1. State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China 2. State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China 3. Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400030, China
● A cellphone-based colorimetric multi-channel sensor for in-field detection.
● A universal colorimetric detection platform in the absorbance range of 400–700 nm.
● Six-fold improvement of sensitivity by introducing a transmission grating.
● Quantifying multiple water quality indexes simultaneously with high stability.
The development of colorimetric analysis technologies for the commercial cellphone platform has attracted great attention in environmental monitoring due to the low cost, high versatility, easy miniaturization, and widespread ownership of cellphones. This work demonstrates a cellphone-based colorimetric multi-channel sensor for quantifying multiple environmental contaminants simultaneously with high sensitivity and stability. To improve the sensitivity of the sensor, a delicate optical path system was created by using a diffraction grating to split six white beams transmitting through the multiple colored samples, which allows the cellphone CMOS camera to capture the diffracted light for image analysis. The proposed sensor is a universal colorimetric detection platform for a variety of environmental contaminants with the colorimetry assay in the range of 400–700 nm. By introducing the diffraction grating for splitting light, the sensitivity was improved by over six folds compared with a system that directly photographed transmitted light. As a successful proof-of-concept, the sensor was used to detect turbidity, orthophosphate, ammonia nitrogen and three heavy metals simultaneously with high sensitivity (turbidity: detection limit of 1.3 NTU, linear range of 5–400 NTU; ammonia nitrogen: 0.014 mg/L, 0.05–5 mg/L; orthophosphate: 0.028 mg/L, 0.1–10 mg/L; Cr (VI): 0.0069 mg/L, 0.01–0.5 mg/L; Fe: 0.025 mg/L, 0.1–2 mg/L; Zn: 0.032 mg/L, 0.05–2 mg/L) and reliability (relative standard deviations of six parallel measurements of 0.37%–1.60% and recoveries of 95.5%–106.0% in surface water). The miniature sensor demonstrated in-field sensing ability in environmental monitoring, which can be extended to point-of-care diagnosis and food safety control.
Measured by spectrophotometer (NTU for turbidity, mg/L for others)
Measured by our sensor (NTU for turbidity, mg/L for others)
Recovery by our sensor (%)
Turbidity
0
3.3
4.3±0.8
?
50
51.5
55.5±2.0
102.3±3.1
100
106.5
108.4±2.0
104.1±2.1
200
210.8
196.5±1.7
96.1±1.1
Ammonia nitrogen
0
0.055
0.048±0.008
?
0.5
0.547
0.548±0.014
100.0±1.5
1
1.067
1.094±0.023
104.6±2.2
2
2.090
2.101±0.053
102.7±2.3
Orthophosphate
0
0.062
0.059±0.004
?
1
1.054
1.061±0.013
100.2±1.6
2
2.030
2.122±0.070
103.1±3.3
4
4.011
3.881±0.046
95.5±1.1
Cr (VI)
0
0
< LOD
?
0.05
0.048
0.052±0.001
105.6±1.8
0.1
0.102
0.101±0.004
100.6±4.1
0.2
0.201
0.196±0.004
98.1±1.9
Fe
0
0.053
0.061±0.012
?
0.25
0.304
0.326±0.012
106.0±5.3
0.5
0.564
0.561±0.010
99.9±2.0
1
1.067
1.037±0.028
97.6±1.8
Zn
0
0.103
0.111±0.016
0.25
0.353
0.344±0.070
104.6±3.1
0.5
0.604
0.609±0.071
105.2±5.5
1
1.124
1.093±0.047
101.0±2.0
Tab.2
1
M Andrachuk , M Marschke , C Hings , D Armitage . (2019). Smartphone technologies supporting community-based environmental monitoring and implementation: A systematic scoping review. Biological Conservation, 237 : 430– 442 https://doi.org/10.1016/j.biocon.2019.07.026
2
B Berg , B Cortazar , D Tseng , H Ozkan , S Feng , Q Wei , R Y L Chan , J Burbano , Q Farooqui , M Lewinski . et al.. (2015). Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays. ACS Nano, 9( 8): 7857– 7866 https://doi.org/10.1021/acsnano.5b03203
3
K Cantrell , M M Erenas , Orbe-Payá I de , L F Capitán-Vallvey . (2010). Use of the hue parameter of the hue, saturation, value color space as a quantitative analytical parameter for bitonal optical sensors. Analytical Chemistry, 82( 2): 531– 542 https://doi.org/10.1021/ac901753c
4
L F Capitán-Vallvey , N López-Ruiz , A Martínez-Olmos , M M Erenas , A J Palma . (2015). Recent developments in computer vision-based analytical chemistry: A tutorial review. Analytica Chimica Acta, 899 : 23– 56 https://doi.org/10.1016/j.aca.2015.10.009
5
Koydemir H Ceylan , S Rajpal , E Gumustekin , D Karinca , K Liang , Z Göröcs , D Tseng , A Ozcan . (2019). Smartphone-based turbidity reader. Scientific Reports, 9( 1): 19901 https://doi.org/10.1038/s41598-019-56474-z
6
C Y Chen , Y H Chen , C F Lin , C J Weng , H C Chien . (2014). A review of ubiquitous mobile sensing based on smartphones. International Journal of Automation and Smart Technology, 4( 1): 13– 19 https://doi.org/10.5875/ausmt.v4i1.301
7
B Coleman C Coarsey M A Kabir W Asghar ( 2019). Point-of-care colorimetric analysis through smartphone video. Sensors and Actuators. B, Chemical, 282: 225− 231
8
Q Fu , Z Wu , X Li , C Yao , S Yu , W Xiao , Y Tang . (2016). Novel versatile smart phone based Microplate readers for on-site diagnoses. Biosensors & Bioelectronics, 81 : 524– 531 https://doi.org/10.1016/j.bios.2016.03.049
H He , B Tang , C Sun , S Yang , W Zheng , Z Hua . (2011). Preparation of hapten-specific monoclonal antibody for cadmium and its ELISA application to aqueous samples. Frontiers of Environmental Science & Engineering in China, 5( 3): 409– 416 https://doi.org/10.1007/s11783-011-0349-8
11
J I Hong , B Y Chang . (2014). Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab on a Chip, 14( 10): 1725– 1732 https://doi.org/10.1039/C3LC51451J
12
A N Kozitsina , T S Svalova , N N Malysheva , A V Okhokhonin , M B Vidrevich , K Z Brainina . (2018). Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors (Basel), 8( 2): 35 https://doi.org/10.3390/bios8020035
13
M Lepot , A Torres , T Hofer , N Caradot , G Gruber , J B Aubin , J L Bertrand-Krajewski . (2016). Calibration of UV/Vis spectrophotometers: A review and comparison of different methods to estimate TSS and total and dissolved COD concentrations in sewers, WWTPs and rivers. Water Research, 101 : 519– 534 https://doi.org/10.1016/j.watres.2016.05.070
14
P Li , J Hur . (2017). Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Critical Reviews in Environmental Science and Technology, 47( 3): 131– 154 https://doi.org/10.1080/10643389.2017.1309186
15
T Lin , Y Wu , Z Li , Z Song , L Guo , F Fu . (2016). Visual monitoring of food spoilage based on hydrolysis-induced silver metallization of Au nanorods. Analytical Chemistry, 88( 22): 11022– 11027 https://doi.org/10.1021/acs.analchem.6b02870
16
B Liu , J Zhuang , G Wei . (2020). Recent advances in the design of colorimetric sensors for environmental monitoring. Environmental Science. Nano, 7( 8): 2195– 2213 https://doi.org/10.1039/D0EN00449A
17
K D Long , H Yu , B T Cunningham . (2014). Smartphone instrument for portable enzyme-linked immunosorbent assays. Biomedical Optics Express, 5( 11): 3792– 3806 https://doi.org/10.1364/BOE.5.003792
18
J Ma , M Du , C Wang , X Xie , H Wang , Q Zhang . (2021). Advances in airborne microorganisms detection using biosensors: A critical review. Frontiers of Environmental Science & Engineering, 15( 3): 47 https://doi.org/10.1007/s11783-021-1420-8
19
D Mabey , R W Peeling , A Ustianowski , M D Perkins . (2004). Diagnostics for the developing world. Nature Reviews. Microbiology, 2( 3): 231– 240 https://doi.org/10.1038/nrmicro841
20
A W Martinez , S T Phillips , E Carrilho , S W 3rd Thomas , H Sindi , G M Whitesides . (2008). Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Analytical Chemistry, 80( 10): 3699– 3707 https://doi.org/10.1021/ac800112r
21
K E McCracken , J Y Yoon . (2016). Recent approaches for optical smartphone sensing in resource-limited settings: A brief review. Analytical Methods, 8( 36): 6591– 6601 https://doi.org/10.1039/C6AY01575A
22
V S A Piriya P Joseph S C G K Daniel S Lakshmanan T Kinoshita S Muthusamy ( 2017). Colorimetric sensors for rapid detection of various analytes. Materials Science & Engineering. C, Materials for biological applications, 78: 1231− 1245
23
E Priyadarshini N Pradhan ( 2017). Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sensors and Actuators. B, Chemical, 238: 888− 902
24
S Sajed , M Kolahdouz , M A Sadeghi , S F Razavi . (2020). High-performance estimation of lead ion concentration using smartphone-based colorimetric analysis and a machine learning approach. ACS Omega, 5( 42): 27675– 27684 https://doi.org/10.1021/acsomega.0c04255
25
S K Vashist , O Mudanyali , E M Schneider , R Zengerle , A Ozcan . (2014). Cellphone-based devices for bioanalytical sciences. Analytical and Bioanalytical Chemistry, 406( 14): 3263– 3277 https://doi.org/10.1007/s00216-013-7473-1
26
E Vidal , A S Lorenzetti , C D Garcia , C E Domini . (2021). Use of universal 3D-printed smartphone spectrophotometer to develop a time-based analysis for hypochlorite. Analytica Chimica Acta, 1151 : 338249 https://doi.org/10.1016/j.aca.2021.338249
27
L J Wang , Y C Chang , R Sun , L Li . (2017a). A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics. Biosensors & Bioelectronics, 87 : 686– 692 https://doi.org/10.1016/j.bios.2016.09.021
28
Y Wang , M M A Zeinhom , M Yang , R Sun , S Wang , J N Smith , C Timchalk , L Li , Y Lin , D Du . (2017b). A 3D-printed, portable, optical-sensing platform for smartphones capable of detecting the herbicide 2,4-dichlorophenoxyacetic acid. Analytical Chemistry, 89( 17): 9339– 9346 https://doi.org/10.1021/acs.analchem.7b02139
29
Q Wei R Nagi K Sadeghi S Feng E Yan S J Ki R Caire D Tseng A Ozcan. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano, 2014, 8( 2): 1121− 1129
30
Y Xing Q Zhu X Zhou P Qi. A dual-functional smartphone-based sensor for colorimetric and chemiluminescent detection: A case study for fluoride concentration mapping. Sensors and Actuators. B, Chemical, 2020, 319: 128254
31
J Zhai D Yong J Li S Dong. A novel colorimetric biosensor for monitoring and detecting acute toxicity in water. Analyst, 2013, 138( 2): 702− 707
pmid: 23187797
32
D Zhang Q Liu. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosensors & Bioelectronics, 2016, 75: 273− 284
pmid: 26319170