1. School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China 2. Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, Shanghai 201620, China 3. Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China 4. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
● Greenhouse gas mitigation by biomass-based CO2 utilization with a Fe cycle system.
● The system including hydrothermal CO2 reduction with Fe and Fe recovery by biomass.
● The reduction potential quantified by experiments, simulations, and an ex-ante LCA.
● The greatest GHG reduction potential is −34.03 kg CO2-eq/kg absorbed CO2.
● Ex-ante LCA supports process optimization to maximize GHG reduction potential.
CO2 utilization becomes a promising solution for reducing anthropogenic greenhouse gas (GHG) emissions. Biomass-based CO2 utilization (BCU) even has the potential to generate negative emissions, but the corresponding quantitative evaluation is limited. Herein, the biomass-based CO2 utilization with an iron cycle (BCU-Fe) system, which converts CO2 into formate by Fe under hydrothermal conditions and recovers Fe with biomass-derived glycerin, was investigated. The GHG reduction potential under various process designs was quantified by a multidisciplinary method, including experiments, simulations, and an ex-ante life-cycle assessment. The results reveal that the BCU-Fe system could bring considerable GHG emission reduction. Significantly, the lowest value is −34.03 kg CO2-eq/kg absorbed CO2 (−2.44 kg CO2-eq/kg circulated Fe) with the optimal yield of formate (66%) and Fe (80%). The proposed ex-ante evaluation approach not only reveals the benefits of mitigating climate change by applying the BCU-Fe system, but also serves as a generic tool to guide the industrialization of emerging carbon-neutral technologies.
Up-scaled experiment data based on (Duo et al., 2016)
Produced HCOONa
Produced H2
Fe consumption
Linked with BR process
Produced Fe3O4
BR
Electricity consumption
Aspen Plus simulation
Ecoinvent database (Table S4)
H2SO4 consumption
Stoichiometric calculation
Glycerin consumption
Up-scaled experiment data based on this study
NaOH consumption
Produced LA
Fe3O4 consumption
Linked with HR process
Produced Fe
Tab.1
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
1
M M Abdelnaby , K Liu , K Hassanein , Z Yin . (2021). Photo/electrochemical carbon dioxide conversion into C3+ hydrocarbons: reactivity and selectivity. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 7(9): 969–981 https://doi.org/10.1002/cnma.202100106
2
A Álvarez , A Bansode , A Urakawa , A V Bavykina , T A Wezendonk , M Makkee , J Gascon , F Kapteijn . (2017). Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chemical Reviews, 117(14): 9804–9838 https://doi.org/10.1021/acs.chemrev.6b00816
3
A Babin , C Vaneeckhaute , M C Iliuta . (2021). Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: a review. Biomass and Bioenergy, 146: 105968 https://doi.org/10.1016/j.biombioe.2021.105968
Martinez F A Castillo , E M Balciunas , J M Salgado , González J M Domínguez , A Converti , R P D S Oliveira . (2013). Lactic acid properties, applications and production: a review. Trends in Food Science & Technology, 30(1): 70–83 https://doi.org/10.1016/j.tifs.2012.11.007
8
Y Cheng , Y Shan , Y Xue , Y Zhu , X Wang , L Xue , Y Liu , F Qiao , M Zhang . (2022). Variation characteristics of atmospheric methane and carbon dioxide in summertime at a coastal site in the South China Sea. Frontiers of Environmental Science & Engineering, 16(11): 139 https://doi.org/10.1007/s11783-022-1574-z
9
S Y Chin , S Shahruddin , G K Chua , N Samsodin , H D Setiabudi , N S Karam Chand , F N Chew , J X Leong , R Jusoh , N A Samsudin . (2021). Palm oil-based chemicals for sustainable development of petrochemical industries in Malaysia: progress, prospect, and challenges. ACS Sustainable Chemistry & Engineering, 9(19): 6510–6533 https://doi.org/10.1021/acssuschemeng.0c09329
10
I Delidovich , P J Hausoul , L Deng , R Pfutzenreuter , M Rose , R Palkovits . (2016). Alternative monomers based on lignocellulose and their use for polymer production. Chemical Reviews, 116(3): 1540–1599 https://doi.org/10.1021/acs.chemrev.5b00354
J Duo , F Jin , Y Wang , H Zhong , L Lyu , G Yao , Z Huo . (2016). NaHCO3-enhanced hydrogen production from water with Fe and in situ highly efficient and autocatalytic NaHCO3 reduction into formic acid. Chemical Communications (Cambridge), 52(16): 3316–3319 https://doi.org/10.1039/C5CC09611A
13
M Dusselier , P Van Wouwe , A Dewaele , E Makshina , B F Sels . (2013). Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy & Environmental Science, 6(5): 1415–1442 https://doi.org/10.1039/c3ee00069a
14
X Feng , Y Pi , Y Song , C Brzezinski , Z Xu , Z Li , W Lin . (2020). Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 Reduction with earth-abundant copper photosensitizers. Journal of the American Chemical Society, 142(2): 690–695 https://doi.org/10.1021/jacs.9b12229
15
R Frischknecht , N Jungbluth , H J Althaus , G Doka , R Dones , T Heck , S Hellweg , R Hischier , T Nemecek , G Rebitzer , M Spielmann . (2005). The ecoinvent database: overview and methodological framework (7 pp). International Journal of Life Cycle Assessment, 10(1): 3–9 https://doi.org/10.1065/lca2004.10.181.1
16
X Gong , J Li , S X Chang , Q Wu , Z An , C Huang , X Sun , S Li , H Wang . (2022). Cattle manure biochar and earthworm interactively affected CO2 and N2O emissions in agricultural and forest soils: Observation of a distinct difference. Frontiers of Environmental Science & Engineering, 16(3): 39 https://doi.org/10.1007/s11783-021-1473-8
17
R He , B Hu , H Zhong , F Jin , J Fan , Y H Hu , Z Jing . (2019). Reduction of CO2 with H2S in a simulated deep-sea hydrothermal vent system. Chemical Communications (Cambridge), 55(8): 1056–1059 https://doi.org/10.1039/C8CC08075E
18
J Huijbregts M a , Z J N Steinmann , P M F Elshout , G Stam , F Verones , M Vieira , M Zijp , A Hollander , R Van Zelm . (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2): 138–147 https://doi.org/10.1007/s11367-016-1246-y
19
E Igos, E Benetto, R Meyer, P Baustert, B Othoniel (2019). How to treat uncertainties in life cycle assessment studies? International Journal of Life Cycle Assessment, 24(4): 794–807 https://doi.org/10.1007/s11367-018-1477-1
20
S S Iyer , I Bajaj , P Balasubramanian , M M F Hasan . (2017). Integrated carbon capture and conversion to produce syngas: novel process design, intensification, and optimization. Industrial & Engineering Chemistry Research, 56(30): 8622–8648 https://doi.org/10.1021/acs.iecr.7b01688
21
F Jin , Y Gao , Y Jin , Y Zhang , J Cao , Z Wei , R L Jr Smith . (2011). High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles. Energy & Environmental Science, 4(3): 881–884 https://doi.org/10.1039/c0ee00661k
22
H H Khoo , I Halim , A D Handoko . (2020). LCA of electrochemical reduction of CO2 to ethylene. Journal of CO2 Utilization, 41: 101229 https://doi.org/10.1016/j.jcou.2020.101229
23
M Lacirignola , P Blanc , R Girard , P Pérez-López , I Blanc . (2017). LCA of emerging technologies: addressing high uncertainty on inputs’ variability when performing global sensitivity analysis. Science of the Total Environment, 578: 268–280 https://doi.org/10.1016/j.scitotenv.2016.10.066
24
J Li , P Zhu , H Zhong , Y Yang , J Cheng , Y Wang , F Jin . (2021). Hydrothermal reduction of NaHCO3 into formate with protein-based biomass over Pd/γ-Al2O3 nanocatalysts. ACS Sustainable Chemistry & Engineering, 9(13): 4791–4800 https://doi.org/10.1021/acssuschemeng.0c09353
J Lu , S Kumagai , Y Fukushima , H Ohno , S Borjigin , T Kameda , Y Saito , T Yoshioka . (2021). Sustainable advance of Cl recovery from polyvinyl chloride waste based on experiment, simulation, and ex ante life-cycle assessment. ACS Sustainable Chemistry & Engineering, 9(42): 14112–14123 https://doi.org/10.1021/acssuschemeng.1c04067
27
J Lu , S Kumagai , Y Fukushima , H Ohno , T Kameda , Y Saito , T Yoshioka . (2020). Combined experiment, simulation, and ex-ante LCA Approach for sustainable Cl recovery from NaCl/Ethylene Glycol by electrodialysis. Industrial & Engineering Chemistry Research, 59(45): 20112–20122 https://doi.org/10.1021/acs.iecr.0c03565
28
J Lu , S Kumagai , H Ohno , T Kameda , Y Saito , T Yoshioka , Y Fukushima . (2019). Deducing targets of emerging technologies based on ex ante life cycle thinking: case study on a chlorine recovery process for polyvinyl chloride wastes. Resources, Conservation and Recycling, 151: 104500 https://doi.org/10.1016/j.resconrec.2019.104500
29
J Lu , J Tang , R Shan , G Li , P Rao , N Zhang . (2023). Spatiotemporal analysis of the future carbon footprint of solar electricity in the United States by a dynamic life cycle assessment. iScience, 26(3): 106188 https://doi.org/10.1016/j.isci.2023.106188
30
M Madi , M Tahir , S Tasleem . (2021). Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO2 reduction to renewable solar fuels: a review. Journal of Environmental Chemical Engineering, 9(5): 106264 https://doi.org/10.1016/j.jece.2021.106264
31
J A Martens , A Bogaerts , N De Kimpe , P A Jacobs , G B Marin , K Rabaey , M Saeys , S Verhelst . (2017). The chemical route to a carbon dioxide neutral world. ChemSusChem, 10(6): 1039–1055 https://doi.org/10.1002/cssc.201601051
32
N G Moustakas , J Strunk . (2018). Photocatalytic CO2 reduction on TiO2-based materials under controlled reaction conditions: systematic insights from a literature study. Chemistry – A European Journal, 24(49): 12739–12746 https://doi.org/10.1002/chem.201706178
33
J F Peters , D Iribarren , J Dufour . (2015a). Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environmental Science & Technology, 49(8): 5195–5202 https://doi.org/10.1021/es5060786
34
J F Peters , D Iribarren , J Dufour . (2015b). Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading. Fuel, 139: 441–456 https://doi.org/10.1016/j.fuel.2014.09.014
35
A A Kiss . (2014). Energy efficient distillation powered by heat pumps upgrading low quality energy to drive the Reboiler of the column. NPT Procestechnologie, 2: 15–17
36
C Ruiz , L Rincón , R R Contreras , C Sidney , J Almarza . (2020). Sustainable and negative carbon footprint solid-based NaOH technology for CO2 capture. ACS Sustainable Chemistry & Engineering, 8(51): 19003–19012 https://doi.org/10.1021/acssuschemeng.0c07093
37
M A Sabri , S Al Jitan , D Bahamon , L F Vega , G Palmisano . (2021). Current and future perspectives on catalytic-based integrated carbon capture and utilization. Science of the Total Environment, 790: 148081 https://doi.org/10.1016/j.scitotenv.2021.148081
38
B S Silvestre , D M Ţîrcă . (2019). Innovations for sustainable development: moving toward a sustainable future. Journal of Cleaner Production, 208: 325–332 https://doi.org/10.1016/j.jclepro.2018.09.244
39
P Stegmann , V Daioglou , M Londo , D P Van Vuuren , M Junginger . (2022). Plastic futures and their CO2 emissions. Nature, 612(7939): 272–276 https://doi.org/10.1038/s41586-022-05422-5
40
Y Tan , W Nookuea , H Li , E Thorin , J Yan . (2016). Property impacts on Carbon Capture and Storage (CCS) processes: a review. Energy Conversion and Management, 118: 204–222 https://doi.org/10.1016/j.enconman.2016.03.079
41
Y Tan , W Nookuea , H Li , E Thorin , J Yan . (2017). Evaluation of viscosity and thermal conductivity models for CO2 mixtures applied in CO2 cryogenic process in carbon capture and storage (CCS). Applied Thermal Engineering, 123: 721–733 https://doi.org/10.1016/j.applthermaleng.2017.05.124
42
The Intergovernmental Panel on Climate Change (2022). IPCC, 2022: summary for policymakers. In: Climate change 2022: Impacts, adaptation, and vulnerability: contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, NY, US, pp. 3–33
43
N Thonemann , A Schulte . (2019). From laboratory to industrial scale: a prospective LCA for electrochemical reduction of CO2 to formic acid. Environmental Science & Technology, 53(21): 12320–12329 https://doi.org/10.1021/acs.est.9b02944
44
M Villares , A Işıldar , Der Giesen C Van , J Guinée . (2017). Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste. International Journal of Life Cycle Assessment, 22(10): 1618–1633 https://doi.org/10.1007/s11367-017-1270-6
45
N Von Der Assen , P Voll , M Peters , A Bardow . (2014). Life cycle assessment of CO2 capture and utilization: a tutorial review. Chemical Society Reviews, 43(23): 7982–7994 https://doi.org/10.1039/C3CS60373C
46
F Wang , S Deng , H Zhang , J Wang , J Zhao , H Miao , J Yuan , J Yan . (2020a). A comprehensive review on high-temperature fuel cells with carbon capture. Applied Energy, 275: 115342 https://doi.org/10.1016/j.apenergy.2020.115342
47
W Wang , S Wang , X Ma , J Gong . (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7): 3703–3727 https://doi.org/10.1039/c1cs15008a
48
X Wang , Y Yang , H Zhong , R He , J Cheng , F Jin . (2020b). In situ formed Raney-Ni/Fe3O4 catalyzed reduction of NaHCO3 into acetate with Fe as reductant in water. Catalysis Today, 350: 136–141 https://doi.org/10.1016/j.cattod.2019.06.030
49
W Wei , P Larrey-Lassalle , T Faure , N Dumoulin , P Roux , J D Mathias . (2015). How to conduct a proper sensitivity analysis in life cycle assessment: taking into account correlations within LCI Data and Interactions within the LCA calculation model. Environmental Science & Technology, 49(1): 377–385 https://doi.org/10.1021/es502128k
50
Y M Wei , R Han , C Wang , B Yu , Q M Liang , X C Yuan , J Chang , Q Zhao , H Liao , B Tang , J Yan , L Cheng , Z Yang . (2020). Self-preservation strategy for approaching global warming targets in the Post-Paris Agreement Era. Nature Communications, 11(1): 1624 https://doi.org/10.1038/s41467-020-15453-z
51
G Wernet , C Bauer , B Steubing , J Reinhard , E Moreno-Ruiz , B Weidema . (2016). The ecoinvent database version 3 (part I): overview and methodology. International Journal of Life Cycle Assessment, 21(9): 1218–1230 https://doi.org/10.1007/s11367-016-1087-8
52
R Wölfel , N Taccardi , A Bösmann , P Wasserscheid . (2011). Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chemistry, 13(10): 2759–2763 https://doi.org/10.1039/c1gc15434f
53
Q Xu , X Li , T Pan , C Yu , J Deng , Q Guo , Y Fu . (2016). Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone. Green Chemistry, 18(5): 1287–1294 https://doi.org/10.1039/C5GC01454A
54
N Xue , J Lu , D Gu , Y Lou , Y Yuan , G Li , S Kumagai , Y Saito , T Yoshioka , N Zhang . (2023). Carbon footprint analysis and carbon neutrality potential of desalination by electrodialysis for different applications. Water Research, 232: 119716 https://doi.org/10.1016/j.watres.2023.119716
55
M Yang , X Feng , G Liu . (2016). Heat integration of heat pump assisted distillation into the overall process. Applied Energy, 162: 1–10 https://doi.org/10.1016/j.apenergy.2015.10.044
56
Y Yang , H Zhong , R He , X Wang , J Cheng , G Yao , F Jin . (2019). Synergetic conversion of microalgae and CO2 into value-added chemicals under hydrothermal conditions. Green Chemistry, 21(6): 1247–1252 https://doi.org/10.1039/C8GC03645D
57
Y Yang , H Zhong , G Yao , R He , B Jin , F Jin . (2018). Hydrothermal reduction of NaHCO3 into formate with hexanehexol. Catalysis Today, 318: 10–14 https://doi.org/10.1016/j.cattod.2017.09.005
58
W Ye , J Huang , J Lin , X Zhang , J Shen , P Luis , B Van Der Bruggen . (2015). Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: conditioning NaOH as a CO2 absorbent. Separation and Purification Technology, 144: 206–214 https://doi.org/10.1016/j.seppur.2015.02.031
59
D Zhang , R Hou , W Wang , H Zhao . (2022). Recovery and reuse of floc sludge for high-performance capacitors. Frontiers of Environmental Science & Engineering, 16(6): 78 https://doi.org/10.1007/s11783-021-1512-5
60
X Zhao , H Zhou , V S Sikarwar , M Zhao , A H A Park , P S Fennell , L Shen , L S Fan . (2017). Biomass-based chemical looping technologies: the good, the bad and the future. Energy & Environmental Science, 10(9): 1885–1910 https://doi.org/10.1039/C6EE03718F