Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO2
Zongcheng ZHAN,Xiaojun LIU,Dongzhu MA,Liyun SONG,Jinzhou LI,Hong HE(),Hongxing DAI
Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
A novel Ultrasonic Assisted Membrane Reduction (UAMR)-hydrothermal method was used to prepare flower-like Pt/CeO2 catalysts. The texture, physical/chemical properties, and reducibility of the flower-like Pt/CeO2 catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), N2 adsorption, and hydrogen temperature programmed reduction (H2-TPR) techniques. The catalytic performance of the catalysts for treating automobile emission was studied relative to samples prepared by the conventional wetness impregnation method. The Pt/CeO2 catalysts fabricated by this novel method showed high specific surface area and metal dispersion, excellent three-way catalytic activity, and good thermal stability. The strong interaction between the Pt nanoparticles and CeO2 improved the thermal stability. The Ce4+ ions were incorporated into the surfactant chains and the Pt nanoparticles were stabilized through an exchange reaction of the surface hydroxyl groups. The SEM results demonstrated that the Pt/CeO2 catalysts had a typical three-dimensional (3D) hierarchical porous structure, which was favorable for surface reaction and enhanced the exposure degree of the Pt nanoparticles. In brief, the flower-like Pt/CeO2 catalysts prepared by UAMR-hydrothermal method exhibited a higher Pt metal dispersion, smaller particle size, better three-way catalytic activity, and improved thermal stability versus conventional materials.
HeH, DaiH X, NgL H, WongK W, AuC T. Pd-, Pt-, and Rh-Loaded Ce0.6Zr0.35Y0.05O2 three-way catalysts: an investigate on performance and redox properties. Journal of Catalysis, 2002, 206(1): 1-13 doi: 10.1006/jcat.2001.3466
2
IkryannikovaL N, AksenovA A, MarkaryanG L, MuravévaG P, KostyukB G, KharlanovA N, LuninaE V. The redox treatments influence on the structure and properties of M2O3-CeO2-ZrO2 (M=Y, La) solid solutions. Applied Catalysis A, General, 2001, 210(1-2): 225-235 doi: 10.1016/S0926-860X(00)00811-5
3
HeoI, ChoungJ W, KimP S, NamI S, SongY I, InC B, YeoG K. The alteration of the performance of field-aged Pd-based TWCs towards CO and C3H6 oxidation. Applied Catalysis B: Environmental, 2009, 92(1-2): 114-125 doi: 10.1016/j.apcatb.2009.07.016
4
PapavasiliouA, TsetsekouA, MatsoukaV, KonsolakisM, YentekakisI V. An investigation of the role of Zr and La dopants into Ce1-x-yZrxLayOδ enriched γ-Al2O3 TWC washcoats. Applied Catalysis A: General, 2010, 382 (1, 30): 73-84 doi: 10.1016/j.apcata.2010.04.025
5
PapavasiliouA, TsetsekouA, MatsoukaV, KonsolakisM, YentekakisI V, BoukosN. Development of a Ce-Zr-La modified Pt/γ-Al2O3 TWCs washcoat: effect of synthesis procedure on catalytic behavior and thermal durability. Applied Catalysis B: Environmental, 2009, 90(1-2): 162-174 doi: 10.1016/j.apcatb.2009.03.006
6
PapavasiliouA, TsetsekouA, MatsoukaV, KonsolakisM, YentekakisbI V, BoukosN. Synergistic structural and surface promotion of monometallic (Pt) TWCs: effectiveness and thermal aging tolerance. Applied Catalysis B: Environmental, 2011, 106(1-2): 228-241 doi: 10.1016/j.apcatb.2011.05.030
7
CourtoisX, PerrichonV. Distinct roles of copper in bimetallic copper-rhodium three-way catalysts deposited on redox supports. Applied Catalysis B: Environmental, 2005, 57(1-15): 63-72 doi: 10.1016/j.apcatb.2004.10.010
8
JooS H, ParkJ Y, TsungC K, YamadaY, YangP D, SomorjaiG A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nature Materials, 2009, 8(2): 126-131 doi: 10.1038/nmat2329 pmid: 19029893
9
LimB, JiangM J, CamargoP H C, ChoE C, TaoJ, LuX M, ZhuY M, XiaY N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, 2009, 324(5932): 1302-1305 doi: 10.1126/science.1170377 pmid: 19443738
10
QiaoB T, WangA Q, YangX F, AllardL F, JiangZ, CuiY T, LiuJ Y, LiJ, ZhangT. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634-641 doi: 10.1038/nchem.1095 pmid: 21778984
11
LiuL C, GuanX, LiZ M, ZiX H, DaiH X, HeH. Supported bimetallic AuRh/γ-Al2O3 nanocatalyst for the selective catalytic reduction of NO by propylene. Applied Catalysis B: Environmental, 2009, 90(1-2): 1-9 doi: 10.1016/j.apcatb.2009.02.022
12
LiuL C, WeiT, ZiX H, HeH, DaiH X. Research on assembly of nano-Pd colloid and fabrication of supported Pd catalysts from the metal colloid. Catalysis Today, 2010, 153(3-4): 162-169 doi: 10.1016/j.cattod.2010.04.003
13
ChenG Z, XuC X, SongX Y, XuS L, DingY, SunS X. Template-free synthesis of single crystallinelike CeO2 hollow nanocubes. Crystal Growth & Design, 2008, 8(12): 4449-4453 doi: 10.1021/cg800288x
14
PanC S, ZhangD S, ShiL Y, FangJ H. Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes. European Journal of Inorganic Chemistry, 2008, 2008(15): 2429-2436 doi: 10.1002/ejic.200800047
15
YuR B, YanL, ZhengP, ChenJ, XingX R. Controlled synthesis of CeO2 flower-like and well-aligned nanorod hierarchical architectures by a phosphate-assisted hydrothermal route. Journal of Physical Chemistry C, 2008, 112(50): 19896-19900 doi: 10.1021/jp806092q
16
HanW Q, WuL J, ZhuY M. Formation and oxidation state of CeO(2-x) nanotubes. Journal of the American Chemical Society, 2005, 127(37): 12814-12815 doi: 10.1021/ja054533p pmid: 16159271
ZhongL S, HuJ S, CaoA M, SongW G, WanL J. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chemistry of Materials, 2007, 19(7): 1648-1655 doi: 10.1021/cm062471b
LiH F, LuG Z, DaiQ G, WangY Q, GuoY, GuoY L. Hierarchical organization and catalytic activity of high-surface-area mesoporous ceria microspheres prepared via hydrothermal routes. Appied Materials and Interfaces, 2010, 2(3): 838-846 doi: 10.1021/am900829y pmid: 20356289
21
ZhouH P, WuH S, ShenJ, YinA X, SunL D, YanC H. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. Journal of the American Chemical Society, 2010, 132(14): 4998-4999 doi: 10.1021/ja101110m pmid: 20329793
22
RiouxR M, HsuB B, GrassM E, SongH, SomorjaiG A. Influence of particle size on reaction selectivity in cyclohexene hydrogenation and dehydrogenation over silica-supported mono-disperse Pt particles. Catalysis Letters, 2008, 126(1-2): 10-19 doi: 10.1007/s10562-008-9637-8
23
WeiY C, LiuJ, ZhaoZ, ChenY S, XuC M, DuanA J, JiangG Y, HeH. Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. Angewandte Chemie International Edition, 2011, 50(10): 2326-2329 pmid: 21351346
24
WeiY C, LiuJ, ZhaoZ, DuanA J, JiangG Y, XuC M, GaoJ S, HeH, WangX P. Three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported gold nanoparticles: synthesis with controllable size and super-catalytic performance for soot oxidation. Energy and Environmental Science, 2011, 4(8): 2959-2970 doi: 10.1039/c0ee00813c
25
KangS B, KwonH J, NamI S, SongY I, OhS H. Activity function for describing alteration of three way catalyst performance over palladium only three way catalysts by catalyst mileage. Industrial & Engineering Chemistry Research, 2011, 50(9): 5499-5509 doi: 10.1021/ie200083f
26
ConcepcionP, CormaA, SilvestreA. Chemoselective hydrogenation catalysts: Pt on meso-structured CeO2 nanoparticles embedded within ultrathin layers of SiO2 binder. Journal of American ChemistrySociety, 2004, 126(17): 5523-5532 doi: 10.1021/ja031768x
27
EllisA V, WilsonM A. Carbon exchange in hot alkaline degradation of glucose. Journal of Organic Chemistry, 2002, 67(24): 8469-8474 doi: 10.1021/jo025912t pmid: 12444627
28
SunC W, LiH, ZhangH R, WangZ X, ChenL Q. Controlled synthesis of CeO2 nanorods by a solvothermal method. Nanotechnology, 2005, 16(9): 1454-1463 doi: 10.1088/0957-4484/16/9/006
29
TerribileD, TrovarelliA, LlorcaJ, LeitenburgC D, DolcettiG. The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. Journal of Catalysis, 1998, 178(1): 299-308 doi: 10.1006/jcat.1998.2152
30
YangB Y, MontgomeryR. Alkaline degradation of glucose: effect of initial concentration of reactants. Carbohydrate Research, 1996, 280(1): 27-45 doi: 10.1016/0008-6215(95)00294-4
31
HinokumaS, FujiiH, OkamotoM, IkeueK, MachidaM. Metallic Pd nanoparticles formed by Pd-O-Ce interaction: a reason for sintering induced activation for CO oxidation. Chemistry of Materials, 2010, 22(22): 6183-6190 doi: 10.1021/cm102355x
32
ShinjohH, HatanakaM, NagaiY, TanabeT, TakahashiN, YoshidaT, MiyakeY. Suppression of noble metal sintering based on the support anchoring effect and its application in automotive three way catalysis. Topics in Catalysis, 2009, 52(13-20): 1967-1971 doi: 10.1007/s11244-009-9371-5
33
NagaiY, HirabayashiT, DohmaeK, TakagiN, MinamiT, ShinjohH, MatsumotoS. Sintering inhibition mechanism of platinum supported on ceria-based oxideand Pt-oxide-support interaction. Journal of Catalysis, 2006, 242(1): 103-109 doi: 10.1016/j.jcat.2006.06.002
34
ZimmerP, TschöpeA, BirringerR. Temperature programmed reaction spectroscopy of ceria and Cu/Ceria supported oxide catalyst. Journal of Catalysis, 2002, 205(2): 339-345 doi: 10.1006/jcat.2001.3461
35
Silvestre-AlberoJ, Rodrı?guez-ReinosoF, Sepúlveda-EscribanoA. Improved metal-support interaction in Pt/CeO2-SiO2 catalysts after zinc addition. Journal of Catalysis, 2002, 210(1): 127-136 doi: 10.1006/jcat.2002.3670