Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (2) : 172-182    https://doi.org/10.1007/s11783-010-0002-y
Research articles
Effects of a dynamic membrane formed with polyethylene glycol on the ultrafiltration of natural organic matter
Boksoon KWON1,Noeon PARK2,Jaeweon CHO3,
1.Woongjin R&D Center, San 4-1, Nakseongdae-dong, Gwanak-gu, Seoul 151-057, Korea; 2.Korea Institute of S&T Evaluation and Planning, Yangjae-dong, Seocho-gu, Seoul 137-130, Korea; 3.Department of Environmental Science and Engineering, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Korea;
 Download: PDF(866 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The formation of a dynamic membrane (DM) was investigated using polyethylene glycol (PEG) (molecular weight of 35000 g/mol, concentration of 1 g/L). Two natural organic matters (NOM), Dongbok Lake NOM (DLNOM) and Suwannee River NOM (SRNOM) were used in the ultrafiltration experiments along with PEG. To evaluate the effects of the DM with PEG on ultrafiltration, various transport experiments were conducted, and the analyses of the NOM in the membrane feed and permeate were performed using high performance size exclusion chromatography, and the effective pore size distribution (effective PSD) and effective molecular weight cut off (effective MWCO) were determined. The advantages of DM formed with PEG can be summarized as follows: (1) PEG interferes with NOM transmission through the ultrafiltration membrane pores by increasing the retention coefficient of NOM in UF membranes, and (2) low removal of NOM by the DM is affected by external factors, such as pressure increases during UF membrane filtration, which decreases the effective PSD and effective MWCO of UF membranes. However, a disadvantage of the DM with PEG was severe flux decline; thus, one must be mindful of both the positive and negative influences of the DM when optimizing the UF performance of the membrane.
Keywords dynamic membrane      natural organic matters      ultrafiltration membrane performance      effective PSD      effective molecular weight cutoff      
Issue Date: 05 June 2010
 Cite this article:   
Boksoon KWON,Noeon PARK,Jaeweon CHO. Effects of a dynamic membrane formed with polyethylene glycol on the ultrafiltration of natural organic matter[J]. Front.Environ.Sci.Eng., 2010, 4(2): 172-182.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0002-y
https://academic.hep.com.cn/fese/EN/Y2010/V4/I2/172
Kuberkar V T, Davis R H. Modelingof fouling reduction by secondary membranes. J Membr Sci, 2000, 168: 243―258

doi: 10.1016/S0376-7388(99)00324-5
van Oers C W, Vorstman M A G, Kerkhof P J A M. Solute rejection in the presenceof a deposited layer during ultrafiltration. J Membr Sci, 1995, 107: 173―192

doi: 10.1016/0376-7388(95)00116-T
Tsapiuk E A. Ultrafiltration separation of aqueous solutions of poly(ethyleneglycol)s on the dynamic membrane formed by gelatin. J Membr Sci, 1996, 116: 17―29

doi: 10.1016/0376-7388(95)00320-7
Zhang M, Li C, Benjamin M M, Chang Y. Fouling and natural organic matter removal in adsorbent/membranesystems for drinking water treatment. EnvironSci Technol, 2003, 37: 1663―1669

doi: 10.1021/es0260418
Chin Y, Aiken G, O’Loughlin E. Molecular weight, polydispersity,and spectroscopic properties of aquatic humic substances. Environ Sci Technol, 1994, 28: 1853―1858

doi: 10.1021/es00060a015
Her N, Amy G, Park H-R, Song M. Characterizingalgogenic organic matter (AOM) and evaluating associated NF membranefouling. Wat Res, 2004, 38: 1427―1438

doi: 10.1016/j.watres.2003.12.008
Singh S, Khulbe K C, Matsuura T, Ramamurthy P. Membrane characterization by solute transport and atomicforce microscopy. J Membr Sci, 1998, 142: 117―127

doi: 10.1016/S0376-7388(97)00329-3
Tam C M, Tremblay A Y. Membrane pore characterization-comparison between single and multicomponentsolute probe techniques. J Membr Sci, 1991, 57: 271―287

doi: 10.1016/S0376-7388(00)80683-3
Shim Y, Lee H J, Lee S, Moon S H, Cho J. Effects of natural organicmatter and ionic species on membrane surface charge. Environ Sci Technol, 2000, 28: 3864―871
Wang Y, Combe C, Clark M M. The effects of pH and calcium on thediffusion coefficient of humic acid. JMembr Sci, 2001, 183: 49―60

doi: 10.1016/S0376-7388(00)00555-X
Thurman E, Malcolm R. Preparativeisolation of aquatic humic substances. Environ Sci Technol, 1991, 15: 463―466

doi: 10.1021/es00086a012
Lide D R. Handbook of Chemistry and Physics. 84th ed. NewYork: Taylor & Francis, 2003―2004, 6―181
Probstein R F. Physicochemical Hydrodynamics.2nd ed. Hoboken: John Wiley & Sons Inc., 1994

doi: 10.1002/0471725137
Lee S, Park G, Amy G, Hong S-K, Moon S-H, Lee D-H, Cho J. Determinationof membrane pore size distribution using the fractional rejectionof nonionic and charged macromolecules. J Membr Sci, 2002, 201: 191―201

doi: 10.1016/S0376-7388(01)00729-3
Park N, Yoon Y, Moon S-H, Cho J. Evaluationof the performance of tight-UF membranes with respect to NOM removalusing effective MWCO, molecularweight, and apparent diffusivity of NOM. Desalination, 2004, 164: 53―62

doi: 10.1016/S0011-9164(04)00155-9
Jucker G, Clark M M. Adsorptionof aquatic humic substances on hydrophobic ultrafiltration membranes. J Membr Sci, 1994, 97: 37―52

doi: 10.1016/0376-7388(94)00146-P
Myung S W, Choi I H, Lee S H, Kim I C, Lee K H. Use of fouling resistantnanofiltration and reverse osmosis membranes for dyeing wastewatereffluent treatment. Water Sci Technol, 2005, 51(6―7): 159―164
Vrijenhoek E M, Hong S, Elimelech M. Influence of membrane surface propertieson initial rate of colloidal fouling of reverse osmosis and nanofiltrationmembranes. J Membr Sci, 2001, 188: 115―128

doi: 10.1016/S0376-7388(01)00376-3
[1] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[2] Xue Shen, Lei Lu, Baoyu Gao, Xing Xu, Qinyan Yue. Development of combined coagulation-hydrolysis acidification-dynamic membrane bioreactor system for treatment of oilfield polymer-flooding wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 9-.
[3] Jin GUO, Jun MA. Pyrene partition behavior to the NOM: Effect of NOM characteristics and its modification by ozone preoxidation[J]. Front Envir Sci Eng Chin, 2009, 3(1): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed