Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2023, Vol. 17 Issue (7): 80   https://doi.org/10.1007/s11783-023-1680-6
  本期目录
Frontier science and challenges on offshore carbon storage
Haochu Ku1, Yihe Miao1,2, Yaozu Wang1,2, Xi Chen1,7, Xuancan Zhu3(), Hailong Lu4, Jia Li5,6, Lijun Yu1()
1. College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
2. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
3. Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4. Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
5. The Hong Kong University of Science and Technology (Guangzhou), Nansha 511458, China
6. Jiangmen Laboratory for Carbon and Climate Science and Technology, Jiangmen 529100, China
7. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(3181 KB)   HTML
Abstract

● The main direct seal up carbon options and challenges are reviewed.

● Ocean-based CO2 replacement for CH4/oil exploitation is presented.

● Scale-advantage of offshore CCS hub is discussed.

Carbon capture and storage (CCS) technology is an imperative, strategic, and constitutive method to considerably reduce anthropogenic CO2 emissions and alleviate climate change issues. The ocean is the largest active carbon bank and an essential energy source on the Earth’s surface. Compared to oceanic nature-based carbon dioxide removal (CDR), carbon capture from point sources with ocean storage is more appropriate for solving short-term climate change problems. This review focuses on the recent state-of-the-art developments in offshore carbon storage. It first discusses the current status and development prospects of CCS, associated with the challenges and uncertainties of oceanic nature-based CDR. The second section outlines the mechanisms, sites, advantages, and ecologic hazards of direct offshore CO2 injection. The third section emphasizes the mechanisms, schemes, influencing factors, and recovery efficiency of ocean-based CO2-CH4 replacement and CO2-enhanced oil recovery are reviewed. In addition, this review discusses the economic aspects of offshore CCS and the preponderance of offshore CCS hubs. Finally, the upsides, limitations, and prospects for further investigation of offshore CO2 storage are presented.

Key wordsOffshore carbon storage    Direct CO2 injection    CO2-CH4 replacement    CO2-EOR    CCS hubs    CO2 transport
收稿日期: 2022-07-04      出版日期: 2023-02-03
Corresponding Author(s): Xuancan Zhu,Lijun Yu   
 引用本文:   
. [J]. Frontiers of Environmental Science & Engineering, 2023, 17(7): 80.
Haochu Ku, Yihe Miao, Yaozu Wang, Xi Chen, Xuancan Zhu, Hailong Lu, Jia Li, Lijun Yu. Frontier science and challenges on offshore carbon storage. Front. Environ. Sci. Eng., 2023, 17(7): 80.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-023-1680-6
https://academic.hep.com.cn/fese/CN/Y2023/V17/I7/80
Storage site Injection results Storage performance Reference
Above 500 m CO2 gas is lighter than the surrounding brine and flows to the surface. Entire dissolution before rising to the surface Brewer et al. (2005)
1000 m CO2 injected is delivered to the abysmal sea. 90% left (50 years); 75% left (100 years) Xu et al. (1999)
Above 2500 m Liquid CO2 is lighter than the surrounding brine and flows to the surface. 90% dissolution in the initial 200 m Brewer et al. (2002)
Below 3000 m Liquid CO2 is denser than brine and gradually sinks to the sea floor. 80% left (200 years) HUME (2018)
Below 3600 m CO2 reacts with seawater to form solid hydrates. / Williams (2022)
Beneath the seafloor CO2 is sealed in porous media to form solid hydrates. Nearly 90% (best storage efficiency) Song et al. (2021)
Tab.1  
Fig.1  
Fig.2  
Country Year Location Method Duration Remarks (m3 gas) Reference
Canada 2008 Mackenzie Delta Depressurization 6 d 13,000 Collett (2019)
United States 2012 Alaska North Slope CO2 replacement and depressurization 30 d 24,000 Li et al. (2016)
Japan 2013 Eastern Nankai Trough Depressurization 6 d 119,000 Yamamoto et al. (2014)
Japan 2017 Eastern Nankai Trough Depressurization 12 d (first well) 24 d (second well) 41,000 220,000 Yamamoto et al. (2019)
China 2017 Shenhu Sea Formation fluid extraction (An improved depressurization) 60 d 30,900 Li et al. (2018)
China 2020 South China Sea Depressurization 30 d 861,400 Ye et al. (2020)
Tab.2  
Fig.3  
Fig.4  
Factor type Rection condition Remarks CH4 recovery Reference
Thermodynamic 20 W, 50 W, 100 W Higher temperature results in lower efficiency. 85% (20 W)52% (50 W)32% (100 W) Tupsakhare and Castaldi (2019)
Thermodynamic 267–275 K (2.90 MPa)273.5 K (1.50–3.80 MPa) Replacement percentage increases with pressure decreasing or temperature increasing. / Zhao et al. (2015)
Thermodynamic 274.2 K (2.1–3.1 MPa)3.4 MPa (274.2–281.2 K) Both temperature and pressure increase facilitate the recovery efficiency. 46.6% (Best, 281.2 K, 3.4 MPa) Fan et al. (2017)
Thermodynamic < 273 K (3.6, 4.0, 4.5 MPa) Higher pressure contributes to higher efficiency. 13.2% (4.5 MPa) Zhang et al. (2018)
Thermodynamic 275 K (3, 4, 5 MPa)3 MPa (275, 277, 279 K) Lower pressure and higher temperature contribute to higher efficiency. 44.6% (277 K, 3 MPa) Chen et al. (2018)
Thermodynamic 275.3 K (8.5, 10.6, 14.5 MPa) Depressurization is beneficial to methane recovery 44% (8.5 MPa) Shi et al. (2020)
Auxiliary gas Pure CO2Flue gas (20% CO2 + 80% N2) The introduction of N2 is conducive to methane recovery. 64% (pure CO2, sI)85% (N2 + CO2, sI) Park et al. (2006)
Auxiliary gas Pure CO2Flue gas (10% CO2 + 90% N2) A higher concentration of CO2 is accompanied by more stable mixed hydrates. 41% (Best, N2 + CO2) Pandey and Solms (2019)
Auxiliary gas CO2:H2 (72:28, 55:45,36:64, 18:82) High H2 concentration causes high CH2 recovery but less CO2 storage. 72% (Best, CO2:H2 = 18:82) Wang et al. (2017)
Hydrate structure Structure IStructure II Structure II hydrates spontaneously transform to sI type. 85% (sI)92% (sII) Park et al. (2006)
Hydrate structure Structure IStructure H Structure H hydrates spontaneously transform to sI type. 68% (sI)88% (sH) Lee et al. (2015)
CO2 phase CO2 emulsion (CO2: H2O = 90:10, 70:30, 50:50)and liquid CO2 CO2 emulsion is more advantageous than CO2 liquid in CO2-CH4 replacement. 8.1%–18.6% (100:0)13.1%−27.1% (90:10)14.1%–25.5% (70:30)14.6%–24.3% (50:50) Yuan et al. (2014)
CO2 phase Supercritical CO2 Supercritical CO2 transfers more heat to activate dissociation. 3.4% (275 K)40.7% (281 K)10.7% (283 K) Deusner et al. (2012)
Production methods CO2 injection andpressure oscillation Recovery efficiency increases with the decrease of pressure. 15.95%–27.54%(2.92–1.74?MPa) Sun et al. (2021)
Production methods CO2 injection and thermal simulation (one step, continuous, and stepwise) Combined methods can increase efficiency by 8.21%–34.79%; stepwise heating is the best. 69.51% (stepwise) Lv et al. (2021)
Injection rate 275 K, 3 MPa (1.5, 1.0, 0.5)(Rate unit: mL/min) Initial recovery efficiency increases with injection rate within some scopes. / Chen et al. (2018)
Tab.3  
Fig.5  
Production scheme Parameter Condition Remarks Recovery rate Reference
Well distribution Well direction vertical injector–vertical producerhorizontal injector–horizontal producer A vertical injector is more beneficial to oil recovery. 47.6% (vertical injector)43.9% (horizontal injector) Esene et al. (2019)
WAG CO2/water ratio 1:1, 2:1, 1:2 A lower CO2/water ratio achieves a better extra oil recovery rate. 1.49% (2:1)19.52% (1:1)35.24% (1:2) Abdurrahman et al. (2021)
CWI Injection rate 500, 1000, 2500, 3500(Unit: bbl/d) The higher injection rate results in higher final recovery efficiency. 66.19% (Best final rate) Esene et al. (2019)
CWI Injection pressure 3500, 4000, 4500,5000 psi The higher the injection pressure, the higher is the final recovery efficiency. 48% (Best final rate) Esene et al. (2019)
Tab.4  
Fig.6  
Transportation section Transportation method Vital parameter Capacity (CO2) Characteristics
Inland Pipeline Distance, flow rate, geographical location,CO2 phase ~100 Mt/a (Patchigolla and Oakey, 2013) Steady flow rate;Low OPEX, higher CAPEX;More expensive in hilly terrain;Most inland cost-effective and efficient way.Mature technology, huge transportation network;
Inland Railway Distance, capacity > 3 Mt/a (Patchigolla and Oakey, 2013) Requirement of existing rails;Preponderances in the medium-long space.
Inland Motor vehicle Distance, capacity > 1 Mt/a (Patchigolla and Oakey, 2013) Not applied in large-scale transportation.
Intermediate station / Capacity, pressure / Massive energy consumption;Commercial for shared liquefication.
Offshore CO2 carrier Pipeline Distance, flow rate, depth, CO2 phase 152.4 Mt/a (Alcalde et al., 2019) Steady flow rate;Low OPEX, high CAPEX;More expensive in the deeper ocean;Commercial for short-distance and high flow rate.
Offshore CO2 carrier Ship Distance, capacity > 230 kt/batch (IPCC, 2005)> 70 Mt/a (Patchigolla and Oakey, 2013) Flexible routines.Low CAPEX, High OPEX;Requirement of the intermediate station;Commercial for long-distance and low capacity.
Tab.5  
1 M Abdurrahman, F Hidayat, U Z Husna, A Arsad. (2021). Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield. Materials Today: Proceedings, 39: 970–974
https://doi.org/10.1016/j.matpr.2020.04.495
2 E E Adams, K Caldeira. (2008). Ocean storage of CO2. Elements (Quebec), 4(5): 319–324
https://doi.org/10.2113/gselements.4.5.319
3 J Alcalde, N Heinemann, A James, C E Bond, S Ghanbari, E J Mackay, R S Haszeldine, D R Faulkner, R H Worden, M J Allen. (2021). A criteria-driven approach to the CO2 storage site selection of East Mey for the acorn project in the North Sea. Marine and Petroleum Geology, 133: 105309
https://doi.org/10.1016/j.marpetgeo.2021.105309
4 J Alcalde, N Heinemann, L Mabon, R H Worden, Coninck H De, H Robertson, M Maver, S Ghanbari, F Swennenhuis, I Mann. et al.. (2019). Acorn: developing full-chain industrial carbon capture and storage in a resource- and infrastructure-rich hydrocarbon province. Journal of Cleaner Production, 233: 963–971
https://doi.org/10.1016/j.jclepro.2019.06.087
5 T Austvik, K P Løken. (1992). Deposition of CO2 on the seabed in the form of hydrates. Energy Conversion and Management, 33(5–8): 659–666
https://doi.org/10.1016/0196-8904(92)90069-9
6 S K Bhatia, R K Bhatia, J M Jeon, G Kumar, Y H Yang. (2019). Carbon dioxide capture and bioenergy production using biological system: a review. Renewable & Sustainable Energy Reviews, 110: 143–158
https://doi.org/10.1016/j.rser.2019.04.070
7 N K Bigalke, G Rehder, G Gust. (2008). Experimental investigation of the rising behavior of CO2 droplets in seawater under hydrate-forming conditions. Environmental Science & Technology, 42(14): 5241–5246
https://doi.org/10.1021/es800228j
8 R Boswell, E Myshakin, G Moridis, Y Konno, T S Collett, M Reagan, T Ajayi, Y Seol. (2019). India national gas hydrate program expedition 02 summary of scientific results: numerical simulation of reservoir response to depressurization. Marine and Petroleum Geology, 108: 154–166
https://doi.org/10.1016/j.marpetgeo.2018.09.026
9 R DoctorA PalmerD ColemanJ DavisonC Hendriks O KaarstadM OzakiM Austell (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 186–187
10 P G Brewer, G Friederich, E T Peltzer, F M Jr. Orr. (1999). Direct experiments on the ocean disposal of fossil fuel CO2. Science, 284(5416): 943–945
https://doi.org/10.1126/science.284.5416.943
11 P G Brewer, E T Peltzer, G Friederich, G Rehder. (2002). Experimental determination of the fate of rising CO2 droplets in seawater. Environmental Science & Technology, 36(24): 5441–5446
12 K O Buesseler, C H Lamborg, P W Boyd, P J Lam, T W Trull, R R Bidigare, J K B Bishop, K L Casciotti, F Dehairs, M Elskens. et al.. (2007). Revisiting carbon flux through the ocean’s twilight zone. Science, 316(5824): 567–570
https://doi.org/10.1126/science.1137959
13 A P Camps. (2008). Hydrate formation in near surface ocean sediments. Ph.D. Ann Arbor: University of Leicester (United Kingdom), 294
14 B Castellani, A M Gambelli, A Nicolini, F Rossi. (2019). Energy and environmental analysis of membrane-based CH4-CO2 replacement processes in natural gas hydrates. Energies, 12(5): 850
https://doi.org/10.3390/en12050850
15 A Cavanagh, P Ringrose. (2014). Improving oil recovery and enabling CCS: a comparison of offshore gas-recycling in Europe to CCUS in North America. Energy Procedia, 63: 7677–7684
https://doi.org/10.1016/j.egypro.2014.11.801
16 R A Chadwick, G A Williams, I Falcon-Suarez. (2019). Forensic mapping of seismic velocity heterogeneity in a CO2 layer at the Sleipner CO2 storage operation, North Sea, using time-lapse seismic. International Journal of Greenhouse Gas Control, 90: 102793
https://doi.org/10.1016/j.ijggc.2019.102793
17 Y Chen, Y Gao, Y Zhao, L Chen, C Dong, B Sun. (2018). Experimental investigation of different factors influencing the replacement efficiency of CO2 for methane hydrate. Applied Energy, 228: 309–316
https://doi.org/10.1016/j.apenergy.2018.05.126
18 T S Collett (2019). Gas Hydrate Production Knowledge Gained, Offsher Technology Conference, Houston, D031S035R002
19 L Connell, D Down, M Lu, D Hay, D Heryanto. (2015). An investigation into the integrity of wellbore cement in CO2 storage wells: Core flooding experiments and simulations. International Journal of Greenhouse Gas Control, 37: 424–440
https://doi.org/10.1016/j.ijggc.2015.03.038
20 Z Dai, R Middleton, H Viswanathan, J Fessenden-Rahn, J Bauman, R Pawar, S Y Lee, B Mcpherson. (2014). An integrated framework for optimizing CO2 sequestration and enhanced oil recovery. Environmental Science & Technology Letters, 1(1): 49–54
https://doi.org/10.1021/ez4001033
21 Z Dai, L Xu, T Xiao, B Mcpherson, X Zhang, L Zheng, S Dong, Z Yang, M R Soltanian, C Yang. et al.. (2020). Reactive chemical transport simulations of geologic carbon sequestration: methods and applications. Earth-Science Reviews, 208: 103265
https://doi.org/10.1016/j.earscirev.2020.103265
22 Z Dai, Y Zhang, J Bielicki, M A Amooie, M Zhang, C Yang, Y Zou, W Ampomah, T Xiao, W Jia. et al.. (2018). Heterogeneity-assisted carbon dioxide storage in marine sediments. Applied Energy, 225: 876–883
https://doi.org/10.1016/j.apenergy.2018.05.038
23 C Deusner, N Bigalke, E Kossel, M Haeckel. (2012). Methane production from gas hydrate deposits through injection of supercritical CO2. Energies, 5(7): 2112–2140
https://doi.org/10.3390/en5072112
24 M Ding, X A Yue, H Zhao, W Zhang. (2013). Extraction and its effects on crude oil properties during CO2 flooding. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(23): 2233–2241
https://doi.org/10.1080/15567036.2013.816804
25 L I Eide, M Batum, T Dixon, Z Elamin, A Graue, S Hagen, S Hovorka, B Nazarian, P H Nøkleby, G I Olsen. et al.. (2019). Enabling large-scale carbon capture, utilization, and storage (CCUS) using offshore carbon dioxide (CO2) infrastructure developments: a review. Energies, 12(10): 1945
https://doi.org/10.3390/en12101945
26 Ø Eide, M A Fernø, Z Karpyn, Å Haugen, A Graue. (2013). CO2 injections for enhanced oil recovery visualized with an industrial CT-scanner. In: Proceedings of IOR 2013-17th European Symposium on Improved Oil Recovery, Saint Petersburg. European Association of Geoscientists & Engineers, 480–487
27 C Esene, S Zendehboudi, A Aborig, H Shiri. (2019). A modeling strategy to investigate carbonated water injection for EOR and CO2 sequestration. Fuel, 252: 710–721
https://doi.org/10.1016/j.fuel.2019.04.058
28 S Fan, X Wang, Y Wang, X Lang. (2017). Recovering methane from quartz sand-bearing hydrate with gaseous CO2. Journal of Energy Chemistry, 26(4): 655–659
https://doi.org/10.1016/j.jechem.2017.04.014
29 J Fink. (2021). Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids (3rd ed.). Houston: Gulf Professional Publishing, 643–731
https://doi.org/10.1016/B978-0-323-85438-2.00016-5
30 D M Fraga, R Skagestad, N H Eldrup, A Korre, H A Haugen, Z Nie, S Durucan. (2021). Design of a multi-user CO2 intermediate storage facility in the Grenland region of Norway. International Journal of Greenhouse Gas Control, 112: 103514
https://doi.org/10.1016/j.ijggc.2021.103514
31 M Gamal Rezk, J Foroozesh. (2022). Uncertainty effect of CO2 molecular diffusion on oil recovery and gas storage in underground formations. Fuel, 324: 124770
https://doi.org/10.1016/j.fuel.2022.124770
32 A M Gambelli, F Rossi. (2019). Natural gas hydrates: comparison between two different applications of thermal stimulation for performing CO2 replacement. Energy, 172: 423–434
https://doi.org/10.1016/j.energy.2019.01.141
33 W Gao, S Liang, R Wang, Q Jiang, Y Zhang, Q Zheng, B Xie, C Y Toe, X Zhu, J Wang, L Huang, Y Gao, Z Wang, C Jo, Q Wang, L Wang, Y Liu, B Louis, J Scott, A C Roger, R Amal, H He, S E Park. (2020). Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 49(23): 8584–8686
https://doi.org/10.1039/D0CS00025F
34 T Harkin, I Filby, H Sick, D Manderson, R Ashton. (2017). Development of a CO2 specification for a CCS hub network. Energy Procedia, 114: 6708–6720
https://doi.org/10.1016/j.egypro.2017.03.1801
35 S B Hawthorne, C D Gorecki, J A Sorensen, E N Steadman, J A Harju, S Melzer(2013). Hydrocarbon mobilization mechanisms from upper, middle, and lower Bakken reservoir rocks exposed to CO2. In proceedings of the SPE Unconventional Resources Conference Canada, Calgary. Society of Petroleum Engineers, SPE 167200
36 S Hirai, K Okazaki, Y Tabe, K Hijikata, Y Mori. (1997). Dissolution rate of liquid CO2 in pressurized water flows and the effect of clathrate films. Energy, 22(2): 285–293
https://doi.org/10.1016/S0360-5442(96)00134-X
37 N Hoffman (2018). The CarbonNet Project’s Pelican Storage Site in the Gippsland Basin. In: Proceedings of 14th International Conference on Greenhouse Gas Control Technologies, Melbourne. Social Science Research Network, GHGT-14, 142–155
38 N Hoffman, L Alessio. (2017). Probabilistic approach to CO2 plume mapping for prospective storage sites: the CarbonNet experience. Energy Procedia, 114: 4444–4476
https://doi.org/10.1016/j.egypro.2017.03.1604
39 N Hoffman, N Hardman-Mountford, C Jenkins, P J Rayner, G Gibson, M Sandiford. (2017). GipNet – baseline environmental data gathering and measurement technology validation for nearshore marine carbon storage. Energy Procedia, 114: 3729–3753
https://doi.org/10.1016/j.egypro.2017.03.1503
40 M Hofmann, H J Schellnhuber. (2010). Ocean acidification: a millennial challenge. Energy & Environmental Science, 3(12): 1883–1896
41 P House Kurt Z Schrag Daniel, F Harvey Charles, S Lackner Klaus. (2006). Permanent carbon dioxide storage in deep-sea sediments. Proceedings of the National Academy of Sciences, 103(33): 12291–12295
https://doi.org/10.1073/pnas.0605318103
42 HUME. (2018). Maritime Executive. Ocean storage of CO2. Available online at website of maritime-executive.com (accessed July 29, 2018)
43 I Filby, T Harkin. (2018). CarbonNet–the relative costs for providing a CCS transport and storage service. In: Proceedings of 14th Greenhouse Gas Control Technologies Conference, Melbourne. Social Science Research Network, 181–183
https://doi.org/10.2139/ssrn.3365597
44 IEA (2016). 20 Years of Carbon Capture and Storage: Accelerating Future Deployment. Paris: International Energy Agency (IEA)
45 IEA (2020a). CCUS in Clean Energy Transitions. Paris: International Energy Agency (IEA)
46 IEA (2020b). Energy Technology Perspectives 2020. Special Report on Carbon Capture Utilization and Storage. Paris: International Energy Agency (IEA)
47 IEA (2021). Net Zero by 2050-A Roadmap for the Global Energy Sector. International Energy Agency (IEA)
48 B Jia, J S Tsau, R Barati. (2019). A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 236: 404–427
https://doi.org/10.1016/j.fuel.2018.08.103
49 H Kang, D Y Koh, H Lee. (2014). Nondestructive natural gas hydrate recovery driven by air and carbon dioxide. Scientific Reports, 4(1): 6616
https://doi.org/10.1038/srep06616
50 Z Kapetaki, J Scowcroft. (2017). Overview of carbon capture and storage (CCS) demonstration project business models: risks and enablers on the two sides of the Atlantic. Energy Procedia, 114: 6623–6630
https://doi.org/10.1016/j.egypro.2017.03.1816
51 Y Kawahari, A Hatakeyama (2016). Carbon Sequestration Leadership Forum (CSLF). Offshore CO2-EOR pilot project in Vietnam. Tokyo: JX Nippon Oil & Gas Exploitation Corporation
52 M Khojastehmehr, M Madani, A Daryasafar. (2019). Screening of enhanced oil recovery techniques for Iranian oil reservoirs using TOPSIS algorithm. Energy Reports, 5: 529–544
https://doi.org/10.1016/j.egyr.2019.04.011
53 D Y Koh, Y H Ahn, H Kang, S Park, J Y Lee, S J Kim, J Lee, H Lee. (2015). One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas. AIChE Journal. American Institute of Chemical Engineers, 61(3): 1004–1014
https://doi.org/10.1002/aic.14687
54 D Y Koh, H Kang, J W Lee, Y Park, S J Kim, J Lee, J Y Lee, H Lee. (2016). Energy-efficient natural gas hydrate production using gas exchange. Applied Energy, 162: 114–130
https://doi.org/10.1016/j.apenergy.2015.10.082
55 S Lee, Y Lee, J Lee, H Lee, Y Seo. (2013). Experimental verification of methane–carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter. Environmental Science & Technology, 47(22): 13184–13190
https://doi.org/10.1021/es403542z
56 Y Lee, Y Kim, Y Seo. (2015). Enhanced CH4 recovery induced via structural transformation in the CH4/CO2 replacement that occurs in sH hydrates. Environmental Science & Technology, 49(14): 8899–8906
https://doi.org/10.1021/acs.est.5b01640
57 J F Li, J L Ye, X W Qin, H J Qiu, N Y Wu, H L Lu, W W Xie, J A Lu, F Peng, Z Q Xu. et al.. (2018). The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1): 5–16
https://doi.org/10.31035/cg2018003
58 X S Li, C G Xu, Y Zhang, X K Ruan, G Li, Y Wang. (2016). Investigation into gas production from natural gas hydrate: a review. Applied Energy, 172: 286–322
https://doi.org/10.1016/j.apenergy.2016.03.101
59 S Liang, D Liang, N Wu, L Yi, G Hu. (2016). Molecular mechanisms of gas diffusion in CO2 hydrates. Journal of Physical Chemistry C, 120(30): 16298–16304
https://doi.org/10.1021/acs.jpcc.6b03111
60 X Lu, D Tong, K He. (2023). China’s carbon neutrality: an extensive and profound systemic reform. Frontiers of Environmental Science & Engineering, 17(2): 14
https://doi.org/10.1007/s11783-023-1614-3
61 J Lv, Z Cheng, J Duan, S Wang, K Xue, Y Liu, H Mu. (2021). Enhanced CH4 recovery from hydrate-bearing sand packs via CO2 replacement assisted thermal stimulation method. Journal of Natural Gas Science and Engineering, 96: 104326
https://doi.org/10.1016/j.jngse.2021.104326
62 N Mac Dowell, P S Fennell, N Shah, G C Maitland. (2017). The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 7(4): 243–249
https://doi.org/10.1038/nclimate3231
63 S Mahdavi, L A James. (2020). High pressure and high-temperature study of CO2 saturated-water injection for improving oil displacement; mechanistic and application study. Fuel, 262: 116442
https://doi.org/10.1016/j.fuel.2019.116442
64 A Martínez-García, D M Sigman, H Ren, R F Anderson, M Straub, D A Hodell, S L Jaccard, T I Eglinton, G H Haug. (2014). Iron fertilization of the subantarctic ocean during the last ice age. Science, 343(6177): 1347–1350
https://doi.org/10.1126/science.1246848
65 Y Masuda, Y Yamanaka, Y Sasai, M Magi, T Ohsumi. (2009). Site selection in CO2 ocean sequestration: dependence of CO2 injection rate on eddy activity distribution. International Journal of Greenhouse Gas Control, 3(1): 67–76
https://doi.org/10.1016/j.ijggc.2008.07.002
66 G A McKinley, D J Pilcher, A R Fay, K Lindsay, M C Long, N S Lovenduski. (2016). Timescales for detection of trends in the ocean carbon sink. Nature, 530(7591): 469–472
https://doi.org/10.1038/nature16958
67 F Neele, R De Kler, M Nienoord, P Brownsort, J Koornneef, S Belfroid, L Peters, A Van Wijhe, D Loeve. (2017). CO2 transport by ship: The way forward in Europe. Energy Procedia, 114: 6824–6834
https://doi.org/10.1016/j.egypro.2017.03.1813
68 P A Nilsson, S Apeland, H M Dale, S Decarre (2011). The costs of CO2 transport: post-demonstration CCS in the EU. Brussels: Global CCS Institute
69 K Orchard, M Hay, I Ombudstvedt, R Skagestad. (2021). The status and challenges of CO2 shipping infrastructures. In: Proceedings of 15th International Conference on Greenhouse Gas Control Technologies. Social Science Research Network, 98–107
https://doi.org/10.2139/ssrn.3820877
70 M Ota, T Saito, T Aida, M Watanabe, Y Sato, R L Smith Jr, H Inomata. (2007). Macro and microscopic CH4–CO2 replacement in CH4 hydrate under pressurized CO2. AIChE Journal. American Institute of Chemical Engineers, 53(10): 2715–2721
https://doi.org/10.1002/aic.11294
71 Q Ouyang, S Fan, Y Wang, X Lang, S Wang, Y Zhang, C Yu. (2020). Enhanced methane production efficiency with in situ intermittent heating assisted CO2 replacement of hydrates. Energy & Fuels, 34(10): 12476–12485
https://doi.org/10.1021/acs.energyfuels.0c02562
72 J S Pandey, N V Solms. (2019). Hydrate stability and methane recovery from gas hydrate through CH4–CO2 replacement in different mass transfer scenarios. Energies, 12(12): 2309
https://doi.org/10.3390/en12122309
73 Y Park, D Y Kim, J W Lee, D G Huh, K P Park, J Lee, H Lee. (2006). Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proceedings of the National Academy of Sciences of the United States of America, 103(34): 12690–12694
https://doi.org/10.1073/pnas.0602251103
74 K Patchigolla, J E Oakey. (2013). Design overview of high pressure dense phase CO2 pipeline transport in flow mode. Energy Procedia, 37: 3123–3130
https://doi.org/10.1016/j.egypro.2013.06.198
75 Y Qi, M Ota, H Zhang. (2011). Molecular dynamics simulation of replacement of CH4 in hydrate with CO2. Energy Conversion and Management, 52(7): 2682–2687
https://doi.org/10.1016/j.enconman.2011.01.020
76 P Renforth, G Henderson. (2017). Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics, 55(3): 636–674
https://doi.org/10.1002/2016RG000533
77 S Roussanaly, G Skaugen, A Aasen, J Jakobsen, L Vesely. (2017). Techno-economic evaluation of CO2 transport from a lignite-fired IGCC plant in the Czech Republic. International Journal of Greenhouse Gas Control, 65: 235–250
https://doi.org/10.1016/j.ijggc.2017.08.022
78 A Satter, G M Iqbal. (2016). Reservoir Engineering. Boston: Gulf Professional Publishing, 313–337
79 V S Shagapov, M K Khasanov, N G Musakaev, N H Duong. (2017). Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide. International Journal of Heat and Mass Transfer, 107: 347–357
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.034
80 M Shi, J M Woodley, N Von Solms. (2020). An experimental study on improved production performance by depressurization combined with CO2-enriched air injection. Energy & Fuels, 34(6): 7329–7339
https://doi.org/10.1021/acs.energyfuels.0c00779
81 J Siažik, M Malcho, R Lenhard. (2017). Proposal of experimental device for the continuous accumulation of primary energy in natural gas hydrates. EPJ Web Conf., 143
82 A Skauge, J Stensen. (2003). Review of WAG field experience. In: Proceedings of the Oil Recovery–2003, 1st International Conference and Exhibition, Modern Challenges in Oil Recovery, Moscow, Russia, 19–23
83 E Smith, J Morris, H Kheshgi, G Teletzke, H Herzog, S Paltsev. (2021). The cost of CO2 transport and storage in global integrated assessment modeling. International Journal of Greenhouse Gas Control, 109: 103367
https://doi.org/10.1016/j.ijggc.2021.103367
84 M Sohrabi, N I Kechut, M Riazi, M Jamiolahmady, S Ireland, G Robertson. (2012). Coreflooding studies to investigate the potential of carbonated water injection as an injection strategy for improved oil recovery and CO2 storage. Transport in Porous Media, 91(1): 101–121
https://doi.org/10.1007/s11242-011-9835-5
85 M Sohrabi, D H Tehrani, A Danesh, G D Henderson. (2004). Visualization of oil recovery by water-alternating-gas injection using high-pressure micromodels. SPE Journal, 9(3): 290–301
https://doi.org/10.2118/89000-PA
86 Y Song, S Wang, Z Cheng, M Huang, Y Zhang, J Zheng, L Jiang, Y Liu. (2021). Dependence of the hydrate-based CO2 storage process on the hydrate reservoir environment in high-efficiency storage methods. Chemical Engineering Journal, 415: 128937
https://doi.org/10.1016/j.cej.2021.128937
87 Y C Song, H Zhou, S H Ma, W G Liu, M J Yang. (2018). CO2 sequestration in depleted methane hydrate deposits with excess water. International Journal of Energy Research, 42(7): 2536–2547
https://doi.org/10.1002/er.4042
88 L Sun, T Wang, B Dong, M Li, L Yang, H Dong, L Zhang, J Zhao, Y Song. (2021a). Pressure oscillation controlled CH4/CO2 replacement in methane hydrates: CH4 recovery, CO2 storage, and their characteristics. Chemical Engineering Journal, 425: 129709
https://doi.org/10.1016/j.cej.2021.129709
89 S Sun, Y Hao, J Zhao. (2018a). Analysis of gas source for the replacement of CH4 with CO2 in gas hydrate production from the perspective of dissociation enthalpy. Journal of Chemical & Engineering Data, 63(3): 684–690
https://doi.org/10.1021/acs.jced.7b00872
90 X Sun, J Alcalde, M Bakhtbidar, J Elío, V Vilarrasa, J Canal, J Ballesteros, N Heinemann, S Haszeldine, A Cavanagh. et al.. (2021b). Hubs and clusters approach to unlock the development of carbon capture and storage: case study in Spain. Applied Energy, 300: 117418
https://doi.org/10.1016/j.apenergy.2021.117418
91 Y F Sun, Y F Wang, J R Zhong, W Z Li, R Li, B J Cao, J Y Kan, C Y Sun, G J Chen. (2019). Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode. Applied Energy, 240: 215–225
https://doi.org/10.1016/j.apenergy.2019.01.209
92 Y F Sun, J R Zhong, R Li, T Zhu, X Y Cao, G J Chen, X H Wang, L Y Yang, C Y Sun. (2018b). Natural gas hydrate exploitation by CO2/H2 continuous injection-production mode. Applied Energy, 226: 10–21
https://doi.org/10.1016/j.apenergy.2018.05.098
93 R J Thorne, K Sundseth, E Bouman, L Czarnowska, A Mathisen, R Skagestad, W Stanek, J M Pacyna, E G Pacyna. (2020). Technical and environmental viability of a European CO2 EOR system. International Journal of Greenhouse Gas Control, 92: 102857
https://doi.org/10.1016/j.ijggc.2019.102857
94 C Tsouris, P Szymcek, P Taboada-Serrano, S D Mccallum, P Brewer, E Peltzer, P Walz, E Adams, A Chow, W K Johnson. et al.. (2007). Scaled-up ocean injection of CO2-Hydrate composite particles. Energy & Fuels, 21(6): 3300–3309
https://doi.org/10.1021/ef070197h
95 S S Tupsakhare, M J Castaldi. (2019). Efficiency enhancements in methane recovery from natural gas hydrates using injection of CO2/N2 gas mixture simulating in-situ combustion. Applied Energy, 236: 825–836
https://doi.org/10.1016/j.apenergy.2018.12.023
96 G Turan, A Zapantis, D Kearns, E Tamme, C Staib, T Zhang, J Burrows, A Gillespie, I Havercroft, D Rassool, et al. (2021). The global status of CCS: 2021. Global CCS Institute
97 T Uchiyama, Y Fujita, Y Ueda, A Nishizaki, H Okabe, S Takagi, H Mitsuishi, Y Kawahara, L Huy, P N Trung, N H Trung, et al. (2012). Evaluation of a Vietnam offshore CO2 huff “n” puff test. In: Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, USA, SEP-154128-MS
98 V P Voronov, E E Gorodetskii, V E Podnek, B A Grigoriev. (2016). Properties of equilibrium carbon dioxide hydrate in porous medium. Chemical Physics, 476: 61–68
https://doi.org/10.1016/j.chemphys.2016.05.031
99 P Wang, Y Teng, Y Zhao, J Zhu. (2021). Experimental studies on gas hydrate-based CO2 storage: state-of-the-art and future research directions. Energy Technology, 9(7): 210004
100 X H Wang, Y F Sun, Y F Wang, N Li, C Y Sun, G J Chen, B Liu, L Y Yang. (2017). Gas production from hydrates by CH4-CO2/H2 replacement. Applied Energy, 188: 305–314
https://doi.org/10.1016/j.apenergy.2016.12.021
101 R P Warzinski, R J Lynn, G D Holder. (2000). Gas Hydrates: Challenges for the Future. 1st ed. New York: New York Academy of Sciences, 226–234
102 W N Wei, B Li, Q Gan, Y L Li. (2022). Research progress of natural gas hydrate exploitation with CO2 replacement: a review. Fuel, 312: 122873
https://doi.org/10.1016/j.fuel.2021.122873
103 G A F Weihs, K Kumar, D E Wiley. (2014). Understanding the economic feasibility of ship transport of CO2 within the CCS chain. Energy Procedia, 63: 2630–2637
https://doi.org/10.1016/j.egypro.2014.11.285
104 M White, P McGrail. (2009). Designing a pilot-scale experiment for the production of natural gas hydrates and sequestration of CO2 in class 1 hydrate accumulations. Energy Procedia, 1(1): 3099–3106
https://doi.org/10.1016/j.egypro.2009.02.090
105 B Williams. (2022). Greenhouse Gases. Ocean sequestration. 2022. Available online at website of climate-policy-watcher.org (accessed November 14, 2022)
106 Y Xie, Y J Zhu, T Zheng, Q Yuan, C Y Sun, L Y Yang, G J Chen. (2021). Replacement in CH4-CO2 hydrate below freezing point based on abnormal self-preservation differences of CH4 hydrate. Chemical Engineering Journal, 403: 126283
https://doi.org/10.1016/j.cej.2020.126283
107 C G Xu, J Cai, Y S Yu, Z Y Chen, X S Li. (2018a). Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates. Fuel, 216: 255–265
https://doi.org/10.1016/j.fuel.2017.12.022
108 C G Xu, J Cai, Y S Yu, K F Yan, X S Li. (2018b). Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement. Applied Energy, 217: 527–536
https://doi.org/10.1016/j.apenergy.2018.02.109
109 Y Xu, J Ishizaka, S Aoki. (1999). Simulations of the distribution of sequestered CO2 in the North Pacific using a regional general circulation model. Energy Conversion and Management, 40(7): 683–691
https://doi.org/10.1016/S0196-8904(98)00138-1
110 K Yamamoto, Y Terao, T Fujii, T Ikawa, M Seki, M Matsuzawa, T Kanno. (2014). Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough. In: Proceedings of the Offshore Technology Conference, Houston. Offshore Technology Conference, OTC–25243-MS
https://doi.org/10.4043/25243-MS
111 K Yamamoto, X X Wang, M Tamaki, K Suzuki. (2019). The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir. RSC Advances, 9(45): 25987–26013
https://doi.org/10.1039/C9RA00755E
112 Y Yan, C Li, Z Dong, T Fang, B Sun, J Zhang. (2017). Enhanced oil recovery mechanism of CO2 water-alternating-gas injection in silica nanochannel. Fuel, 190: 253–259
https://doi.org/10.1016/j.fuel.2016.11.019
113 H Yang, X Huang, J Hu, J R Thompson, R J Flower. (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111
https://doi.org/10.1007/s11783-022-1532-9
114 H Yang, Z Xu, M Fan, R Gupta, R B Slimane, A E Bland, I Wright. (2008). Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences (China), 20(1): 14–27
https://doi.org/10.1016/S1001-0742(08)60002-9
115 J L Ye, X W Qin, W W Xie, H L Lu, B J Ma, H J Qiu, J Q Liang, J A Lu, Z G Kuang, C Lu. et al.. (2020). The second natural gas hydrate production test in the South China Sea. China Geology, 3(2): 197–209
https://doi.org/10.31035/cg2020043
116 Q Yuan, C Y Sun, X Yang, P C Ma, Z W Ma, B Liu, Q L Ma, L Y Yang, G J Chen. (2012). Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor. Energy, 40(1): 47–58
https://doi.org/10.1016/j.energy.2012.02.043
117 Q Yuan, X H Wang, A Dandekar, C Y Sun, Q P Li, Z W Ma, B Liu, G J Chen. (2014). Replacement of methane from hydrates in porous sediments with CO2-in-water emulsions. Industrial & Engineering Chemistry Research, 53(31): 12476–12484
https://doi.org/10.1021/ie501009y
118 Y Zeng, K Li. (2020). Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines. Corrosion Science, 165: 108404
https://doi.org/10.1016/j.corsci.2019.108404
119 X Zhang, Y Li, Z Yao, J Li, Q Wu, Y Wang. (2018). Experimental study on the effect of pressure on the replacement process of CO2–CH4 hydrate below the freezing point. Energy & Fuels, 32(1): 646–650
https://doi.org/10.1021/acs.energyfuels.7b02655
120 J Zhao, L Zhang, X Chen, Z Fu, Y Liu, Y Song. (2015). Experimental study of conditions for methane hydrate productivity by the CO2 swap method. Energy & Fuels, 29(11): 6887–6895
https://doi.org/10.1021/acs.energyfuels.5b00913
121 D Zhou, P Li, X Liang, M Liu, L Wang. (2018). A long-term strategic plan of offshore CO2 transport and storage in northern South China Sea for a low-carbon development in Guangdong province, China. International Journal of Greenhouse Gas Control, 70: 76–87
https://doi.org/10.1016/j.ijggc.2018.01.011
122 D Zhou, Z Zhao, J Liao, Z Sun. (2011). A preliminary assessment on CO2 storage capacity in the Pearl River Mouth Basin offshore Guangdong, China. International Journal of Greenhouse Gas Control, 5(2): 308–317
https://doi.org/10.1016/j.ijggc.2010.09.011
123 X Zhou, S Fan, D Liang, J Du. (2008). Determination of appropriate condition on replacing methane from hydrate with carbon dioxide. Energy Conversion and Management, 49(8): 2124–2129
https://doi.org/10.1016/j.enconman.2008.02.006
124 H Zhu, T Xu, Y Yuan, Y Xia, X Xin. (2020). Numerical investigation of the natural gas hydrate production tests in the Nankai Trough by incorporating sand migration. Applied Energy, 275: 115384
https://doi.org/10.1016/j.apenergy.2020.115384
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed