Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (2) : 187-195    https://doi.org/10.1007/s11783-010-0030-7
Research articles
Ultrasound-assisted emulsification solidified floating organic drop microextraction for the determination of trace amounts of copper in water samples
Qingyun CHANG,Jingwen ZHANG,Xin DU,Jingjun MA,Jingci LI,
Hebei Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China;
 Download: PDF(213 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple and efficient liquid-phase microextraction (LPME) technique was developed using ultrasound-assisted emulsification solidified floating organic drop microextraction (USAE-SFODME) combined with flame atomic absorption spectrometry, for the extraction and determination of trace copper in water samples. 1-(2-Pyridylazo)-2-naphthol (PAN) was used as chelating agent. Microextraction efficiency factors (including extraction solvent type, extraction volume, time, temperature, and pH), the amount of the chelating agent, and salt effect were investigated and optimized. Under the optimum extraction conditions, figures of merit of the proposed method were evaluated. The calibration graph was linear in the range of 20–600 mg·L−1 with a detection limit of 0.76 mg·L−1. The relative standard deviation (R.S.D) for ten replicate measurements of 20 and 400 mg·L−1 of copper was 3.83% and 2.65%, respectively. Finally, the proposed method was applied to tap water, river water, and sea water, and accuracy was assessed through the analysis of certified reference water or recovery experiments.
Keywords ultrasound-assisted emulsification      solidified floating organic drop microextraction      flame atomic absorption spectrometry      preconcentration      copper      
Issue Date: 05 June 2010
 Cite this article:   
Jingci LI,Qingyun CHANG,Xin DU, et al. Ultrasound-assisted emulsification solidified floating organic drop microextraction for the determination of trace amounts of copper in water samples[J]. Front.Environ.Sci.Eng., 2010, 4(2): 187-195.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0030-7
https://academic.hep.com.cn/fese/EN/Y2010/V4/I2/187
Shams E, Babaei A, Soltaninezhad M. Simultaneous determinationof copper, zinc and lead by adsorptive stripping voltammetry in thepresence of morin. Analytica Chimica Acta, 2004, 501(1): 119–124
Kendüzler E, Türker A R. Atomic absorption spectrophotometric determination of trace copperin waters, aluminium foil and tea samples after preconcentration with1-nitroso-2-naphthol-3,6-disulfonic acid on Ambersorb 572. Analytica Chimica Acta, 2003, 480(2): 259–266
Gao H W, Lu X Q, Ren J R. Cu(II)-3-(5-chlor-2-hydroxy-3-sulfophenylazo)-6-(2,4,6-tribromophenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonicAcid-Co(II) binuclear complexation and its application to the selectivedetermination of cobalt at ng/ml level. Analytical Sciences, 2005, 21(9): 1043–1049
Gao H W, Chen F F, Chen L, Zeng T, Pan L T, Li J H, Luo H F. A novel detectionapproach based on chromophore-decolorizing with free radical and applicationto photometric determination of copper with acid chrome dark blue. Analytica Chimica Acta, 2007, 587(1): 52–59
Kagawa T, Ohno M, Seki T, Chikama K. Online determination of copper in aluminum alloy by microchip solvent extractionusing isotope dilution ICP-MS method. Talanta, 2009, 79(4): 1001–1005
Demir Mulazimoglu A, Mulazimoglu I E, Ozkan E. Preconcentration with 1-nitroso-2-naphtholcomplexes on dowex MWC-1 resin: determination of Cu and Zn at tracelevel in drinking water samples by ICP-AES. E-Journal of Chemistry, 2009, 6(4): 1176–1180
Sreenivasa Rao K, Balaji T, Prasada Rao T, Babu Y, Naidu G R K. Determination of iron, cobalt, nickel, manganese, zinc, copper, cadmium and leadin human hair by inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(8): 1333–1338
dos Santos W N L, da Silva E G P, Fernandes M S, Araujo R G O, Costa A C S, Vale M G R, Ferreira S L C. Determination of copper in powdered chocolate samples by slurry-samplingflame atomic-absorption spectrometry. Analytical and Bioanalytical Chemistry, 2005, 382(4): 1099–1102
Soylak M, Ercan O. Selective separation and preconcentration of copper (II) in environmental samples by thesolid phase extraction on multi-walled carbon nanotubes. Journal of Hazardous Materials, 2009, 168(2―3): 1527–1531
Turker A R. New corbents for solid-phase extraction for metal enrichment. CLEAN-soil, air, water, 2007, 35: 548–557
Alonso A, Almendral M J, Curto Y, Porras M J. Spectrophotometric determination of copper in waste waterusing liquid–liquid extraction in a flow-injection system. Microchimica Acta, 2003, 143(4): 217–220
Tuzen M, Melek E, Soylak M. Celtek clay as sorbent for separation-preconcentrationof metal ions from environmental samples. Journal of Hazardous Materials, 2006, 136(3): 597–603
Karimi H, Ghaedi M, Shokrollahi A, Rajabi H R, Soylak M, Karami B. Development of a selectiveand sensitive flotation method for determination of trace amountsof cobalt, nickel, copper and iron in environmental samples. Journal of Hazardous Materials, 2008, 151(1): 26–32
Bidabadi M S, Dadfarnia S, Shabani A M. Solidified floating organicdrop microextraction (SFODME) for simultaneous separation/preconcentrationand determination of cobalt and nickel by graphite furnace atomicabsorption spectrometry (GFAAS). Journal of Hazardous Materials, 2009, 166(1): 291–296
Carasek E, Wick Tonjes J, Scharf M. A new method of microvolumeback-extraction procedure for enrichment of Pb and Cd and determinationby flame atomic absorption spectrometry. Talanta, 2002, 56(1): 185–191
Lemos V A, Santos J S, Baliza P X. Me-BTABr reagent in cloudpoint extraction for spectrometric determination of copper in watersamples. Journal of the Brazilian ChemicalSociety, 2006, 17(1): 30–35
Lemos V A, Santos M S, dos Santos M J S, Vieira D R, Novaes C G. Determination of copper in water samples by atomic absorption spectrometryafter cloud point extraction. Microchimica Acta, 2007, 157(3―4): 215–222
Fragueiro S, Lavilla I, Bendicho C. Hydride generation-headspacesingle-drop microextraction-electrothermal atomic absorption spectrometrymethod for determination of selenium in waters after photoassistedprereduction. Talanta, 2006, 68(4): 1096–1101
Penapereira F, Lavilla I, Bendicho C. Miniaturized preconcentrationmethods based on liquid–liquid extraction and their applicationin inorganic ultratrace analysis and speciation: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(1): 1–15
Farajzadeh M A, Bahram M, Zorita S, Mehr B G. Optimization and application of homogeneous liquid-liquidextraction in preconcentration of copper (II) in a ternary solventsystem. Journal of Hazardous Materials, 2009, 161(2―3): 1535–1543
Dietz C, Sanz Landaluze J, Ximénez-Embún P, Madrid-Albarrán Y, Cámara C. Volatile organo-seleniumspeciation in biological matter by solid phase microextraction-moderatetemperature multicapillary gas chromatography with microwave inducedplasma atomic emission spectrometry detection. Analytica Chimica Acta, 2004, 501(2): 157–167
Mester Z, Sturgeon R. Trace element speciation using solid phase microextraction. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(9―10): 1243–1269
Carletto J S, Luciano R M, Bedendo G C, Carasek E. Simple hollow fiber renewal liquid membrane extractionmethod for pre-concentration of Cd(II) in environmental samples anddetection by flame atomic absorption spectrometry. Analytica Chimica Acta, 2009, 638(1): 45–50
Xia L, Wu Y, Hu B. Hollow-fiber liquid-phase microextraction prior to low-temperatureelectrothermal vaporization ICP-MS for trace element analysis in environmentaland biological samples. Journal of Mass Spectrometry, 2007, 42(6): 803–810
Liang P, Sang H B. Determination of trace lead in biological and water samples with dispersive liquid-liquidmicroextraction preconcentration. Analytical Biochemistry, 2008, 380(1): 21–25
Farajzadeh M A, Bahram M, Mehr B G, Jönsson J A. Optimization of dispersive liquid-liquidmicroextraction of copper (II) by atomic absorption spectrometry asits oxinate chelate: application to determination of copper in differentwater samples. Talanta, 2008, 75(3): 832–840
Khalili Zanjani M R, Yamini Y, Shariati S, Jönsson J A. A new liquid-phase microextraction methodbased on solidification of floating organic drop. Analytica Chimica Acta, 2007, 585(2): 286–293
Farahani H, Yamini Y, Shariati S, Khalili-Zanjani M R, Mansour-Baghahi S. Development of liquid phase microextraction method based on solidification offloated organic drop for extraction and preconcentration of organochlorinepesticides in water samples. Analytica Chimica Acta, 2008, 626(2): 166–173
Dadfarnia S, Salmanzadeh A M, Shabani A M H. A novel separation/preconcentrationsystem based on solidification of floating organic drop microextractionfor determination of lead by graphite furnace atomic absorption spectrometry. Analytica Chimica Acta, 2008, 623(2): 163–167
Dadfarnia S, Haji Shabani A M, Kamranzadeh E. Separation/preconcentrationand determination of cadmium ions by solidification of floating organicdrop microextraction and FI-AAS. Talanta, 2009, 79(4): 1061–1065
Xu H, Ding Z, Lv L, Song D, Feng Y Q. A novel dispersive liquid-liquid microextractionbased on solidification of floating organic droplet method for determinationof polycyclic aromatic hydrocarbons in aqueous samples. Analytica Chimica Acta, 2009, 636(1): 28–33
Priego Capote F, Luque de Castro M D. Ultrasound in analytical chemistry. Analytical and Bioanalytical Chemistry, 2007, 387(1): 249–257
Luque de Castro M D, Priego-Capote F. Ultrasound assistance to liquid-liquid extraction: a debatable analytical tool. Analytica Chimica Acta, 2007, 583(1): 2–9
Regueiro J, Llompart M, Garcia-Jares C, Garcia-Monteagudo J C, Cela R. Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticidesin environmental waters. Journal of Chromatography. A, 2008, 1190(1―2): 27–38
Zhu X S, Zhu X H, Wang B S. Determination of trace cadmium in watersamples by graphite furnace atomic absorption spectrometry after cloudpoint extraction. Microchimica Acta, 2006, 154(1―2): 95–100
Narin I, Soylak M. The uses of 1-(2-pyridylazo) 2-naphtol (PAN) impregnated Ambersorb 563resin on the solid phase extraction of traces heavy metal ions andtheir determinations by atomic absorption spectrometry. Talanta, 2003, 60(1): 215–221
Shokoufi N, Shemirani F, Assadi Y. Fiber optic-linear arraydetection spectrophotometry in combination with dispersive liquid-liquidmicroextraction for simultaneous preconcentration and determinationof palladium and cobalt. Analytica Chimica Acta, 2007, 597(2): 349–356
Afkhami A, Madrakian T, Siampour H. Flame atomic absorption spectrometricdetermination of trace quantities of cadmium in water samples aftercloud point extraction in Triton X-114 without added chelating agents. Journal of Hazardous Materials, 2006, 138(2): 269–272
[1] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[2] Christine C. Nguyen, Cody N. Hugie, Molly L. Kile, Tala Navab-Daneshmand. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 46-.
[3] Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 9-.
[4] Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma. Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments[J]. Front. Environ. Sci. Eng., 2018, 12(2): 7-.
[5] Xiaonan Liu, Qiuxia Tan, Yungui Li, Zhonghui Xu, Mengjun Chen. Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis[J]. Front. Environ. Sci. Eng., 2017, 11(5): 10-.
[6] Guiying RAO, Kristen S. BRASTAD, Qianyi ZHANG, Rebecca ROBINSON, Zhen HE, Ying LI. Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane[J]. Front. Environ. Sci. Eng., 2016, 10(4): 11-.
[7] Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment[J]. Front. Environ. Sci. Eng., 2015, 9(4): 625-633.
[8] Xiaolong SONG,Jianxin YANG,Bin LU,Bo LI,Guangyuan ZENG. Identification and assessment of environmental burdens of Chinese copper production from a life cycle perspective[J]. Front.Environ.Sci.Eng., 2014, 8(4): 580-588.
[9] Yifei SUN, Xin FU, Wei QIAO, Wei WANG, Tianle ZHU, Xinghua LI. Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported copper or zinc[J]. Front Envir Sci Eng, 2013, 7(6): 827-832.
[10] Haiqian LI, Yonglong LU, Li LI. PCDD/Fs emission, risk characterization, and reduction in China’s secondary copper production industry[J]. Front Envir Sci Eng, 2013, 7(4): 589-597.
[11] Sandeep PANDA, Nilotpala PRADHAN, Umaballav MOHAPATRA, Sandeep K. PANDA, Swagat S. RATH, Danda S. RAO, Bansi D. NAYAK, Lala B. SUKLA, Barada K. MISHRA. Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage[J]. Front Envir Sci Eng, 2013, 7(2): 281-293.
[12] Fengjie ZHANG, Xiaoxia OU, Shuo CHEN, Chunqiu RAN, Xie QUAN. Competitive adsorption and desorption of copper and lead in some soil of North China[J]. Front Envir Sci Eng, 2012, 6(4): 484-492.
[13] Tianxiang XIA, Xuehua LIU. Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel, Cristaria plicata, under laboratory conditions[J]. Front Envir Sci Eng Chin, 2011, 5(2): 236-242.
[14] Hua ZHANG, Zhiliang ZHU, Noboru YOSHIKAWA. Microwave enhanced stabilization of copper in artificially contaminated soil[J]. Front Envir Sci Eng Chin, 2011, 5(2): 205-211.
[15] XU Wenying, GAO Tingyao, ZHOU Rongfeng, MA Lumin. Electrochemical reduction characteristics and the mechanism of chlorinated hydrocarbons at the copper electrode[J]. Front.Environ.Sci.Eng., 2007, 1(2): 207-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed