Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

邮发代号 80-973

2018 Impact Factor: 3.883

Frontiers of Environmental Science & Engineering  2013, Vol. 7 Issue (4): 531-538   https://doi.org/10.1007/s11783-013-0506-3
  RESEARCH ARTICLE 本期目录
Removal of Zn2+ from aqueous solution by biomass of Agaricus bisporus
Removal of Zn2+ from aqueous solution by biomass of Agaricus bisporus
Feng XUE1, Beicheng XIA1(), Rongrong YING2, Shili SHEN1, Peng ZHAO1
1. School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; 2. Nanjing Institute of Environmental Sciences, MEP, Nanjing 210042, China
 全文: PDF(267 KB)   HTML
Abstract

Biosorption of Zn2+ from aqueous solutions by biomass of Agaricus bisporus was investigated. The removal rates of Zn2+ by A. bisporus under different parameters (e.g., solution pH, bio-sorbent dosage and initial Zn2+ concentration) were studied. The inhibition of A. bisporus’s biosorption by anionic ligands EDTA (Ethylene Diamine Tetraacetic Acid), acetate and citrate) implied that EDTA and citrate might be used as eluting reagents. Regular and simultaneous solution pH change and light metal ions release after biosorption indicated that an ion exchange mechanism was involved. From FT-IR (Fourier Transform Infrared) spectroscopy, the main functional groups participated in biosorption were found. Biosorption of Zn2+ by A. bisporus could be well described by the Freundlich and Langmuir models. In conclusion, the biomass of A. bisporus showed high potential for the treatment of wastewater containing Zn2+.

Key wordsbiosorption    Agaricus bisporus    zinc    ion exchange    FT-IR    isotherms
收稿日期: 2012-07-18      出版日期: 2013-08-01
Corresponding Author(s): XIA Beicheng,Email:xiabch@mail.sysu.edu.cn   
 引用本文:   
. Removal of Zn2+ from aqueous solution by biomass of Agaricus bisporus[J]. Frontiers of Environmental Science & Engineering, 2013, 7(4): 531-538.
Feng XUE, Beicheng XIA, Rongrong YING, Shili SHEN, Peng ZHAO. Removal of Zn2+ from aqueous solution by biomass of Agaricus bisporus. Front Envir Sci Eng, 2013, 7(4): 531-538.
 链接本文:  
https://academic.hep.com.cn/fese/CN/10.1007/s11783-013-0506-3
https://academic.hep.com.cn/fese/CN/Y2013/V7/I4/531
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
A. bisporusZn-loaded A. bisporusassignment
34223442hydroxyl group
15451551aromatic nitro group
1406-carboxylate group
-1263epoxypropane C-O-C
Tab.1  
Fig.8  
isotherm equationsParameters
LangmuirQ0 (mg·g-1)b (L·mg-1)R2
6.8970.3440.992
FreundlichKf (mg·g1-(1/n)·L1/n) ·g-1)1/nR2
2.5700.2160.995
Dubinin-Radushkevichqm (mg·g-1)β (mol2·kJ-2)R2
35.8101.00E-080.843
TemkinAT (L·g-1)bTR2
1.4673976.8410.969
Tab.2  
Bio-sorbentKfreference
Sargassum0.41[26]
S. intermedia1.03[27]
L. minor1.06[28]
P. stratiots0.25[29]
Botrytis cinerea1.13[30]
Plain Ca-alginate bead0.51[31]
A. bisporus2.57this work
Tab.3  
1 Lai Y L, Annadurai G, Huang F C, Lee J F. Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresource Technology , 2008, 99(14): 6480–6487
doi: 10.1016/j.biortech.2007.11.041 pmid:18248987
2 Hsu T C, Yu C C, Yeh C M. Adsorption of Cu2+ from water using raw and modified coal fly ashes. Fuel , 2008, 87(7): 1355–1359
doi: 10.1016/j.fuel.2007.05.055
3 Iqbal M, Saeed A. Removal of heavy metals from contaminated water by petiolar felt-sheath of palm. Environmental Technology , 2002, 23(10): 1091–1098
doi: 10.1080/09593332308618338 pmid:12465835
4 Yan G, Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research , 2003, 37(18): 4486–4496
doi: 10.1016/S0043-1354(03)00409-3 pmid:14511719
5 Tewari N, Vasudevan P, Guha B K. Study on biosorption of Cr(VI) by Mucor hiemalis. Biochemical Engineering Journal , 2005, 23(2): 185–192
doi: 10.1016/j.bej.2005.01.011
6 Miretzky P, Cirelli A F. Hg(II) removal from water by chitosan and chitosan derivatives: a review. Journal of Hazardous Materials , 2009, 167(1-3): 10–23
doi: 10.1016/j.jhazmat.2009.01.060 pmid:19232467
7 Reddy D H K, Seshaiah K, Reddy A V R, Rao M M, Wang M C. Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies. Journal of Hazardous Materials , 2010, 174(1-3): 831–838
doi: 10.1016/j.jhazmat.2009.09.128 pmid:19853374
8 Sheng P X, Ting Y P, Chen J P. Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the marine alga Sargassum sp. in single- and multiple-metal systems. Industrial & Engineering Chemistry Research , 2007, 46(8): 2438–2444
doi: 10.1021/ie0615786
9 Agouborde L, Navia R. Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes. Journal of Hazardous Materials , 2009, 167(1-3): 536–544
doi: 10.1016/j.jhazmat.2009.01.027 pmid:19188023
10 Muraleedharan T R, Venkobachar C, Leela I. Investigations of fungal fruiting bodies as biosorbents for the removal of heavy metals from industrial processing streams. Separation Science and Technology , 1994, 29(14): 1893–1903
doi: 10.1080/01496399408002178
11 Ertugay N, Bayhan Y K. The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination , 2010, 255(1-3): 137–142
doi: 10.1016/j.desal.2010.01.002
12 Ertugay N, Bayhan Y K. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus. Journal of Hazardous Materials , 2008, 154(1-3): 432–439
doi: 10.1016/j.jhazmat.2007.10.070 pmid:18078714
13 Vimala R, Das N. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. Journal of Hazardous Materials , 2009, 168(1): 376–382
doi: 10.1016/j.jhazmat.2009.02.062 pmid:19285798
14 Schiewer S, Balaria A. Biosorption of Pb2+ by original and protonated citrus peels: Equilibrium, kinetics, and mechanism. Chemical Engineering Journal , 2009, 146(2): 211–219
doi: 10.1016/j.cej.2008.05.034
15 Anna W K, Roman S, Szymon M. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination , 2011, 265(1-3): 126–134
16 Crisafully R, Milhome M A L, Cavalcante R M, Silveira E R, De Keukeleire D, Nascimento R F. Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresource Technology , 2008, 99(10): 4515–4519
doi: 10.1016/j.biortech.2007.08.041 pmid:17964147
17 Ofomaja A E, Naidoo E B, Modise S J. Kinetic and pseudo-second-order modeling of lead biosorption onto pine cone powder. Industrial and Engineering Chemistry Research , 2010, 49(6): 2562–2572
doi: 10.1021/ie901150x
18 Matheickal J T, Yu Q, Woodburn G M. Biosorption of cadmium(II) from aqueous solutions by pre-treated biomass of marine alga DurvillAea potatorum. Water Research , 1999, 33(2): 335–342
doi: 10.1016/S0043-1354(98)00237-1
19 Vijayaraghavan K, Teo T T, Balasubramanian R, Joshi U M. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff. Journal of Hazardous Materials , 2009, 164(2-3): 1019–1023
doi: 10.1016/j.jhazmat.2008.08.105 pmid:18926627
20 Esposito A, Pagnanelli F, Lodi A, Solisio C, Vegliò F. Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH biomass concentrations. Hydrometallurgy , 2001, 60(2): 129–141
doi: 10.1016/S0304-386X(00)00195-X
21 Mohan D, Singh K P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Research , 2002, 36(9): 2304–2318
doi: 10.1016/S0043-1354(01)00447-X pmid:12108723
22 Chen J P, Wang L K, Yang L, Lim S F. Emerging Biosorption, Adsorption, Ion Exchange, and Membrane Technologies. Handbook of Environmental Engineering . Totowa: Humana Press, 2007, 5: 367–390
23 Chen J P, Yang L. Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis. Langmuir , 2006, 22(21): 8906–8914
doi: 10.1021/la060770+ pmid:17014134
24 Mohapatra M, Rout K, Mohapatra B K, Anand S. Sorption behavior of Pb(II) and Cd(II) on iron ore slime and characterization of metal ion loaded sorbent. Journal of Hazardous Materials , 2009, 166(2-3): 1506–1513
doi: 10.1016/j.jhazmat.2008.12.081 pmid:19185424
25 Kim Y, Kim C, Choi I, Rengaraj S, Yi J. Arsenic removal using mesoporous alumina prepared via a templating method. Environmental Science and Technology , 2004, 38(3): 924–931
doi: 10.1021/es0346431 pmid:14968884
26 Luna A S, Costa A L H, da Costa A C, Henriques C A. Competitive biosorption of cadmium(II) and zinc(II) ions from binary systems by Sargassum filipendula. Bioresource Technology , 2010, 101(14): 5104–5111
doi: 10.1016/j.biortech.2010.01.138 pmid:20172715
27 Miretzky P, Saralegui A, Fernández Cirelli A. Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere , 2006, 62(2): 247–254
doi: 10.1016/j.chemosphere.2005.05.010 pmid:15990152
28 Sa? Y, Kaya A, Kutsal T. The simultaneous biosorption of Cu and Zn on Rhizopus arrhizus: application of the adsorption models. Hydrometallurgy , 1998, 50(3): 297–314
doi: 10.1016/S0304-386X(98)00065-6
29 Tunali S, Akar T. Zn(II) biosorption properties of Botrytis cinerea biomass. Journal of Hazardous Materials , 2006, 131(1-3): 137–145
doi: 10.1016/j.jhazmat.2005.09.024 pmid:16239066
30 ?engil I A, Ozacar M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Journal of Hazardous Materials , 2009, 166(2-3): 1488–1494
doi: 10.1016/j.jhazmat.2008.12.071 pmid:19188018
31 MalkocE, NuhogluY, DundarM. Adsorption of chromium(VI) on pomace—an olive oil industry waste: batch and column studies. Journal of Hazardous Materials , 2006, 138(1): 142–151
doi: 10.1016/j.jhazmat.2006.05.051 pmid:16844293
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed