Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers
Yue Yang1(), Ze Fu2, Qi Zhang3
1. Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China 2. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China 3. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Key Laboratory of Intelligent Optical Sensing and Manipulation (Ministry of Education), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
● A protocol is proposed for simultaneous oil/water separation and electricity generation.
● Oil/water separation efficiency achieves > 99% only out of solar energy.
● A derived extra electricity power of ~0.1 W/m2 is obtained under solar radiation.
● The protocol offers a prospect of solar-driven water treatment and resource recovery.
Oily wastewater from ocean oil spills endangers marine ecosystems and human health. Therefore, developing an effective and sustainable solution for separating oil-water mixtures is urgent. Interfacial solar photothermal evaporation is a promising approach for the complete separation of two-phase mixtures using only solar energy. Herein, we report a carbonized wood-based absorber with Janus structure of comprising a hydrophobic top-layer and an oleophobic bottom-layer for simultaneous solar-driven oil-water separation and electricity generation. Under sunlight irradiation, the rapid evaporation of seawater will induce a separation of oil-water mixtures, and cause a high salt concentration region underlying the interface, while the bottom “bulk water” maintains in a low salt concentration, thus forming a salinity gradient. Electricity can be generated by salinity gradient power. Therefore, oil-water separation efficiency of > 99% and derived extra electricity power of ~0.1 W/m2 is achieved under solar radiation, demonstrating the feasibility of oil-water separation and electricity production synchronously directly using solar energy. This work provides a green and cost-effective path for the separation of oil-water mixtures.
A L Ahmad , S Ismail , S Bhatia . (2005). Ultrafiltration behavior in the treatment of Agro-industry effluent: pilot scale studies. Chemical Engineering Science, 60(19): 5385–5394 https://doi.org/10.1016/j.ces.2005.04.021
2
N H Alias , J Jaafar , S Samitsu , T Matsuura , A F Ismail , M H D Othman , M A Rahman , N H Othman , N Abdullah , S H Paiman , N Yusof , F Aziz . (2019). Photocatalytic nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment. Chemical Engineering Journal, 360: 1437–1446 https://doi.org/10.1016/j.cej.2018.10.217
3
J Chen , Y Huang , N N Zhang , H Y Zou , R Y Liu , C Y Tao , X Fan , Z L Wang . (2016). Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 1(10): 16138 https://doi.org/10.1038/nenergy.2016.138
4
M L Chen , L Zhu , J W Chen , F L Yang , C Y Y Tang , M D Guiver , Y C Dong . (2020). Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. Water Research, 169: 115180 https://doi.org/10.1016/j.watres.2019.115180
5
X J Chen , Y Q Liu , G Huang , C J An , R F Feng , Y Yao , W Huang , S Q Weng . (2022). Functional flax fiber with UV-induced switchable wettability for multipurpose oil-water separation. Frontiers of Environmental Science & Engineering, 16(12): 153 https://doi.org/10.1007/s11783-022-1588-6
6
X Q Cheng , Z K Sun , X B Yang , Z X Li , Y J Zhang , P Wang , H Liang , J Ma , L Shao . (2020). Construction of superhydrophilic hierarchical polyacrylonitrile nanofiber membranes by in situ asymmetry engineering for unprecedently ultrafast oil-water emulsion separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 8(33): 16933–16942 https://doi.org/10.1039/D0TA03011B
7
M Cheryan , N Rajagopalan . (1998). Membrane processing of oily streams. wastewater treatment and waste reduction. Journal of Membrane Science, 151(1): 13–28 https://doi.org/10.1016/S0376-7388(98)00190-2
8
Z L ChuY J FengS Seeger (2015). Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie International Edition, 54(8): 2328–2338 10.1002/anie.201405785
9
Y H Dou , D L Tian , Z Q Sun , Q N Liu , N Zhang , J H Kim , L S Jiang , X Dou . (2017). Fish gill inspired crossflow for efficient and continuous collection of spilled oil. ACS Nano, 11(3): 2477–2485 https://doi.org/10.1021/acsnano.6b07918
10
E El Bestawy , B F El-Shatby , A S Eltaweil . (2020). Integration between bacterial consortium and magnetite (Fe3O4) nanoparticles for the treatment of oily industrial wastewater. World Journal of Microbiology & Biotechnology, 36(9): 141 https://doi.org/10.1007/s11274-020-02915-1
11
T Gao , Y D Wang , X Wu , P Wu , X F Yang , Q Li , Z Z Zhang , D K Zhang , G Owens , H L Xu . (2022). More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Science Bulletin, 67(15): 1572–1580 https://doi.org/10.1016/j.scib.2022.07.004
12
T Gao , X Wu , Y D Wang , G Owens , H L Xu . (2021). A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss. Solar RRL, 5(5): 2100053 https://doi.org/10.1002/solr.202100053
13
H Ghasemi , G Ni , A M Marconnet , J Loomis , S Yerci , N Miljkovic , G Chen . (2014). Solar steam generation by heat localization. Nature Communications, 5(1): 4449 https://doi.org/10.1038/ncomms5449
14
Y F Gu , X J Mu , P F Wang , X Y Wang , J Liu , J Q Shi , A Y Wei , Y Z Tian , G S Zhu , H R Xu . et al.. (2020). Integrated photothermal aerogels with ultrahigh-performance solar steam generation. Nano Energy, 74: 104857 https://doi.org/10.1016/j.nanoen.2020.104857
15
Y H Guo , X Zhao , F Zhao , Z H Jiao , X Y Zhou , G H Yu . (2020). Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy & Environmental Science, 13(7): 2087–2095 https://doi.org/10.1039/D0EE00399A
16
J W Hou , C Ji , G X Dong , B W Xiao , Y Ye , V Chen . (2015). Biocatalytic Janus membranes for CO2 removal utilizing carbonic anhydrase. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(33): 17032–17041 https://doi.org/10.1039/C5TA01756D
17
L Hu , S J Gao , X G Ding , D Wang , J Jiang , J Jin , L Jiang . (2015a). Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano, 9(5): 4835–4842 https://doi.org/10.1021/nn5062854
18
X B Hu , Y Yu , J E Zhou , Y Q Wang , J Liang , X Z Zhang , Q B Chang , L X Song . (2015b). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476: 200–204 https://doi.org/10.1016/j.memsci.2014.11.043
19
B Jafari , M Abbasi , S A Hashemifard , M Sillanpaa . (2020). Elaboration and characterization of novel two-layer tubular ceramic membranes by coating natural zeolite and activated carbon on mullite-alumina-zeolite support: application for oily wastewater treatment. Journal of Asian Ceramic Societies, 8(3): 848–861 https://doi.org/10.1080/21870764.2020.1793475
20
Y D Kuang , C J Chen , S M He , E M Hitz , Y L Wang , W T Gan , R Y Mi , L B Hu . (2019). A high-performance self-regenerating solar evaporator for continuous water desalination. Advanced Materials, 31(23): 1900498 https://doi.org/10.1002/adma.201900498
21
E B Kujawinski , M C Kido Soule , D L Valentine , A K Boysen , K Longnecker , M C Redmond . (2011). Fate of dispersants associated with the deepwater horizon oil spill. Environmental Science & Technology, 45(4): 1298–1306 https://doi.org/10.1021/es103838p
22
X Q Li , X Z Min , J L Li , N Xu , P C Zhu , B Zhu , S N Zhu , J Zhu . (2018). Storage and recycling of interfacial solar steam enthalpy. Joule, 2(11): 2477–2484 https://doi.org/10.1016/j.joule.2018.08.008
23
Y Liu , J W Lou , M T Ni , C Y Song , J B Wu , N P Dasgupta , P Tao , W Shang , T Deng . (2016). Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 8(1): 772–779 https://doi.org/10.1021/acsami.5b09996
24
N M Mostefa , M Tir . (2004). Coupling flocculation with electroflotation for waste oil/water emulsion treatment: optimization of the operating conditions. Desalination, 161(2): 115–121 https://doi.org/10.1016/S0011-9164(04)90047-1
25
O Neumann , C Feronti , A D Neumann , A J Dong , K Schell , B Lu , E Kim , M Quinn , S Thompson , N Grady . et al.. (2013a). Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 110(29): 11677–11681 https://doi.org/10.1073/pnas.1310131110
26
O Neumann , A D Neumann , E Silva , C Ayala-Orozco , S Tian , P Nordlander , N J Halas . (2015). Nanoparticle-mediated, light-induced phase separations. Nano Letters, 15(12): 7880–7885 https://doi.org/10.1021/acs.nanolett.5b02804
27
O Neumann , A S Urban , J Day , S Lal , P Nordlander , N J Halas . (2013b). Solar vapor generation enabled by nanoparticles. ACS Nano, 7(1): 42–49 https://doi.org/10.1021/nn304948h
28
G RíosC PazosJ Coca (1998). Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 138(2–3): 383–389
29
O Scialdone , A D’Angelo , Lume E De , A Galia . (2014). Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients. Electrochimica Acta, 137: 258–265 https://doi.org/10.1016/j.electacta.2014.06.007
30
Y A Shirazi , E W Carr , G R Parsons , P Hoagland , D K Ralston , J Chen . (2019). Increased operational costs of electricity generation in the delaware river and estuary from salinity increases due to sea-level rise and a deepened channel. Journal of Environmental Management, 244: 228–234 https://doi.org/10.1016/j.jenvman.2019.04.056
31
X Y Wang , X Q Li , G L Liu , J L Li , X Z Hu , N Xu , W Zhao , B Zhu , J Zhu . (2019). An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angewandte Chemie International Edition, 58(35): 12054–12058 https://doi.org/10.1002/anie.201905229
32
Z J Wang , Y Wang , G J Liu . (2016). Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angewandte Chemie International Edition, 55(4): 1291–1294 https://doi.org/10.1002/anie.201507451
33
Z X Wang , M C Han , F He , S Q Peng , S B Darling , Y X Li . (2020). Versatile coating with multifunctional performance for solar steam generation. Nano Energy, 74: 104886 https://doi.org/10.1016/j.nanoen.2020.104886
34
Z C Wu , C Zhang , K M Peng , Q Y Wang , Z W Wang . (2018). Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation. Frontiers of Environmental Science & Engineering, 12(3): 15 https://doi.org/10.1007/s11783-018-1042-y
35
N Xu , J L Li , Y Wang , C Fang , X Q Li , Y X Wang , L Zhou , B Zhu , Z Wu , S N Zhu , J Zhu . (2019). A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Science Advances, 5(7): eaaw7013 https://doi.org/10.1126/sciadv.aaw7013
36
H C Yang , J Hou , V Chen , Z K Xu . (2016). Janus membranes: exploring duality for advanced separation. Angewandte Chemie International Edition, 55(43): 13398–13407 https://doi.org/10.1002/anie.201601589
37
P H Yang , K Liu , Q Chen , J Li , J J Duan , G B Xue , Z S Xu , W K Xie , J Zhou . (2017). Solar-driven simultaneous steam production and electricity generation from salinity. Energy & Environmental Science, 10(9): 1923–1927 https://doi.org/10.1039/C7EE01804E
38
G Yi , S Chen , X Quan , G L Wei , X F Fan , H T Yu . (2018). Enhanced separation performance of carbon nanotube-polyvinyl alcohol composite membranes for emulsified oily wastewater treatment under electrical assistance. Separation and Purification Technology, 197: 107–115 https://doi.org/10.1016/j.seppur.2017.12.058
39
G Yi , X F Fan , X Quan , S Chen , H T Yu . (2019). Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater. Frontiers of Environmental Science & Engineering, 13(2): 23 https://doi.org/10.1007/s11783-019-1103-x
40
H M Yu , D Y Wang , H Y Jin , P Wu , X Wu , D W Chu , Y Lu , X F Yang , H L Xu . (2023). 2D MoN1.2-rGO stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation. Advanced Functional Materials, 33(24): 2214828 https://doi.org/10.1002/adfm.202214828
41
L F Zhang , G K Fu , Z Zhang . (2019). Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment. Bioresource Technology, 272: 105–113 https://doi.org/10.1016/j.biortech.2018.10.012
42
Z Zhang , X Y Kong , K Xiao , G H Xie , Q Liu , Y Tian , H C Zhang , J Ma , L P Wen , L Jiang . (2016). A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Advanced Materials, 28(1): 144–150 https://doi.org/10.1002/adma.201503668
43
F Zhao , X Y Zhou , Y Shi , X Qian , M Alexander , X P Zhao , S Mendez , R G Yang , L T Qu , G H Yu . (2018). Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 13(6): 489–495 https://doi.org/10.1038/s41565-018-0097-z
44
J Y Zhao , X Wu , H M Yu , Y D Wang , P Wu , X F Yang , D W Chu , G Owens , H L Xu . (2023). Regenerable aerogel-based thermogalvanic cells for efficient low-grade heat harvesting from solar radiation and interfacial solar evaporation systems. EcoMat, 5(3): e12302 https://doi.org/10.1002/eom2.12302
45
S S Zhao , Z Tao , L W Chen , M Q Han , B Zhao , X L Tian , L Wang , F G Meng . (2021). An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation. Frontiers of Environmental Science & Engineering, 15(4): 63 https://doi.org/10.1007/s11783-020-1355-5