1. Demonstration Laboratory of Elements and Life Science Research, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; 2. Department of Environmental Science and Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
Redox conditions in paddy soils may vary as they are submerged and drained during rice growth. This change may bring about reductive dissolution of iron (Fe) oxides and subsequent formation of secondary Fe-bearing minerals in rice paddies. The mobility and bioavailability of metal contaminants such as cadmium (Cd) in paddy soils are closely related to the chemical behaviors of Fe. Therefore, in this paper, advances in the study of paddy Fe redox transformations and their effects on Cd availability to rice are briefly reviewed. Current concepts presented in this review include the forms of Fe in paddy soils, the reactions involved in Fe oxidation-reduction, chemical factors affecting Fe redox processes, Cd availability to rice and the impacts of Fe transformation on Cd uptake and translocation in rice. Prospects for future research in this area are also discussed.
Corresponding Author(s):
GE Ying,Email:yingge711@njau.edu.cn
引用本文:
. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review[J]. Frontiers of Environmental Science & Engineering, 2012, 6(4): 509-517.
Chunhua ZHANG, Ying GE, Huan YAO, Xiao CHEN, Minkun HU. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review. Front Envir Sci Eng, 2012, 6(4): 509-517.
K?gel-Knabner I, Amelung W, Cao Z H, Fiedler S, Frenzel P, Jahn R, Kalbitz K, K?lbl A, Schloter M. Biogeochemistry of paddy soils. Geoderma , 2010, 157(1-2): 1-14 doi: 10.1016/j.geoderma.2010.03.009
2
Neubauer S C, Emerson D, Megonigal J P. Microbial oxidation and reduction of iron in the root zone and influences on metal mobility. In: Violante A, Huang P M, Gadd G M, eds. Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments . Hoboken: John Wiley & Sons, 2007
3
Borch T, Kretzschmar R, Kappler A, Cappellen P V, Ginder-Vogel M, Voegelin A, Campbell K. Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science & Technology , 2010, 44(1): 15-23 doi: 10.1021/es9026248 pmid:20000681
4
Williams P N, Lei M, Sun G X, Huang Q, Lu Y, Deacon C, Meharg A A, Zhu Y G. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environmental Science & Technology , 2009, 43(3): 637-642 doi: 10.1021/es802412r pmid:19244995
5
Li Y C, Ge Y, Zhang C H, Zhou Q S. Mechanisms for high Cd activity in a red soil from southern China undergoing gradual reduction. Australian Journal of Soil Research , 2010, 48(4): 371-384
6
Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science & Technology , 2009, 43(24): 9361-9367 doi: 10.1021/es9022738 pmid:20000530
7
Kocar B D, Borch T, Fendorf S. Arsenic repartitioning during biogenic sulfidizaion and transformation of ferrihydrite. Geochimica et Cosmochimica Acta , 2010, 74(3): 980-994 doi: 10.1016/j.gca.2009.10.023
8
Chen X, Wright J V, Conca J L, Peurrung L M. Effects of pH on heavy metal sorption on mineral apatite. Environmental Science & Technology , 1997, 31(3): 624-631 doi: 10.1021/es950882f
9
Bostick B C, Fendorf S, Fendorf M. Disulfide disproportionation and CdS formation upon cadmium sorption on FeS2. Geochimica et Cosmochimica Acta , 2000, 64(2): 247-255 doi: 10.1016/S0016-7037(99)00295-1
10
Barrett K A, McBride M B. Dissolution of zinc-cadmium sulfide solid solutions in aerated aqueous suspension. Soil Science Society of America Journal , 2007, 71(2): 322-328 doi: 10.2136/sssaj2006.0124
11
Liesack W, Schnell S, Revsbech N P. Microbiology of flooded rice paddies. FEMS Microbiology Reviews , 2000, 24(5): 625-645 doi: 10.1111/j.1574-6976.2000.tb00563.x pmid:11077155
12
Chen L N, Ge Y, Zhang C H, Zhou Q S. Effect of submergence on the bioavailability of Cd in a red soil. Journal of Agro-Environment Science , 2009, 28(11): 2333-2337 (in Chinese)
13
de Livera J, McLaughlin M J, Hettiarachchi G M, Kirby J K, Beak D G. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. The Science of the Total Environment , 2011, 409(8): 1489-1497 doi: 10.1016/j.scitotenv.2010.12.028 pmid:21277005
14
Lindsay W L. Chemical Equilibria in Soils. New York: John Wiley & Sons, 1979
15
Borch T, Fendorf S. Phosphate interactions with iron (hydr) oxides: mineralization pathways and phosphorus retention upon bioreduction. In: Barnett M O, Kent D B, eds. Adsorption of Metals by Geomedia II, Variables, Mechanisms, and Model Applications. Developments in Earth & Environmental Sciences , Amsterdam: Elsevier, 2007, 7: 321-348 doi: 10.1016/s1571-9197(07)07012-7
16
Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology , 2006, 4(10): 752-764 doi: 10.1038/nrmicro1490 pmid:16980937
17
Narteh L T, Sahrawat K L. Influence of flooding on electrochemical and chemical properties of West African soils. Geoderma , 1999, 87(3-4): 179-207 doi: 10.1016/S0016-7061(98)00053-6
18
Brennan E W, Lindsay W L. The role of pyrite in controlling metal in activities in highly reduced soils. Geochimica et Cosmochimica Acta , 1996, 60(19): 3609-3618 doi: 10.1016/0016-7037(96)00162-7
19
Wang X J, Chen X P, Kappler A, Sun G X, Zhu Y G. Arsenic binding to iron(II) minerals produced by an iron(III)-reducing Aeromonas strain isolated from paddy soil. Environmental Toxicology and Chemistry , 2009, 28(11): 2255-2262 doi: 10.1897/09-085.1 pmid:19572768
20
Borch T, Masue Y, Kukkadapu R K, Fendorf S. Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environmental Science & Technology , 2007, 41(1): 166-172 doi: 10.1021/es060695p pmid:17265943
21
Nanzyo M, Yaginuma H, Sasaki K, Ito K, Aikawa Y, Kanno H, Takahashi T. Identification of vivianite formed on the root of paddy rice grown in pots. Soil Science and Plant Nutrition , 2010, 56(3): 376-381 doi: 10.1111/j.1747-0765.2010.00463.x
22
Saalfield S L, Bostick B C. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environmental Science & Technology , 2009, 43(23): 8787-8793 doi: 10.1021/es901651k pmid:19943647
23
Lovley D R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews , 1991, 55(2): 259-287 pmid:1886521
24
Davidson E A, Chorover J, Dail B D. A mechanism of abiotic immobilization of nitrate in forest ecosystem: the ferrous wheel hypothesis. Global Change Biology , 2003, 9(2): 228-236 doi: 10.1046/j.1365-2486.2003.00592.x
25
Kirk G. The Biogeochemistry of Submerged Soils. Chichester: John Wiley & Sons, 2004
26
Kappler A, Benz M, Schink B, Brune A. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiology Ecology , 2004, 47(1): 85-92 doi: 10.1016/S0168-6496(03)00245-9 pmid:19712349
27
Mladenov N, Zheng Y, Miller M P, Nemergut D R, Legg T, Simone B, Hageman C, Rahman M M, Ahmed K M, McKnight D M. Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environmental Science & Technology , 2010, 44(1): 123-128 doi: 10.1021/es901472g pmid:20039742
28
Revsbech N P, Pedersen O, Reichardt W, Briones A. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biology and Fertility of Soils , 1999, 29(4): 379-385 doi: 10.1007/s003740050568
29
Begg C B M, Kirk G J D, Mackenzie A F, Neue H U. Root induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytologist , 1994, 128(3): 469-477 doi: 10.1111/j.1469-8137.1994.tb02993.x
30
Liu W J, Zhu Y G, Smith F A. Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant and Soil , 2005, 277(1-2): 127-138 doi: 10.1007/s11104-005-6453-4
31
Weiss J V, Emerson D, Megonigal J P. Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil. FEMS Microbiology Ecology , 2004, 48(1): 89-100 doi: 10.1016/j.femsec.2003.12.014 pmid:19712434
32
Liu W J, Zhu Y G, Hu Y, Williams P N, Gault A G, Meharg A A, Charnock J M, Smith F A. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environmental Science & Technology , 2006, 40(18): 5730-5736 doi: 10.1021/es060800v pmid:17007133
33
Nanzyo M, Yaginuma H, Sasaki K, Ito K, Aikawa Y, Kanno H, Takahashi T. Identification of vivianite formed on the roots of paddy rice grown in pots. Soil Science and Plant Nutrition 2010, 56(3): 376-381
34
Wang G M, Zhou L X, Zhan X H, Wong J W C. Dynamics of dissolved organic matter and its effect on metal availability in paddy soil: Field micro-plot trials. Acta Scientiae Circumstantiae , 2004, 24(5): 858-864 (in Chinese)
35
Emerson D, Weiss J V, Megonigal J P. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Applied and Environmental Microbiology , 1999, 65(6): 2758-2761 pmid:10347074
36
King G M, Garey M A. Ferric iron reduction by bacteria associated with the roots of freshwater and marine macrophytes. Applied and Environmental Microbiology , 1999, 65(10): 4393-4398 pmid:10508065
37
Chen X P, Kong W D, He J Z, Liu W J, Smith S E, Smith F A, Zhu Y G. Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice? Journal of Plant Nutrition and Soil Science , 2008, 171(2): 193-199 doi: 10.1002/jpln.200700018
38
Otte M L, Kearns C C, Doyle M O. Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bulletin of Environmental Contamination and Toxicology , 1995, 55(1): 154-161 doi: 10.1007/BF00212403 pmid:7663086
39
Doyle M O, Otte M L. Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environmental Pollution , 1997, 96(1): 1-11 doi: 10.1016/S0269-7491(97)00014-6 pmid:15093426
40
Lei M, Tie B Q, Williams P N, Zheng Y M, Huang Y Z. Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L.) grown in greenhouse. Journal of Soils and Sediments , 2011, 11(1): 115-123 doi: 10.1007/s11368-010-0280-9
41
Jung M C, Thornton I. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. The Science of the Total Environment , 1997, 198(2): 105-121 doi: 10.1016/S0048-9697(97)05434-X pmid:9167264
42
Khaokaew S, Chaney R L, Landrot G, Ginder-Vogel M, Sparks D L. Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions. Environmental Science & Technology , 2011, 45(10): 4249-4255
43
Lin Q, Chen Y X, Chen H M, Yu Y L, Luo Y M, Wong M H. Chemical behavior of Cd in rice rhizosphere. Chemosphere , 2003, 50(6): 755-761 doi: 10.1016/S0045-6535(02)00216-3 pmid:12688487
44
Kashem M A, Singh B R. Transformations in solid phase species of metals as affected by flooding and organic matter. Communications in Soil Science and Plant Analysis , 2004, 35(9-10): 1435-1456 doi: 10.1081/CSS-120037556
45
Hu L F, McBride M B, Cheng H, Wu J J, Shi J C, Xu J M, Wu L S. Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes. Environmental Research , 2011, 111(3): 356-361 doi: 10.1016/j.envres.2011.01.012 pmid:21316043
46
Liu M C, Li H F, Xia L J, Yang L S. Differences of cadmium uptake by rice genotypes and relationship between the iron oxide plaque and cadmium uptake. Acta Scientiae Circumstantiae , 2000, 20(5): 592-596 (in Chinese)
47
Liu H J, Zhang J L, Zhang F S. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environmental and Experimental Botany , 2007, 59(3): 314-320 doi: 10.1016/j.envexpbot.2006.04.001
48
Liu M C, Li H F, Xia L J, Yang L S. Effect of Fe, Mn coating formed on roots on Cd uptake by rice varieties. Acta Ecologica Sinica , 2001, 21(4): 598-602 (in Chinese)
49
Liu H J, Zhang J L, Christie P, Zhang F S. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. The Science of the Total Environment , 2008, 394(2-3): 361-368 doi: 10.1016/j.scitotenv.2008.02.004 pmid:18325566
50
Liu W J, Zhang X K, Yin J, Liu Y S, Zhang F S. Cadmium bioavailability in rhizosphere of paddy soil. Agro-environmental Protection , 2000, 19(3): 184-187 (in Chinese)
51
Shao G S, Chen M X, Wang W X, Mou R X, Zhang G P. Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regulation , 2007, 53(1): 33-42 doi: 10.1007/s10725-007-9201-3
52
Morrissey J, Guerinot M L. Iron uptake and transport in plants: the good, the bad, and the ionome. Chemical Reviews , 2009, 109(10): 4553-4567 doi: 10.1021/cr900112r pmid:19754138
53
Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition , 2006, 52(4): 464-469 doi: 10.1111/j.1747-0765.2006.00055.x
54
Shao G S, Chen M X, Wang D Y, Xu C M, Mou R X, Cao Z Y, Zhang X F. Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology. Science in China (Series C) , 2008, 51(3): 245-253 doi: 10.1007/s11427-008-0031-y pmid:18246312
55
Violante A, Huang P M, Gadd G M. Biophysico-chemical Processes of Heavy Metals and Metalloids in Soil Environments. Hoboken: John Wiley & Sons, 2008
56
Salt D E, Prince R C, Pickering I J, Raskin I. Mechanisms of cadmium mobility and accumulation in indian mustard. Plant Physiology , 1995, 109(4): 1427-1433 pmid:12228679
57
Mendoza-Cózatl D G, Butko E, Springer F, Torpey J W, Komives E A, Kehr J, Schroeder J I. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant Journal , 2008, 54(2): 249-259 doi: 10.1111/j.1365-313X.2008.03410.x pmid:18208526
58
Liu W J, Wood B A, Raab A, McGrath S P, Zhao F J, Feldmann J. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. The Plant Physiology , 2010, 152(4): 2211-2221 doi: 10.1104/pp.109.150862 pmid:20130102
59
Voegelin A, Weber F A, Kretzschmar R. Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil: Micro-XRF element mapping and EXAFS spectroscopy. Geochimica et Cosmochimica Acta , 2007, 71(23): 5804-5820 doi: 10.1016/j.gca.2007.05.030
60
Lu Y H, Rosencrantz D, Liesack W, Conrad R. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environmental Microbiology , 2006, 8(8): 1351-1360 doi: 10.1111/j.1462-2920.2006.01028.x pmid:16872399
61
Chen X P, Zhu Y G, Xia Y, Shen J P, He J Z. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environmental Microbiology , 2008, 10(8): 1978-1987 doi: 10.1111/j.1462-2920.2008.01613.x pmid:18430011
62
Weiss J V,βEmerson D,βBacker S M, Megonigal J P. Enumeration of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants Implications for a rhizosphere iron cycle. Biogeochemistry , 2003, 64(1): 77-96
63
Lombi E, ScheckelK G, Kempson I M. In situ analysis of metal(loid)s in plants: state of the art and artefacts. Environmental and Experimental Botany , 2011, 72(1): 3-17
64
Meda A R, Scheuermann E B, Prechsl U E, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wiren N. Iron acquisition by phytosiderophores contributes to Cd tolerance. Plant Physiology , 2007, 143(4): 1761-1773