Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (1) : 117-124    https://doi.org/10.1007/s11783-010-0220-3
RESEARCH ARTICLE
Properties and effect of forming sewage sludge into lightweight ceramics
Min YUE, Qinyan YUE(), Yuanfeng QI, Baoyu GAO, Hui YU
Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse; School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
 Download: PDF(282 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work we investigated the chemical, thermal and toxic properties of dried sewage sludge (DSS), the preparation and properties of lightweight sludge ceramic (LSC) and the mechanisms of action of the organic and inorganic foaming agents (OFAs and IFAs). The chemical components and thermal properties of the raw materials were studied by Energy Dispersive X-ray Detection (EDX) and Thermogravimetric Analysis and Differential Scanning Calorimetry (DSC/TGA). The mineral phases of the raw materials and the formed ceramics were determined by X-ray Diffraction (XRD). The leaching characteristics of heavy metals were investigated with Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Different ratios of DSS and clay were mixed and pressed into raw pellets. After drying and preheating treatment, the raw pellets were sintered at 1150°C for 10 min. The physical properties of LSC (50 wt% DSS added) were tested. The results showed that when the addition of DSS was above 50 wt%, LSC began to shrink, and a maximum density occurred. The environmental safety of LSC was satisfactory. XRD showed that some new mineral phases formed in the LSC. Observation of the microstructure by Scanning Electron Microscope (SEM) indicated that the body of LSC was porous.

Keywords sludge      foaming agents      ceramics      preheating process     
Corresponding Author(s): YUE Qinyan,Email:qyyue@sdu.edu.cn   
Issue Date: 01 February 2012
 Cite this article:   
Min YUE,Qinyan YUE,Yuanfeng QI, et al. Properties and effect of forming sewage sludge into lightweight ceramics[J]. Front Envir Sci Eng, 2012, 6(1): 117-124.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0220-3
https://academic.hep.com.cn/fese/EN/Y2012/V6/I1/117
Fig.1  Flow chart for the manufacture of the ceramic pellets
Fig.1  Flow chart for the manufacture of the ceramic pellets
Fig.2  
Fig.2  
propertytype of measurementequipment model
chemical compositionEDXDZ10-100 (Shimadzu, Japan)
speciationXRD (X-ray diffraction)D/MAX-RA(RIGAKU, Japan)
heavy metal contentICP-AES (inductively coupled plasma optical emission spectroscopy)IRIS Intrepid II XSP(Thermo, USA)
TGA/DSCthermal analysisSDT Q600(TA Instruments-Waters LLC, USA)
mechanical tests
bulk densityGB/T 17431.2-1998
granule densityGB/T 17431.2-1998
water absorption rateGB/T 17431.2-1998
microstructureSEM (scanning electron microscope)Hitachi S-520, JSM-6700F(Hitachi, Japan)
Tab.1  Physical and chemical measurement methods
materialsSiO2Al2O3Fe2O3MgOCaOK2Ototal Stotal PTiO2Na2Oothersglassy phasesfluxOFAs
DSS/wt%34.9021.106.722.717.359.517.088.620.95ND0.0619.19.065.83
clay/wt%60.0317.602.472.0810.872.61NDNDND4.330.0177.6322.36
Tab.2  The chemical components of DSS and clay
Fig.3  TGA / DSC analysis of dry sewage sludge
Fig.3  TGA / DSC analysis of dry sewage sludge
Fig.4  The physical properties of LSC ((a) rate of expansion/shrinkage; (b) water adsorption; (c) bulk density; (d) grain density) prepared with different ratios of clay to DSS
Fig.4  The physical properties of LSC ((a) rate of expansion/shrinkage; (b) water adsorption; (c) bulk density; (d) grain density) prepared with different ratios of clay to DSS
Fig.5  Physical properties of LSC (the ratio of DSS was 20 wt%) with different preheating treatment
Fig.5  Physical properties of LSC (the ratio of DSS was 20 wt%) with different preheating treatment
Fig.6  
Fig.6  
Fig.7  
Fig.7  
Fig.8  
Fig.8  
Fig.9  
Fig.9  
elementDSS /(mg·kg-1)LSC /(mg·kg-1)limit value /(mg·kg-1)
total Cu39.590.973≤100
total Zn23.190.667≤100
total Cd0.0670.009≤1
total Cr2.5930.045≤15
total Pb6.0720.053≤5
total Ba11.860.52≤100
total Ni0.310.06≤5
total As0.2280.021≤5
Tab.3  Toxic metal content of leachate from DSS and LSC (50 wt% DSS added)
Fig.10  The mineral phases of LSC (50 wt% of DSS added), clay and commercial ceramics
Fig.10  The mineral phases of LSC (50 wt% of DSS added), clay and commercial ceramics
Fig.11  SEM images (× 500) of LSC (50 wt% of DSS added)
Fig.11  SEM images (× 500) of LSC (50 wt% of DSS added)
Fig.12  SEM images (× 500) of commercial ceramic (100 wt% of clay)
Fig.12  SEM images (× 500) of commercial ceramic (100 wt% of clay)
1 Qi Y F, Yue Q Y, Han S X, Yue M, Gao B Y, Yu H, Shao T. Preparation and mechanism of ultra-lightweight ceramics produced from sewage sludge. Journal of Hazardous Materials , 2010, 176(1-3): 76–84
doi: 10.1016/j.jhazmat.2009.11.001 pmid:19945788
2 Merino I, Arévalo L F, Romero F. Characterization and possible uses of ashes from wastewater treatment plants. Waste Management (New York) , 2005, 25(10): 1046–1054
doi: 10.1016/j.wasman.2004.12.023 pmid:15979298
3 Merino I, Arévalo L F, Romero F. Preparation and characterization of ceramic products by thermal treatment of sewage sludge ashes mixed with different additives. Waste Management (New York) , 2007, 27(12): 1829–1844
doi: 10.1016/j.wasman.2006.10.008 pmid:17150348
4 Cheeseman C R, Vird G S. Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources, Conservation and Recycling , 2005, 45(1): 18–30
doi: 10.1016/j.resconrec.2004.12.006
5 Wang X R, Jin Y Y, Wang Z Y, Mahar R B, Nie Y. A research on sintering characteristics and mechanisms of dried sewage sludge. Journal of Hazardous Materials , 2008, 160(2-3): 489–494
doi: 10.1016/j.jhazmat.2008.03.054 pmid:18440699
6 Mun K J. Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Construction and Building Materials , 2007, 21(7): 1583–1588
doi: 10.1016/j.conbuildmat.2005.09.009
7 GeneralββAdministrationββofββQualityββSupervision,ββInspectionββandβQuarantineββofββChina (GB/T17431.2-1998). Lightweight Aggregates and Its Test Methods-Part 2: Test Methods for Lightweight Aggregates
8 Tsai C C, Wang K S, Chiou I J. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge. Journal of Hazardous Materials , 2006, 134(1-3): 87–93
doi: 10.1016/j.jhazmat.2005.10.035 pmid:16386840
9 Ducman V, Mirtic B. The applicability of different waste materials for the production of lightweight aggregates. Waste Management (New York) , 2009, 29(8): 2361–2368
pmid:19345083
10 GeneralββAdministrationββofββQualityβSupervision,ββInspectionββandβQuarantineββofββChina (GB/T17431.1-1998). Lightweight Aggregates and Its Test Methods-Part 1: Lightweight Aggregates
11 GeneralββAdministrationββofββQualityββSupervision,ββInspectionββandβQuarantineββofββChina (GB5085.3-2007). Identification Standards for Hazardous Wastes
12 Houdková L, Jaroslav B, Vladimir U. Thermal processing of sewage sludge-II. Application of Thermal Engineering , 2008, 28(16): 2083–2088
doi: 10.1016/j.applthermaleng.2008.04.005
13 Luostarinen S, Luste S, Sillanpaa M. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresource Technology , 2008, 2009(100): 79–85
14 Liang M S, Xu Q. Research on high temperature compost technology in sludge processing. In: 2nd International Conference on Bioinformatics and Biomedical Engineering , 2008, 4202–4205
15 Roy B. Sludge processing. Pollution Engineering , 2005, 37: 20–23
16 Patterson D A, Stemark L, Hogan F. Pilot-scale Supercritical Water Oxidation of Sewage Sludge. In: The 6th European Biosolids and Organic Residuals Conference . Wakefield: Aqua. Environ. Consultancy Services, 2001, 11–15
17 Rozada F, Otero M, Morán A, García A I. Activated carbons from sewage sludge and discarded tyres: production and optimization. Journal of Hazardous Materials , 2005, 124(1-3): 181–191
doi: 10.1016/j.jhazmat.2005.05.002 pmid:15955625
18 Han S X, Yue Q Y, Yue M, Gao B Y, Zhao Y Q, Cheng W J. Effect of sludge-fly ash ceramic particles (SFCP) on synthetic wastewater treatment in an A/O combined biological aerated filter. Bioresource Technology , 2009, 100(3): 1149–1155
doi: 10.1016/j.biortech.2008.08.035 pmid:18828988
19 Zhao Y Q, Yue Q Y, Li R B, Yue M, Han S X, Gao B Y, Li Q, Yu H. Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewater treatment in biological aerated filter (BAF). Bioresource Technology , 2009, 100(21): 4955–4962
doi: 10.1016/j.biortech.2009.05.025 pmid:19540753
20 Yue Q Y, Han S X, Yue M, Gao B Y, Li Q, Yu H, Zhao Y Q, Qi Y F. The performance of biological anaerobic filters packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) during the restart period: effect of the C/N ratios and filter media. Bioresource Technology , 2009, 100(21): 5016–5020
doi: 10.1016/j.biortech.2009.05.033 pmid:19520569
21 Han S X, Yue Q Y, Yue M, Gao B Y, Li Q, Yu H, Zhao Y Q, Qi Y F. The characteristics and application of sludge-fly ash ceramic particles (SFCP) as novel filter media. Journal of Hazardous Materials , 2009, 171(1-3): 809–814
doi: 10.1016/j.jhazmat.2009.06.074 pmid:19608336
22 Cusidó J A, Cremades L V, González M. Gaseous emissions from ceramics manufactured with urban sewage sludge during firing processes. Waste Management (New York) , 2003, 23(3): 273–280
doi: 10.1016/S0956-053X(02)00060-0 pmid:12737969
23 Xu G R, Zou J L, Li G B. Ceramsite obtained from water and wastewater sludge and its characteristics affected by (Fe2O3+CaO+MgO)/(SiO(2)+Al2O3). Water Research , 2009, 43(11): 2885–2893
doi: 10.1016/j.watres.2009.03.046 pmid:19427014
24 Zou J L, Xu G R, Li G B. Ceramsite obtained from water and wastewater sludge and its characteristics affected by Fe2O3, CaO, and MgO. Journal of Hazardous Materials , 2009, 165(1-3): 995–1001
doi: 10.1016/j.jhazmat.2008.10.113 pmid:19111393
25 González-Corrochano B, Alonso-Azcárate J, Rodas M. Production of lightweight aggregates from mining and industrial wastes. Journal of Hazardous Materials , 2009, 90(8): 2801–2812
doi: 10.1016/j.jenvman.2009.03.009 pmid:19386411
[1] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[2] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[3] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[4] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[5] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[6] Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng. Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate shock[J]. Front. Environ. Sci. Eng., 2021, 15(2): 32-.
[7] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[8] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[9] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[10] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[11] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[12] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[13] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[14] Lanhe Zhang, Jing Zheng, Jingbo Guo, Xiaohui Guan, Suiyi Zhu, Yanping Jia, Jian Zhang, Xiaoyu Zhang, Haifeng Zhang. Effects of Al3+ on pollutant removal and extracellular polymeric substances (EPS) under anaerobic, anoxic and oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(6): 85-.
[15] Yuanyuan Zhang, Masashi Kuroda, Shunsuke Arai, Fumitaka Kato, Daisuke Inoue, Michihiko Ike. Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(5): 68-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed