Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (4) : 483-491    https://doi.org/10.1007/s11783-009-0144-y
Research articles
Removal of multicomponent VOCs in off-gases from an oil refining wastewater treatment plant by a compost-based biofilter system
Dan WU1,Chunyan ZHANG2,Li HAO2,Changjun GENG3,Xie QUAN3,
1.School of Environmental Science, Liaoning University, Shenyang 110036, China;School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; 2.Research Institute of Daqing Petrochemical Company, Daqing 163714, China; 3.School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China;
 Download: PDF(320 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Waste gases from oil refining wastewater treatment plants are often characterized by the presence of multicomponent and various concentrations of compounds. An evaluation of the performance and feasibility of removing multicomponent volatile organic compounds (VOCs) in off-gases from oil refining wastewater treatment plants was conducted in a pilot-scale compost-based biofilter system. This system consists of two identical biofilters packed with compost and polyethylene (PE). This paper investigates the effects of various concentrations of nonmethane hydrocarbon (NMHC) and empty bed residence time (EBRT) on the removal efficiency of NMHC. Based on the experimental results and practical applications, an EBRT of 66 s was applied to the biofilter system. The removal efficiencies of NMHC were within the range of 47%―100%. At an EBRT of 66 s, the average removal efficiency of benzene, toluene, and xylene were more than 99%, 99%, and 100%, respectively. The results demonstrated that multicomponent VOCs in off-gases from the oil refining wastewater treatment plant could be successfully removed in the biofilter system, which may provide useful information concerning the design criteria and operation of full-scale biofilters.
Keywords biodegradation      volatile organic compounds (VOCs)      biofiltration      biofilter      
Issue Date: 05 December 2009
 Cite this article:   
Dan WU,Chunyan ZHANG,Li HAO, et al. Removal of multicomponent VOCs in off-gases from an oil refining wastewater treatment plant by a compost-based biofilter system[J]. Front.Environ.Sci.Eng., 2009, 3(4): 483-491.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0144-y
https://academic.hep.com.cn/fese/EN/Y2009/V3/I4/483
Rene E R, Murthy D V S, Swaminathan T. Performanceevaluation of a compost biofilter treating toluene vapours. Process Biochem, 2005, 40(8): 2771―2779

doi: 10.1016/j.procbio.2004.12.010
Arriaga S, Revah S. Improving hexane removalby enhancing fungal development in a microbial consortium biofilter. Biotechnol Bioengin, 2005, 90(1): 107―115

doi: 10.1002/bit.20424
Torkian A, Dehghanzadeh R, Hakimjavadi M. Biodegradation of aromatic hydrocarbons in a compostbiofilter. J Chem Technol Biot, 2004, 78(7): 795―801

doi: 10.1002/jctb.823
Deshusses M A. Biological waste air treatment in biofilters. Curr Opin Biotech, 1997, 8(3): 335―339

doi: 10.1016/S0958-1669(97)80013-4
Lu C, Chang K, Hsu S, Lin J. Biofiltrationof butyl acetate by a trickle-bed air biofilter. Chem Eng Sci, 2004, 59(1): 99―108

doi: 10.1016/j.ces.2003.09.023
Carlson D A, Leiser C P. Soil beds for the controlof sewage odors. J Water Pollut ControlFed, 1966, 38(5): 829―840
Smith F L, Sorial G A, Suidan M T, Breen A W, Biswas P, Brenner R C. Development of two biomass control strategies for extended, stableoperation of highly efficient biofilters with high toluene loadings. Environ Sci Technol, 1999, 30(5): 1744―1751

doi: 10.1021/es950743y
Shareefdeen Z, Baltzis B C, Oh Y S, Bartha R. Biofiltrationof methanol vapor. Biotechnol Bioeng, 1993, 41(5): 512―524

doi: 10.1002/bit.260410503
Ergas S J, Kinney K, Fuller M E, Scow K M. Characterizationof compost biofiltration system degrading dichloromethane. Biotechnol Bioeng, 1994, 44(7): 1048―1054

doi: 10.1002/bit.260440905
Cox H H J, Moerman R E, van Baalen S, Van Heiningen W N M, Doddema H J, Harder W. Performance of a styrene-degrading biofilter containingthe yeast Exophiala jeanselmei. BiotechnolBioeng, 1997, 53(3): 259―266

doi: 10.1002/(SICI)1097-0290(19970205)53:3<259::AID-BIT3>3.0.CO;2-H
Wang Z, Govind R. Biofiltration of isopentanein peat and compost packed beds. AIChEJ, 1997, 43(5): 1348―1356

doi: 10.1002/aic.690430524
Jorio H, Kiared K, Brzezinski R, Leroux A, Viel G, Heitz M. Treatment of air polluted with high concentrations oftoluene and xylene in a pilot-scale biofilter. J Chem Technol Biot, 1998, 73(3): 183―196

doi: 10.1002/(SICI)1097-4660(1998110)73:3<183::AID-JCTB943>3.0.CO;2-7
Morales M, Revah S, Auria R. Start-up and the effect of gaseous ammonia additionson a biofilter for the elimination of toluene vapors. Biotechnol Bioeng, 1998, 60(4): 483―491

doi: 10.1002/(SICI)1097-0290(19981120)60:4<483::AID-BIT10>3.0.CO;2-J
Paca J, Koutsky B, Maryska M, Halecky M. Styrenedegradation along the bed height of perlite biofilter. J Chem Technol Biot, 2001, 76(8): 873―878

doi: 10.1002/jctb.461
Song J H, Kinney K A. Microbial response and eliminationcapacity in biofilters subjected to high toluene loadings. Appl Microbiol Biotechnol, 2005, 68(4): 554―559

doi: 10.1007/s00253-005-1956-8
Aizpuru A, Malhautier L, Roux J C, Fanlo J L. Biofiltrationof a mixture of volatile organic compounds on granular activated carbon. Biotechnol Bioeng, 2003, 83(4): 479―488

doi: 10.1002/bit.10691
Gabaldón C, Martínez-Soria V, Martín M, Marzal P, Penya-roja J M, Alvarez-Hornos FJ. Removal of TEXvapours from air in a peat biofilter: Influence of inlet concentrationand inlet load. J Chem Technol Biot, 2006, 81(3): 322―328

doi: 10.1002/jctb.1398
Qi B, Moe W M, Kinney K A. Treatment of paint spray booth off-gases in a fungalbiofilter. J Environ Eng, 2005, 131(2): 180―189

doi: 10.1061/(ASCE)0733-9372(2005)131:2(180)
Grove J A, Kautola H, Javadpour S, Moo-Youn M, Anderson W A. Assessment of changes inthe microorganism community in a biofilter. Biochem Eng J, 2004, 18(2): 111―114

doi: 10.1016/S1369-703X(03)00182-7
Alonso C, Suidan M, Kim B R, Kim B J. Dynamic mathematicalmodel for the biodegradation of VOCs in a biofilter: biomass accumulationstudy. Environ Sci Technol, 1998, 32(20): 3118―3123

doi: 10.1021/es9711021
Hoa K L, Chung Y C, Lin Y H, Tseng C P. Microbialpopulations analysis and field application of biofilter for the removalof volatile-sulfur compounds from swine wastewater treatment system. J Hazard Mater, 2008, 152(2): 580―588

doi: 10.1016/j.jhazmat.2007.07.021
Chung Y C. Evaluation of gas removal and bacterial community diversity in abiofilter developed to treat composting exhaust gases. J Hazard Mater, 2007, 144 (1―2): 377―385

doi: 10.1016/j.jhazmat.2006.10.045
Ho K L, Chung Y C, Tseng C P. Continuous deodorization and bacterial community analysisof a biofilter treating nitrogen-containing gases from swine wastestorage pits. Bioresource Technology, 2008, 99(8): 2757―2765

doi: 10.1016/j.biortech.2007.06.041
Moussavi G, Mohseni M. Using UV pretreatment toenhance biofiltration of mixtures of aromatic VOCs. J HazardMater, 2007, 144 (1―2): 59―66

doi: 10.1016/j.jhazmat.2006.09.086
Song J H, Kinney K A, John P. Influence of nitrogen supply and substrate interactionson the removal of paint VOC mixtures in a hybrid bioreactor. Environ Prog, 2003, 22(2): 137―144

doi: 10.1002/ep.670220216
Deshusses M, Johnson C T. Biofiltration of high loadsof ethyl acetate in the presence of toluene. J Air Waste Manage Assoc, 1999, 49(8): 973―979
Mohseni M, Allen D G. Biofiltration of mixturesof hydrophilic and hydrophobic volatile organic compounds. Chem Eng Sci, 2000, 55(9): 1545―1558

doi: 10.1016/S0009-2509(99)00420-0
Swanson W J, Leohr R C. Biofiltration: fundamentals,design and operations principles, and applications. J Environ Eng, 1997, 123(6): 538―546

doi: 10.1061/(ASCE)0733-9372(1997)123:6(538)
Wu G, Conti B, Viel G, Brzezinski R, Viel G, Heitz M. A high performance biofilter for VOC emission control. J Air Waste Manage Assoc, 1999, 49(2): 185―192
[1] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[2] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[3] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[4] Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu. Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis[J]. Front. Environ. Sci. Eng., 2020, 14(1): 10-.
[5] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[6] Zuotao Zhang, Chongyang Wang, Jianzhong He, Hui Wang. Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways[J]. Front. Environ. Sci. Eng., 2019, 13(5): 80-.
[7] Qinqin Liu, Miao Li, Rui Liu, Quan Zhang, Di Wu, Danni Zhu, Xuhui Shen, Chuanping Feng, Fawang Zhang, Xiang Liu. Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities[J]. Front. Environ. Sci. Eng., 2019, 13(2): 28-.
[8] Wenjing Lu, Yawar Abbas, Muhammad Farooq Mustafa, Chao Pan, Hongtao Wang. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Front. Environ. Sci. Eng., 2019, 13(2): 30-.
[9] Qinqin Liu, Miao Li, Xiang Liu, Quan Zhang, Rui Liu, Zhenglu Wang, Xueting Shi, Jin Quan, Xuhui Shen, Fawang Zhang. Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism[J]. Front. Environ. Sci. Eng., 2018, 12(6): 6-.
[10] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[11] Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole[J]. Front. Environ. Sci. Eng., 2017, 11(6): 8-.
[12] Wei-Min Wu,Jun Yang,Craig S. Criddle. Microplastics pollution and reduction strategies[J]. Front. Environ. Sci. Eng., 2017, 11(1): 6-.
[13] Xiuhong Liu, Hongchen Wang, Qing Yang, Jianmin Li, Yuankai Zhang, Yongzhen Peng. Online control of biofilm and reducing carbon dosage in denitrifying biofilter: pilot and full-scale application[J]. Front. Environ. Sci. Eng., 2017, 11(1): 4-.
[14] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
[15] Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 73-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed