1. School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; 2. Nanjing Institute of Environmental Sciences, MEP, Nanjing 210042, China
Biosorption of Zn2+ from aqueous solutions by biomass of Agaricus bisporus was investigated. The removal rates of Zn2+ by A. bisporus under different parameters (e.g., solution pH, bio-sorbent dosage and initial Zn2+ concentration) were studied. The inhibition of A. bisporus’s biosorption by anionic ligands EDTA (Ethylene Diamine Tetraacetic Acid), acetate and citrate) implied that EDTA and citrate might be used as eluting reagents. Regular and simultaneous solution pH change and light metal ions release after biosorption indicated that an ion exchange mechanism was involved. From FT-IR (Fourier Transform Infrared) spectroscopy, the main functional groups participated in biosorption were found. Biosorption of Zn2+ by A. bisporus could be well described by the Freundlich and Langmuir models. In conclusion, the biomass of A. bisporus showed high potential for the treatment of wastewater containing Zn2+.
. Removal of Zn2+ from aqueous solution by biomass of Agaricus bisporus[J]. Frontiers of Environmental Science & Engineering, 2013, 7(4): 531-538.
Feng XUE, Beicheng XIA, Rongrong YING, Shili SHEN, Peng ZHAO. Removal of Zn2+ from aqueous solution by biomass of Agaricus bisporus. Front Envir Sci Eng, 2013, 7(4): 531-538.
Lai Y L, Annadurai G, Huang F C, Lee J F. Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresource Technology , 2008, 99(14): 6480–6487 doi: 10.1016/j.biortech.2007.11.041 pmid:18248987
2
Hsu T C, Yu C C, Yeh C M. Adsorption of Cu2+ from water using raw and modified coal fly ashes. Fuel , 2008, 87(7): 1355–1359 doi: 10.1016/j.fuel.2007.05.055
3
Iqbal M, Saeed A. Removal of heavy metals from contaminated water by petiolar felt-sheath of palm. Environmental Technology , 2002, 23(10): 1091–1098 doi: 10.1080/09593332308618338 pmid:12465835
4
Yan G, Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research , 2003, 37(18): 4486–4496 doi: 10.1016/S0043-1354(03)00409-3 pmid:14511719
5
Tewari N, Vasudevan P, Guha B K. Study on biosorption of Cr(VI) by Mucor hiemalis. Biochemical Engineering Journal , 2005, 23(2): 185–192 doi: 10.1016/j.bej.2005.01.011
6
Miretzky P, Cirelli A F. Hg(II) removal from water by chitosan and chitosan derivatives: a review. Journal of Hazardous Materials , 2009, 167(1-3): 10–23 doi: 10.1016/j.jhazmat.2009.01.060 pmid:19232467
7
Reddy D H K, Seshaiah K, Reddy A V R, Rao M M, Wang M C. Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies. Journal of Hazardous Materials , 2010, 174(1-3): 831–838 doi: 10.1016/j.jhazmat.2009.09.128 pmid:19853374
8
Sheng P X, Ting Y P, Chen J P. Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the marine alga Sargassum sp. in single- and multiple-metal systems. Industrial & Engineering Chemistry Research , 2007, 46(8): 2438–2444 doi: 10.1021/ie0615786
9
Agouborde L, Navia R. Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes. Journal of Hazardous Materials , 2009, 167(1-3): 536–544 doi: 10.1016/j.jhazmat.2009.01.027 pmid:19188023
10
Muraleedharan T R, Venkobachar C, Leela I. Investigations of fungal fruiting bodies as biosorbents for the removal of heavy metals from industrial processing streams. Separation Science and Technology , 1994, 29(14): 1893–1903 doi: 10.1080/01496399408002178
11
Ertugay N, Bayhan Y K. The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination , 2010, 255(1-3): 137–142 doi: 10.1016/j.desal.2010.01.002
12
Ertugay N, Bayhan Y K. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus. Journal of Hazardous Materials , 2008, 154(1-3): 432–439 doi: 10.1016/j.jhazmat.2007.10.070 pmid:18078714
13
Vimala R, Das N. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. Journal of Hazardous Materials , 2009, 168(1): 376–382 doi: 10.1016/j.jhazmat.2009.02.062 pmid:19285798
14
Schiewer S, Balaria A. Biosorption of Pb2+ by original and protonated citrus peels: Equilibrium, kinetics, and mechanism. Chemical Engineering Journal , 2009, 146(2): 211–219 doi: 10.1016/j.cej.2008.05.034
15
Anna W K, Roman S, Szymon M. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination , 2011, 265(1-3): 126–134
16
Crisafully R, Milhome M A L, Cavalcante R M, Silveira E R, De Keukeleire D, Nascimento R F. Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresource Technology , 2008, 99(10): 4515–4519 doi: 10.1016/j.biortech.2007.08.041 pmid:17964147
17
Ofomaja A E, Naidoo E B, Modise S J. Kinetic and pseudo-second-order modeling of lead biosorption onto pine cone powder. Industrial and Engineering Chemistry Research , 2010, 49(6): 2562–2572 doi: 10.1021/ie901150x
18
Matheickal J T, Yu Q, Woodburn G M. Biosorption of cadmium(II) from aqueous solutions by pre-treated biomass of marine alga DurvillAea potatorum. Water Research , 1999, 33(2): 335–342 doi: 10.1016/S0043-1354(98)00237-1
19
Vijayaraghavan K, Teo T T, Balasubramanian R, Joshi U M. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff. Journal of Hazardous Materials , 2009, 164(2-3): 1019–1023 doi: 10.1016/j.jhazmat.2008.08.105 pmid:18926627
20
Esposito A, Pagnanelli F, Lodi A, Solisio C, Vegliò F. Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH biomass concentrations. Hydrometallurgy , 2001, 60(2): 129–141 doi: 10.1016/S0304-386X(00)00195-X
21
Mohan D, Singh K P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Research , 2002, 36(9): 2304–2318 doi: 10.1016/S0043-1354(01)00447-X pmid:12108723
22
Chen J P, Wang L K, Yang L, Lim S F. Emerging Biosorption, Adsorption, Ion Exchange, and Membrane Technologies. Handbook of Environmental Engineering . Totowa: Humana Press, 2007, 5: 367–390
23
Chen J P, Yang L. Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis. Langmuir , 2006, 22(21): 8906–8914 doi: 10.1021/la060770+ pmid:17014134
24
Mohapatra M, Rout K, Mohapatra B K, Anand S. Sorption behavior of Pb(II) and Cd(II) on iron ore slime and characterization of metal ion loaded sorbent. Journal of Hazardous Materials , 2009, 166(2-3): 1506–1513 doi: 10.1016/j.jhazmat.2008.12.081 pmid:19185424
25
Kim Y, Kim C, Choi I, Rengaraj S, Yi J. Arsenic removal using mesoporous alumina prepared via a templating method. Environmental Science and Technology , 2004, 38(3): 924–931 doi: 10.1021/es0346431 pmid:14968884
26
Luna A S, Costa A L H, da Costa A C, Henriques C A. Competitive biosorption of cadmium(II) and zinc(II) ions from binary systems by Sargassum filipendula. Bioresource Technology , 2010, 101(14): 5104–5111 doi: 10.1016/j.biortech.2010.01.138 pmid:20172715
27
Miretzky P, Saralegui A, Fernández Cirelli A. Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere , 2006, 62(2): 247–254 doi: 10.1016/j.chemosphere.2005.05.010 pmid:15990152
28
Sa? Y, Kaya A, Kutsal T. The simultaneous biosorption of Cu and Zn on Rhizopus arrhizus: application of the adsorption models. Hydrometallurgy , 1998, 50(3): 297–314 doi: 10.1016/S0304-386X(98)00065-6
29
Tunali S, Akar T. Zn(II) biosorption properties of Botrytis cinerea biomass. Journal of Hazardous Materials , 2006, 131(1-3): 137–145 doi: 10.1016/j.jhazmat.2005.09.024 pmid:16239066
30
?engil I A, Ozacar M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Journal of Hazardous Materials , 2009, 166(2-3): 1488–1494 doi: 10.1016/j.jhazmat.2008.12.071 pmid:19188018
31
MalkocE, NuhogluY, DundarM. Adsorption of chromium(VI) on pomace—an olive oil industry waste: batch and column studies. Journal of Hazardous Materials , 2006, 138(1): 142–151 doi: 10.1016/j.jhazmat.2006.05.051 pmid:16844293