, S Śliwińska-Wilczewska (2019). The importance of cyanobacteria and microalgae present in aerosols to human health and the environment: Review study. Environment International, 131: 104964 https://doi.org/10.1016/j.envint.2019.104964
pmid: 31351382
100
C Xu, M Wei, J Chen, X Wang, C Zhu, J Li, L Zheng, G Sui, W Li, W Wang, Q Zhang, A Mellouki (2017). Bacterial characterization in ambient submicron particles during severe haze episodes at Ji’nan, China. Science of the Total Environment, 580: 188–196 https://doi.org/10.1016/j.scitotenv.2016.11.145
pmid: 28017418
101
D Yan, T Zhang, J Su, L L Zhao, H Wang, X M Fang, Y Q Zhang, H Y Liu, L Y Yu (2018). Structural variation in the bacterial community associated with airborne particulate matter in Beijing China during hazy and nonhazy days. Applied and Environmental Microbiology, 84(9): e00004–e00018 https://doi.org/10.1128/AEM.00004-18
pmid: 29549101
102
L Ye, T Zhang (2011). Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing. Environmental Science & Technology, 45(17): 7173–7179 https://doi.org/10.1021/es201045e
pmid: 21780772
103
S Yooseph, C Andrews-Pfannkoch, A Tenney, J McQuaid, S Williamson, M Thiagarajan, D Brami, L Zeigler-Allen, J Hoffman, J B Goll, D Fadrosh, J Glass, M D Adams, R Friedman, J C Venter (2013). A metagenomic framework for the study of airborne microbial communities. PLoS One, 8(12): e81862 https://doi.org/10.1371/journal.pone.0081862
pmid: 24349140
104
Q Zhang, C Liu, Y Tang, G Zhou, P Shen, C Fang, A Yokota (2007). Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. International Journal of Systematic and Evolutionary Microbiology, 57(8): 1752–1756 https://doi.org/10.1099/ijs.0.65033-0
pmid: 17684250
105
Q Zhen, Y Deng, Y Wang, X Wang, H Zhang, X Sun, Z Ouyang (2017). Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment, 601– 602: 703–712 https://doi.org/10.1016/j.scitotenv.2017.05.049
pmid: 28577405
106
G Zhou, X Luo, Y Tang, L Zhang, Q Yang, Y Qiu, C Fang (2008). Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. International Journal of Systematic and volutionary Microbiology, 58(6): 1304–1307 https://doi.org/10.1099/ijs.0.65323-0
pmid: 18523169