Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (4) : 380-386    https://doi.org/10.1007/s11783-009-0142-0
Research articles
Effects of nitrate concentration on biological hydrogen production by mixed cultures
Bo WANG,Wei WAN,Jianlong WANG,
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
 Download: PDF(178 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of nitrate on fermentative hydrogen production and soluble metabolites from mixed cultures were investigated by varying nitrate concentrations from 0 to 10g N/L at 35°C with an initial pH of 7.0. The results showed that the substrate degradation rate, hydrogen production potential, hydrogen yield, and average hydrogen production rate initially increased with increasing nitrate concentrations from 0 to 0.1g N/L, while they decreased with increasing nitrate concentrations from 0.1 to 10g N/L. The maximum hydrogen production potential of 305.0mL, maximum hydrogen yield of 313.1mL/g glucose, and maximum average hydrogen production rate of 13.3mL/h were obtained at a nitrate concentration of 0.1g N/L. The soluble metabolites produced by the mixed cultures contained only ethanol and acetic acid (HAc) without propionic acid (HPr) and butyric acid (HBu). This study used the Modified Logistic model to describe the progress of cumulative hydrogen production in batch tests. A concise model was proposed to describe the effects of nitrate concentration on average hydrogen production rate.
Keywords nitrogen source      biohydrogen      fermentative hydrogen production      quantitative kinetic model      
Issue Date: 05 December 2009
 Cite this article:   
Bo WANG,Jianlong WANG,Wei WAN. Effects of nitrate concentration on biological hydrogen production by mixed cultures[J]. Front.Environ.Sci.Eng., 2009, 3(4): 380-386.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0142-0
https://academic.hep.com.cn/fese/EN/Y2009/V3/I4/380
Wang J L, Wan W. Kinetic models for fermentativehydrogen production: a review. Int J HydrogenEnergy, 2009, 34(8): 3313–3323

doi: 10.1016/j.ijhydene.2009.02.031
Wang J L, Wan W. Factors influencing fermentativehydrogen production: a review. Int J HydrogenEnergy, 2009, 34(2): 799–811

doi: 10.1016/j.ijhydene.2008.11.015
Wang J L, Wan W. Experimental design methodsfor fermentative hydrogen production:a review. Int J Hydrogen Energy, 2009, 34(1): 235–244

doi: 10.1016/j.ijhydene.2008.10.008
Wang J L, Wan W. Application of desirabilityfunction based on neural network for optimizing biohydrogen productionprocess. Int J Hydrogen Energy, 2009, 34(3): 1253–1259

doi: 10.1016/j.ijhydene.2008.11.055
Wang J L, Wan W. Optimization of fermentativehydrogen production process using genetic algorithm based on neuralnetwork and response surface methodology. Int J Hydrogen Energy, 2009, 34(1): 255–261

doi: 10.1016/j.ijhydene.2008.10.010
Wang J L, Wan W. Optimization of fermentativehydrogen production process by response surface methodology. Int J Hydrogen Energy, 2008, 33(23): 6976–6984

doi: 10.1016/j.ijhydene.2008.08.051
Wang B, Wan W, Wang J L. Inhibitory effect of ethanol, acetic acid, propionicacid and butyric acid on fermentative hydrogen production. Int J Hydrogen Energy, 2008, 33(23): 7013–7019

doi: 10.1016/j.ijhydene.2008.09.027
Wang J L, Wan W. Effect of temperature onfermentative hydrogen production by mixed cultures. Int J Hydrogen Energy, 2008, 33(20): 5392–5397

doi: 10.1016/j.ijhydene.2008.07.010
Wang J L, Wan W. Effect of Fe2+ concentrations on fermentative hydrogen productionby mixed cultures. Int J Hydrogen Energy, 2008, 33(4): 1215–1220

doi: 10.1016/j.ijhydene.2007.12.044
Wang J L, Wan W. Comparison of different pretreatmentmethods for enriching hydrogen-producing cultures from digested sludge. Int J Hydrogen Energy, 2008, 33(12): 2934–2941

doi: 10.1016/j.ijhydene.2008.03.048
Wang J L, Wan W. Influence of Ni2+ concentration on biohydrogen production. Bioresour Technol, 2008, 99(18): 8864–8868

doi: 10.1016/j.biortech.2008.04.052
Wang J L, Wan W. Investigating the effectof substrate concentration on biohydrogen production by using kineticmodels. Sci China: Ser B, 2008, 52(11): 1110–1117

doi: 10.1007/s11426-008-0104-6
Wang B, Wan W, Wang J L. Effect of ammonia nitrogen concentrations on fermentativehydrogen production by mixed cultures. BioresourTechnol, 2009, 100(3): 1211–1213

doi: 10.1016/j.biortech.2008.08.018
Das D, Veziroglu T N. Advances in biological hydrogenproduction processes. Int J Hydrogen Energy, 2008, 33(21): 6046–6057

doi: 10.1016/j.ijhydene.2008.07.098
Li C L, Fang H H P. Fermentative hydrogen productionfrom wastewater and solid wastes by mixed cultures. Crit Rev Env Sci Technol, 2007, 37(3): 1–39

doi: 10.1080/10643380600729071
Kim J O, Kim Y H, Yeom S H, Song B K, Kim I H. Enhancing continuous hydrogen gas productionby the addition of nitrate into an anaerobic reactor. Process Biochem, 2006, 41(5): 1208–1212

doi: 10.1016/j.procbio.2005.11.017
Lay J J, Fan K S, Hwang J I, Chang J I, Hsu P C. Factors affecting hydrogen productionfrom food wastes by Clostridium-rich composts. J Environ Eng, 2005, 131(4): 595–602

doi: 10.1061/(ASCE)0733-9372(2005)131:4(595)
Yokoyama H, Waki M, Ogino A, Ohmori H, Tanaka Y. Hydrogen fermentation propertiesof undiluted cow dung. J Biosci Bioeng, 2007, 104(1): 82–85

doi: 10.1263/jbb.104.82
Bisaillon A, Turcot J, Hallenbeck P C. The effect of nutrient limitation on hydrogen productionby batch cultures of Escherichia coli. Int J Hydrogen Energy, 2006, 31(11): 1504–1508

doi: 10.1016/j.ijhydene.2006.06.016
Liu G Z, Shen J Q. Effects of culture and mediumconditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng, 2004, 98(4): 251–256
Whang L M, Hsiao C J, Cheng S S. A dual-substrate steady-state model for biological hydrogenproduction in an anaerobic hydrogen fermentation process. Biotechnol Bioeng, 2006, 95(3): 492–500

doi: 10.1002/bit.21041
Morimoto M, Atsuko M, Atif A A Y, Ngan M A, Razi A F, Iyuke S E, Bakir A M. Biological production ofhydrogen from glucose by natural anaerobic microflora. Int J Hydrogen Energy, 2004, 29(7): 709–713

doi: 10.1016/j.ijhydene.2003.09.009
Salerno M B, Park W, Zuo Y, Logan B E. Inhibitionof biohydrogen production by ammonia. WaterRes, 2006, 40(6): 1167–1172

doi: 10.1016/j.watres.2006.01.024
Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process: A review. Bioresour Technol, 2008, 99(10): 4044–4064

doi: 10.1016/j.biortech.2007.01.057
Miller G L. Use of dinitrosalicylic acid reagent for determination of reducingsugar. Anal Chem, 1959, 31(3): 426–427

doi: 10.1021/ac60147a030
APHA. Standard Methodsfor the Examination of Water and Wastewater. Washington DC: American PublicHealth Association, 1995
Mohan S V, Babu V L, Sarma P N. Effect of various pretreatment methods on anaerobic mixedmicroflora to enhance biohydrogen production utilizing dairy wastewateras substrate. Bioresour Technol, 2008, 99(1): 59–67

doi: 10.1016/j.biortech.2006.12.004
Li J Z, Ren N Q, Li B K. Anaerobic biohydrogen production from monosaccharidesby a mixed microbial community culture. Bioresour Technol, 2008, 99(14): 6528–6537

doi: 10.1016/j.biortech.2007.11.072
Oh S E, Ginkel S V, Logan B E. The relative effectiveness of pH control and heat treatmentfor enhancing biohydrogen gas production. Environ Sci Technol, 2003, 37(22): 5186–5190

doi: 10.1021/es034291y
Mu Y, Zheng X J, Yu H Q, Zhu R F. Biologicalhydrogen production by anaerobic sludge at various temperatures. Int J Hydrogen Energy, 2006, 31(6): 780–785

doi: 10.1016/j.ijhydene.2005.06.016
Fang H H P, Liu H. Effect of pH on hydrogenproduction from glucose by mixed culture. Bioresour Technol, 2002, 82(1): 87–93

doi: 10.1016/S0960-8524(01)00110-9
Oh Y K, Seol E H, Kim J R, Park S. Fermentativebiohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrogen Energy, 2003, 28(12): 1353–1359

doi: 10.1016/S0360-3199(03)00024-7
Chittibabu G, Nath K, Das D. Feasibility studies on the fermentative hydrogen productionby recombinant Escherichia coli BL-21. Process Biochem, 2006, 41(3): 682–688

doi: 10.1016/j.procbio.2005.08.020
Morimoto M, Atsuko M, Atif A A Y, Ngan M A, Fakhru’l-Razi A, Iyuke S E, Bakir A M. Biologicalproduction of hydrogen from glucose by natural anaerobic microflora. Int J Hydrogen Energy, 2004, 29(7): 709–713

doi: 10.1016/j.ijhydene.2003.09.009
[1] Haifa RAJHI,Daniel PUYOL,Mirna C. MARTÍNEZ,Emiliano E. DÍAZ,José L. SANZ. Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems[J]. Front. Environ. Sci. Eng., 2016, 10(3): 513-521.
[2] Gefu ZHU, Chaoxiang LIU, Jianzheng LI, Nanqi REN, Lin LIU, Xu HUANG. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia[J]. Front Envir Sci Eng, 2013, 7(1): 143-150.
[3] Guochen ZHENG, Jianzheng LI, Feng ZHAO, Liguo ZHANG, Li WEI, Qiaoying BAN, Yongsheng ZHAO. Effect of illumination on the hydrogen-production capability of anaerobic activated sludge[J]. Front Envir Sci Eng, 2012, 6(1): 125-130.
[4] Hailong LIN, Weiguang LI, Changhong GUO, Sihang QU, Nanqi REN. Advances in the study of directed evolution for cellulases[J]. Front Envir Sci Eng Chin, 2011, 5(4): 519-525.
[5] Sheng CHANG, Jianzheng LI, Feng LIU. Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor[J]. Front Envir Sci Eng Chin, 2011, 5(1): 140-148.
[6] Guanghong ZHENG, Zhuhui KANG, Yifan QIAN, Lei WANG, . Enhanced biohydrogen generation from organic wastewater containing N H 4 + by phototrophic bacteria Rhodobacter sphaeroides AR-3[J]. Front.Environ.Sci.Eng., 2009, 3(4): 387-392.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed