Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (2) : 205-211    https://doi.org/10.1007/s11783-010-0290-2
RESEARCH ARTICLE
Microwave enhanced stabilization of copper in artificially contaminated soil
Hua ZHANG1,2, Zhiliang ZHU1(), Noboru YOSHIKAWA2
1. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; 2. Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
 Download: PDF(173 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microwave processing was used to stabilize copper ions in soil samples. Its effects on the stabilization efficiency were studied as a function of additive, microwave power, process time, and reaction atmosphere. The stabilization efficiency of the microwave process was evaluated based on the results of the toxicity characteristic leaching procedure (TCLP) test. The results showed that the optimal experimental condition contained a 700 W microwave power, 20 min process time and 3 iron wires as the additive, and that the highest stabilization efficiency level was more than 70%. In addition, the different reaction atmospheres showed no apparent effect on the stabilization efficiency of copper in the artificially contaminated soil. According to the result of the Tessier sequential extraction, the partial species of copper in the contaminated soil was deduced to transform from unstable species to stable states after the microwave process.

Keywords microwave      copper      stabilization     
Corresponding Author(s): ZHU Zhiliang,Email:zzl@tongji.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Hua ZHANG,Zhiliang ZHU,Noboru YOSHIKAWA. Microwave enhanced stabilization of copper in artificially contaminated soil[J]. Front Envir Sci Eng Chin, 2011, 5(2): 205-211.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0290-2
https://academic.hep.com.cn/fese/EN/Y2011/V5/I2/205
parametersetting
radio frequency power1100W
cones sampler and interfacePt
signalarea peak
resolution0.7 amu
sweeps/reading1
reading/replicates55
replicates3
dwell time25 ms
gas flow rate1.2 L·min-1
Tab.1  ICP-MS instrumental parameters
Fig.1  stabilization of copper in soil at the different times (without microwave radiation)
Fig.2  Effect of iron wire on stabilization efficiency (microwave power: 700 W; reaction time: 20 min)
Fig.3  Effect of iron wire diameter on the stabilization efficiency of copper
(microwave power: 700 W; reaction time: 20 min)
INID= 0.28 mmID= 0.45 mmID= 0.90 mm
1242.2899.0271.5
2240.0288.7413.4
3346.7240.51083.6
4483.6815.7493.6
5320.0899.0538.8
6414.3252.0235.1
Tab.2  Relationship of the different diameter (ID), numbers of iron wires (IN) and the highest temperatures during the microwave process (microwave power: 700w; reaction time: 20 min)
Fig.4  Effect of microwave power on the stabilization efficiency
(reaction time: 20 min; iron wire number: 3)
Fig.5  Function of reaction time and temperature in the different microwave power
(Reaction time: 20 min; iron wire number: 3)
Fig.6  Function of reaction time and stabilization efficiency
(microwave power: 700W; iron wire number: 3)
Fig.7  Speciation analysis of copper in contaminated soil before and after microwave process
1 Baryla A, Laborde C, Montillet J L, Triantaphylidès C, Chagvardieff P. Evaluation of lipid peroxidation as a toxicity bioassay for plants exposed to copper. Environmental pollution (Barking, Essex: 1987) , 2000, 109(1): 131–135
doi: 10.1016/S0269-7491(99)00232-8 pmid:15092920
2 Hough R L, Hough R L, Young S D, Crout N M J. Modelling of Cd, Cu, Ni, Pb and Zn uptake, by winter wheat and forage maize, from a sewage disposal farm. Soil Use and Management , 2003, 19(1): 19–27
doi: 10.1111/j.1475-2743.2003.tb00275.x
3 Luo X S, Zhou D M, Liu X H, Wang Y J. Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China. Journal of Hazardous Materials , 2006, 131(1–3): 19–27
doi: 10.1016/j.jhazmat.2005.09.033 pmid:16260085
4 Babel S, del Mundo Dacera D. Heavy metal removal from contaminated sludge for land application: a review. Waste Management (New York) , 2006, 26(9): 988–1004
doi: 10.1016/j.wasman.2005.09.017 pmid:16298121
5 Hettiarachchi G M, Pierzynski G M, Ransom M D. In situ stabilization of soil lead using phosphorus and manganese oxide. Environmental Science & Technology , 2000, 34(21): 4614–4619
doi: 10.1021/es001228p
6 Lombi E, Zhao F J, Zhan G, Sun B, Fitz W, Zhang H, McGrath S P. In situ fixation of metals in soils using bauxite residue: chemical assessment. Environmental pollution (Barking, Essex: 1987) , 2002, 118(3): 435–443
doi: 10.1016/S0269-7491(01)00294-9 pmid:12009142
7 Andrés A, Ibá?ez R, Ortiz I, Irabien J A. Experimental study of the waste binder anhydrite in the solidification/stabilization process of heavy metal sludge. Journal of Hazardous Materials , 1998, 57(1–3): 155–168
doi: 10.1016/S0304-3894(97)00079-4
8 Diet J N, Moszkowicz P, Sorrentino D. Behavior of ordinary Portland cement during the stabilization/solidification of synthetic heavy metal sludge: macroscopic and microscopic aspects. Waste Management (New York) , 1998, 18(1): 17–24
doi: 10.1016/S0956-053X(98)00003-8
9 Jing C Y, Korfiatis G P, Meng X G. Immobilization mechanisms of arsenate in iron hydroxide sludge stabilized with cement. Environmental Science & Technology , 2003, 37(21): 5050–5056
doi: 10.1021/es021027g pmid:14620837
10 Dermatas D, Meng X G. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology , 2003, 70(3–4): 377–394
doi: 10.1016/S0013-7952(03)00105-4
11 Wang Y M, Chen T C, Yeh K J, Shue M F. Stabilization of an elevated heavy metal contaminated site. Journal of Hazardous Materials , 2001, 88(1): 63–74
doi: 10.1016/S0304-3894(01)00289-8 pmid:11606241
12 Panagiotis T, Nymphodora P, Anthimos X. Immobilization of heavy metals in contaminated soils from Lavrion. Journal of Hazardous Materials , 2002, B94: 135–146
13 Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental pollution (Barking, Essex: 1987) , 2006, 144(1): 62–69
doi: 10.1016/j.envpol.2006.01.010 pmid:16517035
14 Kumpiene J, Castillo Montesinos I, Lagerkvist A, Maurice C. Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil. Chemosphere , 2007, 67(2): 410–417
doi: 10.1016/j.chemosphere.2006.08.031 pmid:17166546
15 Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management (New York) , 2008, 28(1): 215–225
doi: 10.1016/j.wasman.2006.12.012 pmid:17320367
16 Jou C J. An efficient technology to treat heavy metal-lead-contaminated soil by microwave radiation. Journal of Environmental Management , 2006, 78(1): 1–4
doi: 10.1016/j.jenvman.2004.11.020 pmid:16303237
17 Tai H S, Jou C J. Immobilization of chromium-contaminated soil by means of microwave energy. Journal of Hazardous Materials , 1999, 65(3): 267–275
doi: 10.1016/S0304-3894(98)00274-X pmid:10337402
18 Abramovitch R A, Lu C Q, Hicks E, Sinard J. In situ remediation of soils contaminated with toxic metal ions using microwave energy. Chemosphere , 2003, 53(9): 1077–1085
doi: 10.1016/S0045-6535(03)00572-1 pmid:14512111
19 Chen C L, Lo S L, Kuan W H, Hsieh C H. Stabilization of Cu in acid-extracted industrial sludge using a microwave process. Journal of Hazardous Materials , 2005, 123(1–3): 256–261
doi: 10.1016/j.jhazmat.2005.04.014
20 Hsieh C H, Lo S L, Chiueh P T, Kuan W H, Chen C L. Microwave enhanced stabilization of heavy metal sludge. Journal of Hazardous Materials , 2007, 139(1): 160–166
doi: 10.1016/j.jhazmat.2006.06.019 pmid:16863678
21 Chen C L, Lo S L, Chiueh P T, Kuan W H, Hsieh C H. The assistance of microwave process in sludge stabilization with sodium sulfide and sodium phosphate. Journal of Hazardous Materials , 2007, 147(3): 930–937
doi: 10.1016/j.jhazmat.2007.01.115 pmid:17335967
22 Hsieh C H, Lo S L, Hu C Y, Shih K, Kuan W H, Chen C L. Thermal detoxification of hazardous metal sludge by applied electromagnetic energy. Chemosphere , 2008, 71(9): 1693–1700
doi: 10.1016/j.chemosphere.2008.01.006 pmid:18280536
23 Chen C L, Lo S L, Kuan W H, Hsieh C H. Stabilization of copper-contaminated sludge using the microwave sintering. Journal of Hazardous Materials , 2009, 168(2–3): 857–861
doi: 10.1016/j.jhazmat.2009.02.114 pmid:19321262
24 Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry , 1979, 51(7): 844–851
doi: 10.1021/ac50043a017
[1] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[2] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[3] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[4] Christine C. Nguyen, Cody N. Hugie, Molly L. Kile, Tala Navab-Daneshmand. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 46-.
[5] Zhengtao Shen, Zhen Li, Daniel S. Alessi. Stabilization-based soil remediation should consider long-term challenges[J]. Front. Environ. Sci. Eng., 2018, 12(2): 16-.
[6] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[7] Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 9-.
[8] Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma. Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments[J]. Front. Environ. Sci. Eng., 2018, 12(2): 7-.
[9] Shanshan Ding, Wen Huang, Shaogui Yang, Danjun Mao, Julong Yuan, Yuxuan Dai, Jijie Kong, Cheng Sun, Huan He, Shiyin Li, Limin Zhang. Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction[J]. Front. Environ. Sci. Eng., 2018, 12(1): 5-.
[10] Halima Sassi, Gwendoline Lafaye, Hédi Ben Amor, Abdelaziz Gannouni, Mohamed Razak Jeday, Jacques Barbier-Jr. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation[J]. Front. Environ. Sci. Eng., 2018, 12(1): 2-.
[11] Bai-Hang Zhao, Jie Chen, Han-Qing Yu, Zhen-Hu Hu, Zheng-Bo Yue, Jun Li. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example[J]. Front. Environ. Sci. Eng., 2017, 11(6): 17-.
[12] Xiaonan Liu, Qiuxia Tan, Yungui Li, Zhonghui Xu, Mengjun Chen. Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis[J]. Front. Environ. Sci. Eng., 2017, 11(5): 10-.
[13] Guiying RAO, Kristen S. BRASTAD, Qianyi ZHANG, Rebecca ROBINSON, Zhen HE, Ying LI. Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane[J]. Front. Environ. Sci. Eng., 2016, 10(4): 11-.
[14] Sanne Skov NIELSEN, Peter KJELDSEN, Rasmus JAKOBSEN. Full scale amendment of a contaminated wood impregnation site with iron water treatment residues[J]. Front. Environ. Sci. Eng., 2016, 10(4): 3-.
[15] Yuebing SUN,Dan ZHAO,Yingming XU,Lin WANG,Xuefeng LIANG,Yue SHEN. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation[J]. Front. Environ. Sci. Eng., 2016, 10(1): 85-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed