1. College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China 2. Department of Environment Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
● Electrochemical degradations of the organochlorine pollutants are reviewed.
● Materials and mechanisms of the degradation are introduced.
● Different environmental and property of POCPs are compared.
● Development and applications of modified degradation materials are discussed.
● Molecular, electrode material and solution influences are also illustrated.
Pollution from persistent organic chlorinated pollutants (POCPs) in water environments is attributable to historical reasons and the lack of effective discharge regulations. Electrochemical degradation of POCPs, as a key study for POCP degradation, involves the use of electrons as reducing or oxidizing agents. The occurrence of this degradation depends on the environmental characteristics of the POCPs, the electrochemical materials used, and the technology and mechanisms involved. Furthermore, regarding the development of new materials and technologies, such as micro-, nano-, and atomic-sized materials, the degradation of POCPs achieves higher degradation efficiency and maximizes current utilization efficiency. In this review article, we first summarize the current status and future opportunities of the electrochemical degradation of POCPs. Environmental characteristics of POCPs facilitate a comparison of POCP degradation, and a comparison of electrochemical materials and their methods is made. Subsequently, we discuss technologies for the electrochemical degradation of POCPs from three aspects: oxidation, reduction, and a combination of oxidation and reduction. Moreover, the mechanisms were generalized in terms of molecular structure, electrode materials, and solution environment. In addition to maximizing the intrinsic enhancement factors of degradation, strategies to improve environmental accessibilities are equally important. This review article aims to effectively guide the advancement of POCP degradation and the remediation of environmental water pollution.
High concentration, in agricultural, industrial, and pharmaceuticalwastewaters
Wu et al. (2023)
Noble-metal-free 3D hierarchical Ni-WC
4-CP
Electrocatalytic hydrodechlorination
Current efficiency of 13.9%, low concentration
Wang et al. (2023d)
Nanoporous NiPd
Benzaldehyde
Electrocatalytic hydrogenation
High turnover frequency value, low concentration
Cheng et al. (2023)
Pd/C@CF
Methyl blue and Tetracycline
Heterogeneous electro-Fenton
Utilization of H* toward a rapid HEF oxidation, industrial,agricultural, and pharmaceutical wastewater
Fe-Ni/rGO/Ni foam
chlorinated alkenes
EHDC
Faradaic efficiency was over 78.8%, in groundwater and surface water
Tang et al. (2022)
Electron-rich Fe-N4
Trichloroacetamide DBP
Direct dechlorination
37% of current efficiency, drinking water at end-control
Lou et al. (2022)
Pd/Ni2P-Ni foam nanosheet array
Chlorophenols
Electrocatalytic hydrodechlorination
In situphosphatization-electrodeposition, simultaneous removal of trace 4-CP and nitrite
Li et al. (2022)
Pd/carbon-nanotubes (CNTs)-Nafion/Ti
2,3,5-Trichlorophenol
Electrochemical reduction
9.4%, initial pH 2, high concentration
Sun et al. (2017)
Pd/MWCNTs
4-Chlorophenol
Electrochemical hydrogen reduction
94%–54%, initial pH 5.7, 4-CP (0.2 mmol/L)
Shu et al. (2019)
Carbon supported Pd
2,4-Dichlorophenol
Adsorption and reduction dechlorination
initial pH 5.7
Zhou et al. (2019)
Pd/PPy-rGO/NF
4-Chlorophenol
Electrochemical hydrogen dechlorination
39.9%, initial pH 3, 4-CP (100 mg/L)
Yu et al. (2020)
Carbon nanomaterials
1,2-Dichloroethylene
Electrochemical dechlorination
High concentration
Gan et al. (2021)
A-Pd-NC
4-Chlorophenol
Electrochemical hydrogen dechlorination
3.6%, initial pH 3
Mao et al. (2021)
CTAB-Pd/GAC
2,4-Dichlorophenol
Electrochemical reduction
9.8 × 10−3 min/g, added CTAB (80 mg/g)
Zhou et al. (2021)
Cu–Ni bimetal
TCE
Hydrogen dechlorination
6%, finial pH 4.7
Liu et al. (2018)
rGO-Fe/Ni
TCE
Hydrogen dechlorination
water and wastewater treatment
Sahu et al. (2018)
Amorphous nickel phosphide
TCAA
Electrochemical dechlorination
66.3%, dechlorination in a broad pH range
Yao et al. (2019)
Ni-P/MWCNTs
Hexachlorobenzene
Electrochemical dechlorination
In DMF
Lemesh et al., (2020)
Pd-NiMOF/Ni
2,4-Dichlorophenol
Electrochemical hydrogen dechlorination
Adsorption and hydrogenolysis, in a broad pH range
Shen et al. (2020)
MoS2
FLO
Electrochemical oxidation
Antibiotic wastewater, initial pH = 5.75
Yang et al. (2022a)
A-Ni-N-C
Chloroacetic acid
Electrochemical dechlorination
60%, in a broad pH range
Xu et al. (2020)
A-Pd-SiC
Chlorophenols
Electrochemical dechlorination
H2 purging
Chu et al. (2021)
A-Fe-N-C
1,2-Dichloroethylene
Electrochemical dechlorination
Groundwater remediation
Deng et al. (2021)
Microorganism
2,4-Dichlorophenol
Microbial fuel cell
In a broad pH range, effluent
Leon-Fernandez et al. (2021)
organic copper ligand
CH2Cl2
electrochemical dechlorination
Heterogeneous method
Williams et al. (2021)
A-Fe/Cu-NPC
4-Chlorophenol
Electrochemical fenton
In a broad pH range, long-term stable
Zhao et al. (2021)
Tab.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
1
R M Asmussen, M Tian, A Chen. (2009). A new approach to wastewater remediation based on bifunctional electrodes. Environmental Science & Technology, 43(13): 5100–5105 https://doi.org/10.1021/es900582m
2
R Baran, A Srebowata, S Casale, D Łomot, S Dzwigaj. (2014). Hydrodechlorination of 1,2-dichloroethane on nickel loaded Beta zeolite modified by copper: influence of nickel and copper state on product selectivity. Catalysis Today, 226: 134–140 https://doi.org/10.1016/j.cattod.2013.09.005
3
Y Bian, L Liu, D Liu, Z Zhu, Y Shao, M Li. (2020). Electrochemical synthesis of carbon nano onions. Inorganic Chemistry Frontiers, 7(22): 4404–4411 https://doi.org/10.1039/D0QI00950D
4
F Cao, Z Li, Q He, S Lu, P Qin, L Li. (2021). Occurrence, spatial distribution, source, and ecological risk assessment of organochlorine pesticides in Dongting Lake, China. Environmental Science and Pollution Research International, 28(24): 30841–30857 https://doi.org/10.1007/s11356-021-12743-x
5
K E Carter, J Farrell. (2009). Electrochemical oxidation of trichloroethylene using boron-doped diamond film electrodes. Environmental Science & Technology, 43(21): 8350–8354 https://doi.org/10.1021/es9017738
6
D Chen, M Li, Y Chen, Z Shao, Y Wei, Y Xian, X C Liu, X Ying. (2023a). Enhanced mass transfer and optimized electronic structure on Pd–Ag nanoparticles embedded in mesoporous carbon for superior electro-oxidation. Journal of Solid State Electrochemistry, 27(10): 2737–2750 https://doi.org/10.1007/s10008-023-05561-3
7
M Chen, M Yin, Y Su, R Li, K Liu, Z Wu, X Weng. (2023b). Atmospheric heterogeneous reaction of chlorobenzene on mineral α-Fe2O3 particulates: a chamber experiment study. Frontiers of Environmental Science & Engineering, 17(11): 134–145 https://doi.org/10.1007/s11783-023-1734-9
8
S Chen, Z C Qin, X Quan, Y B Zhang, H M Zhao. (2010). Electrocatalytic dechlorination of 2,4,5-trichlorobiphenyl using an aligned carbon nanotubes electrode deposited with palladium nanoparticles. Chinese Science Bulletin, 55(4−5): 358–364 https://doi.org/10.1007/s11434-010-0003-z
9
W Chen, J Wu, B Wang. (2023c). Intermittent oxygen supply facilitates codegradation of trichloroethene and toluene by anaerobic consortia. Environmental Science & Technology, 57(28): 10252–10262 https://doi.org/10.1021/acs.est.3c02481
10
Z Chen, Y Liu, W Wei, B J Ni. (2019). Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environmental Science. Nano, 6(8): 2332–2366 https://doi.org/10.1039/C9EN00411D
11
G Cheng, Z Zhai, J Sun, Y Ran, W Yang, F Tan, Z Zhang. (2023). Elucidating role of alloying in electrocatalytic hydrogenation of benzaldehyde over nanoporous NiPd catalysts. Chemical Engineering Journal, 474: 145631–145638 https://doi.org/10.1016/j.cej.2023.145631
12
C Chu, D Huang, S Gupta, S Weon, J Niu, E Stavitski, C Muhich, J H Kim. (2021). Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 12(1): 5179–5185 https://doi.org/10.1038/s41467-021-25526-2
13
J Deng, X Hu, E Gao, F Wu, W Yin, L Huang, D Dionysiou. (2021). Electrochemical reductive remediation of trichloroethylene contaminated groundwater using biomimetic iron-nitrogen-doped carbon. Journal of Hazardous Materials, 419: 126458–126466 https://doi.org/10.1016/j.jhazmat.2021.126458
14
M K Denk, N S Milutinović. (2018). Reductive dehalogenation of DDT with folate models: formation of the DDT metabolite spectrum under biomimetic conditions. Chemosphere, 191: 408–411 https://doi.org/10.1016/j.chemosphere.2017.10.055
15
C Durante, A A Isse, A Gennaro. (2013). Electrocatalytic dechlorination of polychloroethylenes at silver cathode. Journal of Applied Electrochemistry, 43(2): 227–235 https://doi.org/10.1007/s10800-012-0483-4
16
F Faisal, M G Rasul, M I Jahirul, A A Chowdhury. (2023). Waste plastics pyrolytic oil is a source of diesel fuel: a recent review on diesel engine performance, emissions, and combustion characteristics. Science of the Total Environment, 886: 163756 https://doi.org/10.1016/j.scitotenv.2023.163756–163777
17
J Filip, S Vinter, P Skacelik, J Sotolarova, K Borska, J Osicka. (2021). Silver integrated with carbonaceous 2D nanomaterials as an electrocatalyst for reductive dechlorination of chloroacetanilide herbicide. Journal of the Electrochemical Society, 168(3): 037504–037513 https://doi.org/10.1149/1945-7111/abe8ec
18
G Gan, S Fan, X Li, J Wang, C Bai, X Guo, M Tade, S Liu. (2021). Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Catalysis, 11(22): 14284–14292 https://doi.org/10.1021/acscatal.1c03701
19
J Guo, W Chen, M Wu, C Qu, H Sun, J Guo. (2023). Distribution, sources, and risk assessment of organochlorine pesticides in water from Beiluo River, Loess Plateau, China. Toxics, 11(6): 496–509 https://doi.org/10.3390/toxics11060496
20
Q Guo, Y Xin, W Liang, Y Shi, C Jin, L Peng, H Guo. (2020). Active sites in single-atom Fe-Nx-C nanosheets for selective electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Nano, 14(8): 9929–9937 https://doi.org/10.1021/acsnano.0c02783
21
R He, X Wu, H Mu, L Chen, H Hu, J Wang, H Ren, B Wu. (2023). Priority control sequence of 34 typical pollutants in effluents of Chinese wastewater treatment plants. Water Research, 243: 120338–120346 https://doi.org/10.1016/j.watres.2023.120338
22
Y Hu, X Ma, R Liu, I Mushtaq, Y Qi, C Yuan, D Huang. (2022). 2,4-Dichlorophenol increases primordial germ cell numbers via ESR2a-dependent pathway in zebrafish larvae. Environmental Science & Technology, 56(19): 13878–13887 https://doi.org/10.1021/acs.est.2c05212
23
Z Huo, M Xi, L Xu, C Jiang, W Chen. (2024). Colloid-facilitated release of polybrominated diphenyl ethers at an e-waste recycling site: evidence from undisturbed soil core leaching experiments. Frontiers of Environmental Science & Engineering, 18(2): 21–31 https://doi.org/10.1007/s11783-024-1781-x
24
W G Jeong, J G Kim, K Baek. (2022). Removal of 1,2-dichloroethane in groundwater using Fenton oxidation. Journal of Hazardous Materials, 428: 128253 https://doi.org/10.1016/j.jhazmat.2022.128253
25
Y Jiang, H Zhao, J Liang, L Yue, T Li, Y Luo, Q Liu, S Lu, A M Asiri, Z Gong. et al.. (2021). Anodic oxidation for the degradation of organic pollutants: anode materials, operating conditions and mechanisms: a mini review. Electrochemistry Communications, 123: 106912 https://doi.org/10.1016/j.elecom.2020.106912
26
S Khene, T Nyokong. (2011). Electrooxidation of chlorophenols catalyzed by nickel octadecylphthalocyanine adsorbed on single-walled carbon nanotubes. Electroanalysis, 23(8): 1901–1911 https://doi.org/10.1002/elan.201100155
27
D Kul, C M A Brett. (2014). Electrochemical investigation and determination of levodopa on Poly(nile blue-a)/multiwalled carbon nanotube modified glassy carbon electrodes. Electroanalysis, 26(6): 1320–1325 https://doi.org/10.1002/elan.201400071
28
N V Lemesh, A M Mishura, J Tang, P E Strizhak. (2020). Simple two-stages synthesis of Ni/P-MWCNTs nanocomposite as efficient catalyst for the hexachlorobenzene electrochemical dechlorination. Fullerenes, Nanotubes, and Carbon Nanostructures, 28(12): 1002–1009 https://doi.org/10.1080/1536383X.2020.1792445
29
L F Leon-Fernandez, M A Rodrigo, J Villaseñor, F J Fernandez-Morales. (2021). Bio-electrocatalytic dechlorination of 2,4-dichlorophenol: effect of pH and operational configuration. Electrochimica Acta, 367: 137456 https://doi.org/10.1016/j.electacta.2020.137456
30
J Li, Y Chen, R Bai, C Chen, W Wang, Y Pan, Y Liu. (2022). Construction of Pd/Ni2P-Ni foam nanosheet array electrode by in-situ phosphatization-electrodeposition strategy for synergistic electrocatalytic hydrodechlorination. Chemical Engineering Journal, 435: 134932 https://doi.org/10.1016/j.cej.2022.134932
31
J Li, Y J Li, Z K Xiong, G Yao, B Lai. (2019). The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review. Chinese Chemical Letters, 30(12): 2139–2146 https://doi.org/10.1016/j.cclet.2019.04.057
32
J Li, C Zhang, Y Li, Y Pan, Y Liu. (2023). Rational design and structural regulation of robust catalysts for electrocatalytic hydrodechlorination: from nanostructures to single atoms. ACS Catalysis, 13(14): 9633–9655 https://doi.org/10.1021/acscatal.3c01830
33
B Liu, H Zhang, Q Lu, G Li, F Zhang. (2018). A CuNi bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE). Science of the Total Environment, 635: 1417–1425 https://doi.org/10.1016/j.scitotenv.2018.04.238
34
L Liu, Y Chen, S Li, W Yu, X Zhang, H Wang, J Ren, Z Bian. (2023a). Enhanced electrocatalytic cathodic degradation of 2,4-dichlorophenoxy acetic acid based on a synergistic effect obtained from Co single atoms and Cu nanoclusters. Applied Catalysis B: Environmental, 332: 122748 https://doi.org/10.1016/j.apcatb.2023.122748
35
Y Liu, W Deng, X Wu, C Hu, L Lyu. (2024). Enhanced Fenton-like process over Cu/L(+)-ascorbic acid co-doping mesoporous silica for toxicity reduction of emerging contaminants. Frontiers of Environmental Science & Engineering, 18(4): 44 https://doi.org/10.1007/s11783-024-1804-7
36
Y Liu, Q Zhang, A Sidike, N Ailijiang, A Mamat, G Zhang, M Pu, W Cheng, Z Pang. (2022). The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure. Frontiers of Environmental Science & Engineering, 16(11): 141 https://doi.org/10.1007/s11783-022-1576-x
37
Y Lou, W He, E Verlato, M Musiani, D Floner, F Fourcade, A Amrane, C Li, Z Q Tian, O Merdrignac-Conanec. et al.. (2019). Ni-coated graphite felt modified with Ag nanoparticles: a new electrode material for electro-reductive dechlorination. Journal of Electroanalytical Chemistry, 849: 113357 https://doi.org/10.1016/j.jelechem.2019.113357
38
Y Lou, S Yin, J Yang, L Ji, J Fang, S Zhang, M Feng, X Yu, Y Jiang, S Sun. (2022). MOF-derived single site catalysts with Electron-Rich Fe-N4 sites for efficient elimination of trichloroacetamide DBP. Chemical Engineering Journal, 446: 137060 https://doi.org/10.1016/j.cej.2022.137060
39
Y Lu, X Li, C Giovanni, B Wang. (2023). Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water. Frontiers of Environmental Science & Engineering, 17(7): 89 https://doi.org/10.1007/s11783-023-1689-x
40
T MaclucasP GrützmacherS HusmannJ SchmauchS Keskin S SuarezV PresserC GachotF (2023) Mücklich. Degradation analysis of tribologically loaded carbon nanotubes and carbon onions. npj Materials Degradation, 7(1): 31
41
K Magnoli, C Carranza, M Aluffi, C Magnoli, C Barberis. (2023). Fungal biodegradation of chlorinated herbicides: an overview with an emphasis on 2,4-D in Argentina. Biodegradation, 34(3): 199–214 https://doi.org/10.1007/s10532-023-10022-9
42
Z Mao, L Liu, H B Yang, Y Zhang, Z Yao, H Wu, Y Huang, Y Xu, B Liu. (2021). Atomically dispersed Pd electrocatalyst for efficient aqueous phase dechlorination reaction. Electrochimica Acta, 391: 138886 https://doi.org/10.1016/j.electacta.2021.138886
43
E T Martin, C M Mcguire, M S Mubarak, D G Peters. (2016). Electroreductive remediation of halogenated environmental pollutants. Chemical Reviews, 116(24): 15198–15234 https://doi.org/10.1021/acs.chemrev.6b00531
44
A V Narendra Kumar, W S Shin. (2023). Yolk-shell Fe2O3@mesoporous hollow carbon sphere hybrid sub-micro reactors for effective degradation of organic contaminants. Chemical Engineering Journal, 465: 142922 https://doi.org/10.1016/j.cej.2023.142922
45
L Parra-ArroyoR B González-GonzálezC Castillo-ZacaríasMartínez E M MelchorJ E Sosa-HernándezM BilalH M N Iqbal D BarcelóR (2022) Parra-Saldívar. Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Science of the Total Environment, 807(Pt 3): 151879
46
G K Parshetti, R A Doong. (2012). Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions. Chemosphere, 86(4): 392–399 https://doi.org/10.1016/j.chemosphere.2011.10.028
47
T Poursaberi, Z Falsafi, M Hassanisadi, A Jabbari. (2015). Simultaneous adsorption and dechlorination of carbon tetrachloride using copper nanoparticles@graphene oxide composites. Journal of the Iranian Chemical Society, 12(1): 67–74 https://doi.org/10.1007/s13738-014-0455-1
48
X Qin, P Cao, X Quan, K Zhao, S Chen, H Yu, Y Su. (2023). Highly efficient hydroxyl radicals production boosted by the atomically dispersed Fe and Co sites for heterogeneous electro-fenton oxidation. Environmental Science & Technology, 57(7): 2907–2917 https://doi.org/10.1021/acs.est.2c06981
49
S Rondinini, E Pargoletti, A Vertova, A Minguzzi. (2021). Hydrodehalogenation of polychloromethanes on silver-based gas diffusion electrodes. ChemElectroChem, 8(10): 1892–1898 https://doi.org/10.1002/celc.202100379
50
R S Sahu, D L Li, R A Doong. (2018). Unveiling the hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles. Chemical Engineering Journal, 334: 30–40 https://doi.org/10.1016/j.cej.2017.10.019
51
A Sennaoui, F Sakr, S Alahiane, M Dinne, A Assabbane, E Ait Addi. (2024). Electro-Fenton process for treatment of hydroxybenzoic acids solutions using boron-doped diamond/carbon-felt cells: application to olive mill wastewater. International Journal of Environmental Science and Technology, 21(4): 4471–4482 https://doi.org/10.1007/s13762-023-05278-w
52
C Shan, H Liu, M Hua, B Pan. (2020). Enhanced fenton-like oxidation of As(III) over Ce-Ti binary oxide: a new strategy to tune catalytic activity via balancing bimolecular adsorption energies. Environmental Science & Technology, 54(9): 5893–5901 https://doi.org/10.1021/acs.est.0c00159
53
Y Shen, Y Tong, J Xu, S Wang, J Wang, T Zeng, Z He, W Yang, S Song. (2020). Ni-based layered metal-organic frameworks with palladium for electrochemical dechlorination. Applied Catalysis B: Environmental, 264: 118505 https://doi.org/10.1016/j.apcatb.2019.118505
54
Q Shi, H Wang, S Liu, Z Bian. (2014). Electrocatalytic degradation of 2,4-dichlorophenol using a Pd/graphene gas-diffusion electrode. RSC Advances, 4(99): 56263–56272 https://doi.org/10.1039/C4RA09253H
55
X Shu, Q Yang, F Yao, Y Zhong, W Ren, F Chen, J Sun, Y Ma, Z Fu, D Wang. et al.. (2019). Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes. Chemical Engineering Journal, 358: 903–911 https://doi.org/10.1016/j.cej.2018.10.095
56
Z Sun, X Ma, X Hu. (2017). Electrocatalytic dechlorination of 2,3,5-trichlorophenol on palladium/carbon nanotubes-nafion film/titanium mesh electrode. Environmental Science and Pollution Research International, 24(16): 14355–14364 https://doi.org/10.1007/s11356-017-9004-7
57
H Tang, Z Bian, Y Peng, S Li, H Wang. (2022). Stepwise dechlorination of chlorinated alkenes on an Fe-Ni/rGO/Ni foam cathode: product control by one-electron-transfer reactions. Journal of Hazardous Materials, 433: 128744 https://doi.org/10.1016/j.jhazmat.2022.128744
58
N L Teradal, P S Narayan, A K Satpati, J Seetharamappa. (2014). Fabrication of electrochemical sensor based on green reduction of graphene oxide for an antimigraine drug, rizatriptan benzoate. Sensors and Actuators. B, Chemical, 196: 596–603 https://doi.org/10.1016/j.snb.2014.02.015
59
M Varol, M R Sünbül. (2017). Organochlorine pesticide, antibiotic and heavy metal residues in mussel, crayfish and fish species from a reservoir on the Euphrates River, Turkey. Environmental Pollution, 230: 311–319 https://doi.org/10.1016/j.envpol.2017.06.066
60
B Wang, L Heng, Q Sui, Z Peng, X Xiao, M Zheng, J Hu, H Fiedler, D Barceló, G Yu. (2023a). Insight of chemical environmental risk and its management from the vinyl chloride accident. Frontiers of Environmental Science & Engineering, 17(4): 52 https://doi.org/10.1007/s11783-023-1652-x
61
J Wang, S Fan, X Li, Z Niu, Z Liu, C Bai, J Duan, M O Tadé, S Liu. (2023b). Rod-like nanostructured Cu–Co spinel with rich oxygen vacancies for efficient electrocatalytic dechlorination. ACS Applied Materials & Interfaces, 15(10): 12915–12923 https://doi.org/10.1021/acsami.2c19134
62
M Wang, Y Liu, Y Li, S Chen, Z Wei. (2023c). Stabilizing Fe in intermetallic L10-PtAuFe nanoparticles with strong Au–Fe bond to boost oxygen reduction reaction activity and durability. Chemical Engineering Journal, 465: 142748 https://doi.org/10.1016/j.cej.2023.142748
63
Q Wang, J Du, Y Ma, X Yin, Z Tian, Z Han. (2023d). Noble-metal-free 3D hierarchical Ni-WC heterostructure with enhanced interfacial charge transfer for efficient electrocatalytic hydrodechlorination. Chemical Engineering Journal, 451: 139107 https://doi.org/10.1016/j.cej.2022.139107
64
W Wang, X Yu, H He, Y Wang, Y Li, L Deng, Y N Liu. (2023e). Electrochemical reconstitution of Prussian blue analogue for coupling furfural electro-oxidation with photo-assisted hydrogen evolution reaction. Chemical Engineering Journal, 465: 142865 https://doi.org/10.1016/j.cej.2023.142865
65
X Wang, J Li, M Fu, B Yuan, H Cui, Y Wang. (2015). Fabrication and evaluation of Au–Pd core-shell nanocomposites for dechlorination of diclofenac in water. Environmental Technology, 36(12): 1510–1518 https://doi.org/10.1080/09593330.2014.994044
66
Z WangX LuB YuY YangL Wang K (2023f) Lei. Ascertaining priority control pollution sources and target pollutants in toxic metal risk management of a medium-sized industrial city. Science of the Total Environment, 887: 164022
67
C K Williams, G A Mccarver, A Lashgari, K D Vogiatzis, J J Jiang. (2021). Electrocatalytic dechlorination of dichloromethane in water using a heterogenized molecular copper complex. Inorganic Chemistry, 60(7): 4915–4923 https://doi.org/10.1021/acs.inorgchem.0c03833
68
H Wu, Z Mao, B Liu, D Chen, M Shi, B Lv, Y Xu, L Wang. (2023). Ultra-low-loading Pd nanocrystals modified Ni foam electrode for efficient electrochemical hydrodechlorination. Applied Catalysis B: Environmental, 337: 122978 https://doi.org/10.1016/j.apcatb.2023.122978
69
J Wu, B Wang, G Cagnetta, J Huang, Y Wang, S Deng, G Yu. (2020). Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. Separation and Purification Technology, 239: 116534 https://doi.org/10.1016/j.seppur.2020.116534
70
J Xu, X Fu, Y Liu, Y Zhang, S Chen, D Li, C Zhang, J Gao, Y Fu. (2023a). Electrocatalytic dechlorination of florfenicol using a Pd-loaded on blue TiO2 nanotube arrays cathode. Separation and Purification Technology, 323: 124460 https://doi.org/10.1016/j.seppur.2023.124460
71
Y Xu, X Ding, H Ma, Y Chu, C Ma. (2015). Selective hydrodechlorination of 3,5,6-trichloropicolinic acid at an activated silver cathode: synthesis of 3,5-dichloropicolinic acid. Electrochimica Acta, 151: 284–288 https://doi.org/10.1016/j.electacta.2014.11.039
72
Y Xu, Z Mao, R Qu, J Wang, J Yu, X Luo, M Shi, X Mao, J Ding, B Liu. (2023b). Electrochemical hydrogenation of oxidized contaminants for water purification without supporting electrolyte. Nature Water, 1(1): 95–103 https://doi.org/10.1038/s44221-022-00002-3
73
Y Xu, Z Yao, Z Mao, M Shi, X Zhang, F Cheng, H B Yang, H B Tao, B Liu. (2020). Single-Ni-atom catalyzes aqueous phase electrochemical reductive dechlorination reaction. Applied Catalysis B: Environmental, 277: 119057 https://doi.org/10.1016/j.apcatb.2020.119057
74
M S Yalfani, A Georgi, S Contreras, F Medina, F D Kopinke. (2011). Chlorophenol degradation using a one-pot reduction–oxidation process. Applied Catalysis B: Environmental, 104(1−2): 161–168
75
J Yang, S Jiang, W Hu, H Jiang. (2022a). Highly efficient electrochemical dechlorination of florfenicol by an ultrathin molybdenum disulfide cathode. Chemical Engineering Journal, 427: 131600 https://doi.org/10.1016/j.cej.2021.131600
76
K Yang, I M Abu-Reesh, Z He. (2023). Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system. Journal of Hazardous Materials, 442: 130126 https://doi.org/10.1016/j.jhazmat.2022.130126
77
L Yang, C Chen, R Bao, Z Huang, W Wang, C Zhang, J Xia, J Geng, H Li. (2022b). Effective green electro-Fenton process induced by atomic hydrogen for rapid oxidation of organic pollutants over a highly active and reusable carbon based palladium nanocatalyst. Applied Surface Science, 602: 154325 https://doi.org/10.1016/j.apsusc.2022.154325
78
Q Yao, X Zhou, S Xiao, J Chen, I A Abdelhafeez, Z Yu, H Chu, Y Zhang. (2019). Amorphous nickel phosphide as a noble metal-free cathode for electrochemical dechlorination. Water Research, 165: 114930 https://doi.org/10.1016/j.watres.2019.114930
79
H Yu, S Yang, B Zhao, Y Lu, S Zhu, X Wang, W Qin, M Huo. (2020). Enhanced electrochemical dechlorination of 4-chlorophenol on a nickel foam electrode modified with palladium, polypyrrole and graphene. Journal of Electroanalytical Chemistry, 869: 114099 https://doi.org/10.1016/j.jelechem.2020.114099
M Zhang, Q Shi, X Song, H Wang, Z Bian. (2019). Recent electrochemical methods in electrochemical degradation of halogenated organics: a review. Environmental Science and Pollution Research International, 26(11): 10457–10486 https://doi.org/10.1007/s11356-019-04533-3
82
K Zhao, X Quan, Y Su, X Qin, S Chen, H Yu. (2021). Enhanced chlorinated pollutant degradation by the synergistic effect between dechlorination and hydroxyl radical oxidation on a bimetallic single-atom catalyst. Environmental Science & Technology, 55(20): 14194–14203 https://doi.org/10.1021/acs.est.1c04943
83
Z Zheng, S Yuan, Y Liu, X Lu, J Wan, X Wu, J Chen. (2009). Reductive dechlorination of hexachlorobenzene by Cu/Fe bimetal in the presence of nonionic surfactant. Journal of Hazardous Materials, 170(2−3): 895–901 https://doi.org/10.1016/j.jhazmat.2009.05.052
84
J Zhou, Z Lou, Z Wang, C Zhou, C Li, S Ali Baig, X Xu. (2021). Electrocatalytic dechlorination of 2,4-DCBA using CTAB functionalized Pd/GAC movable granular catalyst: role of adsorption in catalysis. Chemical Engineering Journal, 414: 128758 https://doi.org/10.1016/j.cej.2021.128758
85
J Zhou, Z Lou, K Yang, J Xu, Y Li, Y Liu, S A Baig, X Xu. (2019). Electrocatalytic dechlorination of 2,4-dichlorobenzoic acid using different carbon-supported palladium moveable catalysts: adsorption and dechlorination activity. Applied Catalysis B: Environmental, 244: 215–224 https://doi.org/10.1016/j.apcatb.2018.11.052
86
Z Zhou, W Ruan, H Huang, C Shen, B Yuan, C Huang. (2016). Fabrication and characterization of Fe/Ni nanoparticles supported by polystyrene resin for trichloroethylene degradation. Chemical Engineering Journal, 283: 730–739 https://doi.org/10.1016/j.cej.2015.07.076
87
H Zhu, F Xu, J Zhao, L Jia, K Wu. (2015). Catalytic hydrodechlorination of monochloroacetic acid in wastewater using Ni-Fe bimetal prepared by ball milling. Environmental Science and Pollution Research International, 22(18): 14299–14306 https://doi.org/10.1007/s11356-015-4675-4
88
M Zhuang, D Ren, H Guo, Z Wang, S Zhang, X Zhang, X Gong. (2021). Degradation of 2,4-dichlorophenol contaminated soil by ultrasound-enhanced laccase. Environmental Technology, 42(9): 1428–1437 https://doi.org/10.1080/09593330.2019.1669723