Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (3) : 362-377    https://doi.org/10.1007/s11783-011-0365-8
REVIEW ARTICLE
Computational fluid dynamics simulation of aerosol transport and deposition
Yingjie TANG, Bing GUO()
Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
 Download: PDF(321 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this article computational fluid dynamics (CFD) simulation of aerosol transport and deposition, i.e. the transport and deposition of particles in an aerosol, is reviewed. The review gives a brief account of the basics of aerosol mechanics, followed by a description of the general CFD approach for flow field simulation, turbulence modeling, wall treatments and simulation of particle motion and deposition. Then examples from the literature are presented, including CFD simulation of particle deposition in human respiratory tract and particle deposition in aerosol devices. CFD simulation of particle transport and deposition may provide information that is difficult to obtain through physical experiments, and it may help reduce the number of experiments needed for device design. Due to the difficulty of describing turbulent flow and particle-eddy interaction, turbulent dispersion of particles remains one of the greatest challenges for CFD simulation. However, it is possible to take a balanced approach toward quantitative description of aerosol dispersion using CFD simulation in conjunction with empirical relations.

Keywords computational fluid dynamics (CFD)      aerosol      transport      deposition     
Corresponding Author(s): GUO Bing,Email:bioaerosol@gmail.com   
Issue Date: 05 September 2011
 Cite this article:   
Yingjie TANG,Bing GUO. Computational fluid dynamics simulation of aerosol transport and deposition[J]. Front Envir Sci Eng Chin, 2011, 5(3): 362-377.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0365-8
https://academic.hep.com.cn/fese/EN/Y2011/V5/I3/362
Fig.1  Visualization of particle deposition locations on the surface of BSI inner shell (top view) for particle diameter of 10, 15, and 20 μm at free wind speed of 24 km·h
Fig.2  CFD-based contours of velocity and visualization of deposition in ACI []: (a) contours of velocity magnitude for stage 1; (b) collection plate deposition pattern in stage 0 for 8 μm particles. Reproduced with premission
Fig.3  CFD simulation results with or without turbulent dispersion effect in BSI model at the free wind speed of 24 km·h
1 Hinds W C. Aerosol Technology—Properties, Behavior, and Measurement of Airborne Particles. 2nd ed. Markham Canada: Wiley-Interscience, 1999
2 Davies C N. Aerosol Science. London , New York: Academic Press, 1966
3 Reist P C. Introduction to Aerosol Science. New York , London: Macmillan Pub. Co.; Collier Macmillan, 1984
4 Vincent J H. Aerosol Science for Industrial Hygienists. Tarrytown , New York; Pergamon: Elsevier Science , 1995
5 Reist P C. Aerosol Science and Technology. 2nd ed. New York: McGraw-Hill, 1993
6 Vinchurkar S, Longest P W, Peart J. CFD simulations of the Andersen cascade impactor: Model development and effects of aerosol charge. Journal of Aerosol Science , 2009, 40(9): 807–822
doi: 10.1016/j.jaerosci.2009.05.005
7 Tsai C J, Lin J S, Aggarwal S G, Chen D R. Thermophoretic deposition of particles in laminar and turbulent tube flows. Aerosol Science and Technology , 2004, 38(2): 131–139
doi: 10.1080/02786820490251358
8 Guha A. Transport and deposition of particles in turbulent and laminar flow. Annual Review of Fluid Mechanics , 2008, 40(1): 311–341
doi: 10.1146/annurev.fluid.40.111406.102220
9 Saffman P G. Lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics , 1965, 22(02): 385–400
doi: 10.1017/S0022112065000824
10 ANSYS Inc. ANSYS FLUENT 12.0/12.1 Documentation. Computer program manual, Canonsburg PA: ANSYS Inc. , 2009
11 Longest P W, Xi J X. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Science and Technology , 2007, 41(4): 380–397
doi: 10.1080/02786820701203223
12 Mitsakou C, Helmis C, Housiadas C. Eulerian modelling of lung deposition with sectional representation of aerosol dynamics. Journal of Aerosol Science , 2005, 36(1): 75–94
doi: 10.1016/j.jaerosci.2004.08.008
13 Zhou H, Mo G Y, Zhao J P, Cen K F. DEM-CFD simulation of the particle dispersion in a gas-solid two-phase flow for a fuel-rich/lean burner. Fuel , 2011, 90(4): 1584–1590
doi: 10.1016/j.fuel.2010.10.017
14 Tsuji Y. Multi-scale modeling of dense phase gas-particle flow. Chemical Engineering Science , 2007, 62(13): 3410–3418
doi: 10.1016/j.ces.2006.12.090
15 Ramechecandane S, Beghein C, Allard F. Modeling fine particle dispersion in an inhomogeneous electric field with a modified drift flux model. Building and Environment , 2010, 45(6): 1536–1549
doi: 10.1016/j.buildenv.2010.01.006
16 Chun Y N, Chang J S, Berezin A A, Mizeraczyk J. Numerical modeling of near corona wire electrohydrodynamic flow in a wire-plate electrostatic precipitator. IEEE Transactions on Dielectrics and Electrical Insulation , 2007, 14(1): 119–124
doi: 10.1109/TDEI.2007.302879
17 Coroneo M, Mazzei L, Lettieri P, Paglianti A, Montante G. CFD prediction of segregating fluidized bidisperse mixtures of particles differing in size and density in gas-solid fluidized beds. Chemical Engineering Science , 2011, 66(11): 2317–2327
doi: 10.1016/j.ces.2011.02.019
18 Hosseini S H, Ahmadi G, Razavi B S, Zhong W Q. Computational fluid dynamic simulation of hydrodynamic behavior in a two-dimensional conical spouted bed. Energy & Fuels , 2010, 24(11): 6086–6098
doi: 10.1021/ef100612r
19 Shapiro M, Brenner H. Dispersion and deposition of aerosol-particles in porous filters. Journal of Aerosol Science , 1989, 20(8): 951–954
doi: 10.1016/0021-8502(89)90734-9
20 Chen Y S, Hsiau S S. A new method for measuring cake thickness by a powder pressure-displacement system. Advanced Powder Technology , 2008, 19(1): 49–60
doi: 10.1163/156855208X291729
21 Rostami A A. Computational modeling of aerosol deposition in respiratory tract: a review. Inhalation Toxicology , 2009, 21(4): 262–290
doi: 10.1080/08958370802448987 pmid:19235608
22 Murphy S A, Tice R R, Smith M G, Margolin B H. Contributions to the design and statistical analysis of in vivo SCE experiments. Mutation Research , 1992, 271(1): 39–48
pmid:1371828
23 Miller K, Chinzei K, Orssengo G, Bednarz P. Mechanical properties of brain tissue in-vivo: experiment and computer simulation. Journal of Biomechanics , 2000, 33(11): 1369–1376
doi: 10.1016/S0021-9290(00)00120-2 pmid:10940395
24 Stahlhofen W, Gebhart J, Heyder J, Scheuch G. New regional deposition data of the human respiratory-tract. Journal of Aerosol Science , 1983, 14(3): 186–188
doi: 10.1016/0021-8502(83)90022-8
25 Stahlhofen W. Experimentally determined regional deposition of aerosol-particles in the human respiratory-tract. Clinical Respiratory Physiology-Bulletin Europeen De Physiopathologie Respiratoire , 1980, 16(2): 145–147
26 Stein S W. Aiming for a moving target: challenges with impactor measurements of MDI aerosols. International Journal of Pharmaceutics , 2008, 355(1-2): 53–61
doi: 10.1016/j.ijpharm.2007.11.047 pmid:18191510
27 Hu S S, McFarland A R. Numerical performance simulation of a wetted wall bioaerosol sampling cyclone. Aerosol Science and Technology , 2007, 41(2): 160–168
doi: 10.1080/02786820601124065
28 Gimbun J, Chuah T G, Choong T S Y, Fakhru’l-Razi A. Prediction of the effects of cone tip diameter on the cyclone performance. Journal of Aerosol Science , 2005, 36(8): 1056–1065
doi: 10.1016/j.jaerosci.2004.10.014
29 Griffiths W D, Boysan F. Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers. Journal of Aerosol Science , 1996, 27(2): 281–304
doi: 10.1016/0021-8502(95)00549-8
30 Gu F, Liu C J, Yuan X G, Yu G C. CFD simulation of liquid film flow on inclined plates. Chemical Engineering & Technology , 2004, 27(10): 1099–1104
doi: 10.1002/ceat.200402018
31 Hoekstra A J, Derksen J J, Van Den Akker H E A. An experimental and numerical study of turbulent swirling flow in gas cyclones. Chemical Engineering Science , 1999, 54(13-14): 2055–2065
doi: 10.1016/S0009-2509(98)00373-X
32 Kim C H, Lee J W. A new collection efficiency model for small cyclones considering the boundary-layer effect. Journal of Aerosol Science , 2001, 32(2): 251–269
doi: 10.1016/S0021-8502(00)00078-1
33 Fortes F J, Laserna J J. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy. Applied Surface Science , 2010, 256(20): 5924–5928
doi: 10.1016/j.apsusc.2010.03.077
34 Deuschle T, Janoske U, Piesche M. A CFD-model describing filtration, regeneration and deposit rearrangement effects in gas filter systems. Chemical Engineering Journal , 2008, 135(1-2): 49–55
doi: 10.1016/j.cej.2007.03.019
35 Han T. Experimental and Numerical Studies of Aerosol Penetration. Dissertation for the Doctoral Degree . College Station: Texas A&M University, 2007
36 Han T, Haglund J S, Hari S, McFarland A. Aerosol deposition on electroformed wire screens. Aerosol Science and Technology , 2009, 43(2): 112–119
doi: 10.1080/02786820802499050
37 Hosseini S A, Tafreshi H V. 3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technology , 2010, 201(2): 153–160
doi: 10.1016/j.powtec.2010.03.020
38 Tronville P, Rivers R. Numerical modeling of the flow resistance of fibrous air filter media having random fiber diameter. In: Proceedings of FILTECH Conference and Exhibition, Wiesbaden , 2005.
39 Wang J, Pui D Y H. Filtration of aerosol particles by elliptical fibers: a numerical study. Journal of Nanoparticle Research , 2009, 11(1): 185–196
doi: 10.1007/s11051-008-9422-z
40 Bird A J. Use of numerical calculations to simulate the sampling efficiency performance of a personal aerosol sampler. Aerosol Science and Technology , 2005, 39(7): 596–610
doi: 10.1080/027868291009260
41 Cain S A, Ram M. Numerical simulation studies of the turbulent airflow through a shrouded airborne aerosol sampling probe and estimation of the minimum sampler transmission efficiency. Journal of Aerosol Science , 1998, 29(9): 1145–1156
42 Chandra S, McFarland A R. Shrouded probe performance: Variable flow operation and effect of free stream turbulence. Aerosol Science and Technology , 1997, 26(2): 111–126
doi: 10.1080/02786829708965418
43 Gao P F, Chen B T, Baron P A, Soderholm S C. A numerical study of the performance of an aerosol sampler with a curved, blunt, multi-orificed inlet. Aerosol Science and Technology , 2002, 36(5): 540–553
doi: 10.1080/02786820252883784
44 Gao P F, Dillon H K, Baker J, Oestenstad K. Numerical prediction of the performance of a manifold sampler with a circular slit inlet in turbulent flow. Journal of Aerosol Science , 1999, 30(3): 299–312
doi: 10.1016/S0021-8502(98)00053-6
45 Lee S R, Holsen T M, Dhaniyala S. Design and development of novel large particle inlet for PM larger than 10 μm (PM > 10). Aerosol Science and Technology , 2008, 42(2): 140–151
doi: 10.1080/02786820701843176
46 Tang Y J, Guo B, McFarland A R. A Computational fluid dynamics study of particle penetration through an omni-directional aerosol inlet.. Aerosol Science and Technology , 2010, 44(11): 1049–1057
doi: 10.1080/02786826.2010.509746
47 Stapleton K W, Guentsch E, Hoskinson M K, Finlay W H. On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. Journal of Aerosol Science , 2000, 31(6): 739–749
doi: 10.1016/S0021-8502(99)00547-9
48 Park S S, Wexler A S. Particle deposition in the pulmonary region of the human lung: Multiple breath aerosol transport and deposition. Journal of Aerosol Science , 2007, 38(5): 509–519
doi: 10.1016/j.jaerosci.2007.03.005
49 Nowak N, Kakade P P, Annapragada A V. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Annals of Biomedical Engineering , 2003, 31(4): 374–390
doi: 10.1114/1.1560632 pmid:12723679
50 Darquenne C, Paiva M. Two- and three-dimensional simulations of aerosol transport and deposition in alveolar zone of human lung. Journal of Applied Physiology , 1996, 80(4): 1401–1414
pmid:8926273
51 Darquenne C. A realistic two-dimensional model of aerosol transport and deposition in the alveolar zone of the human lung. Journal of Aerosol Science , 2001, 32(10): 1161–1174
doi: 10.1016/S0021-8502(01)00047-7
52 Broday D M, Georgopoulos P G. Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Science and Technology , 2001, 34(1): 144–159
53 Ma B, Lutchen K R. CFD simulation of aerosol deposition in an anatomically based human large-medium airway model. Annals of Biomedical Engineering , 2009, 37(2): 271–285
doi: 10.1007/s10439-008-9620-y pmid:19082892
54 Jayaraju S T, Brouns M, Verbanck S, Lacor C. Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids. Journal of Aerosol Science , 2007, 38(5): 494–508
doi: 10.1016/j.jaerosci.2007.03.003
55 Gong H R, Chandra S, McFarland A R, Anand N K. A predictive model for aerosol transmission through a shrouded probe. Environmental Science & Technology , 1996, 30(11): 3192–3198
doi: 10.1021/es9509083
56 Parker S, Foat T, Preston S. Towards quantitative prediction of aerosol deposition from turbulent flows. Journal of Aerosol Science , 2008, 39(2): 99–112
doi: 10.1016/j.jaerosci.2007.10.002
57 Fletcher C A J, Srinivas K. Computational Techniques for Fluid Dynamics. 2nd ed. Berlin, New York: Springer-Verlag, 1991
58 Longest P W, Hindle M, Choudhuri S D. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry. Journal of Aerosol Medicine and Pulmonary Drug Delivery , 2009, 22(2): 67–83
doi: 10.1089/jamp.2008.0692 pmid:18956949
59 Group of Materialise. Mimics. Computer program , Leuven: Materialise Group, www.materialise.com, 2007
60 Simpleware Ltd.Simpleware. Computer program, Bradninch Hall: Simpleware Ltd. , www.simpleware.com, 2007
61 Matida E A, Finlay W H, Lange C F, Grgic B. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. Journal of Aerosol Science , 2004, 35(1): 1–19
doi: 10.1016/S0021-8502(03)00381-1
62 Longest P W, Kleinstreuer C, Buchanan J R. Efficient computation of micro-particle dynamics including wall effects. Computers & Fluids , 2004, 33(4): 577–601
doi: 10.1016/j.compfluid.2003.06.002
63 Matida E A, DeHaan W H, Finlay W H, Lange C F. Simulation of particle deposition in an idealized mouth with different small diameter inlets. Aerosol Science and Technology , 2003, 37(11): 924–932
doi: 10.1080/02786820300932
64 Zhang Y, Finlay W H, Matida E A. Particle deposition measurements and numerical simulation in a highly idealized mouth-throat. Journal of Aerosol Science , 2004, 35(7): 789–803
doi: 10.1016/j.jaerosci.2003.12.006
65 Pope S B. Turbulent Flows. Cambridge: Cambridge University Press, 2000
66 Landau L D. Lifshits E M. Fluid Mechanics. 2nd ed. Oxford, England ; New York: Pergamon Press, 1987
67 Launder B E, Spalding D B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering , 1974, 3(2): 269–289
doi: 10.1016/0045-7825(74)90029-2
68 Launder B, Reece G J, Rodi W. Progress in the development of a Reynolds-Stress turbulence closure. Journal of Fluid Mechanics , 1975, 68(3): 537–566
doi: 10.1017/S0022112075001814
70 Wilcox D C. Turbulence Modeling for CFD. 3rd ed. La C?nada, Calif.: DCW Industries, 2006
71 Spalart P R, Shur M. On the sensitization of turbulence models to rotation and curvature. Aerospace Science and Technology , 1997, 1(5): 297–302
doi: 10.1016/S1270-9638(97)90051-1
72 Slater S A, Young J B. The calculation of inertial particle transport in dilute gas-particle flows. International Journal of Multiphase Flow , 2001, 27(1): 61–87
doi: 10.1016/S0301-9322(99)00122-6
73 Liu B Y H, Agarwal J K. Experimental observation of aerosol deposition in turbulent flow. Journal of Aerosol Science , 1974, 5(2): 145–155
doi: 10.1016/0021-8502(74)90046-9
74 Schobeiri M. Fluid Mechanics for Engineers: A Graduate Textbook. New York: Springer, 2010
75 Casella G, Berger R L. Statistical Inference. 2nd ed. Pacific Grove: Thomson Learning, 2002
76 Balashazy I, Hofmann W. Deposition of aerosols in asymmetric airway bifurcations. Journal of Aerosol Science , 1995, 26(2): 273–292
doi: 10.1016/0021-8502(94)00106-9
77 Balashazy I, Hofmann W. Particle deposition in airway bifurcations: 1. Inspiratory Flow. Journal of Aerosol Science , 1993, 24(6): 745–772
doi: 10.1016/0021-8502(93)90044-A
78 Balashazy I, Hofmann W, Martonen T B. Inspiratory particle deposition in airway bifurcation models. Journal of Aerosol Science , 1991, 22(1): 15–30
doi: 10.1016/0021-8502(91)90090-5
79 Balashazy I, Hofmann W. Particle deposition in airway bifurcations: 2. Expiratory Flow. Journal of Aerosol Science , 1993, 24(6): 773–786
doi: 10.1016/0021-8502(93)90045-B
80 Kim C S, Iglesias A J. Deposition of inhaled particles in bifurcating airway models: I. Inspiratory Deposition. Journal of Aerosol Medicine , 1989, 2(1): 1–14
doi: 10.1089/jam.1989.2.1
81 Kim C S, Iglesias A J, Garcia L. Deposition of inhaled particles in bifurcating airway models: II. Expiratory Deposition. Journal of Aerosol Medicine , 1989, 2(1): 15–27
doi: 10.1089/jam.1989.2.15
82 Zhang Z, Kleinstreuer C, Kim C S. Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. Journal of Aerosol Science , 2002, 33(2): 257–281
doi: 10.1016/S0021-8502(01)00170-7
83 Weibel E R. Principles and methods for the morphometric study of the lung and other organs. Laboratory Investigation , 1963, 12(2): 131–155
pmid:13999512
84 Li A, Ahmadi G. Dispersion and deposition of spherical-particles from point sources in a turbulent channel flow. Aerosol Science and Technology , 1992, 16(4): 209–226
doi: 10.1080/02786829208959550
85 Balashazy I, Hofmann W, Heistracher T. Computation of local enhancement factors for the quantification of particle deposition patterns in airway bifurcations. Journal of Aerosol Science , 1999, 30(2): 185–203
doi: 10.1016/S0021-8502(98)00040-8
86 Matida E A, Finlay W H, Breuer M, Lange C F. Improving prediction of aerosol deposition in an idealized mouth using large-Eddy simulation. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung , 2006, 19(3): 290–300
doi: 10.1089/jam.2006.19.290 pmid:17034305
87 DeHaan W H, Finlay W H. Predicting extrathoracic deposition from dry powder inhalers. Journal of Aerosol Science , 2004, 35(3): 309–331
doi: 10.1016/j.jaerosci.2003.09.002
88 Liu Y, Matida E A, Gu J, Johnson M R. Numerical simulation of aerosol deposition in a 3-D human nasal cavity using RANS, RANS/EIM, and LES. Journal of Aerosol Science , 2007, 38(7): 683–700
doi: 10.1016/j.jaerosci.2007.05.003
89 Cheng Y S. Aerosol deposition in the extrathoracic region. Aerosol Science and Technology , 2003, 37(8): 659–671
doi: 10.1080/02786820300906 pmid:19011693
90 Nene R R. Design of Bio-aerosol Sampling Inlets. Dissertation for the Master Degree . College Station: Texas A&M University, 2006
91 Baehl M M. Ambient aerosol sampling inlet for flow rates of 100 and 400 L/min. Dissertation for the Master Degree . College Station: Texas A&M University, 2007
92 Wang Q, Squires K D. Large eddy simulation of particle deposition in a vertical turbulent channel flow. International Journal of Multiphase Flow , 1996, 22(4): 667–683
doi: 10.1016/0301-9322(96)00007-9
93 Mclaughlin J B. Aerosol-particle deposition in numerically simulated channel flow. Physics of Fluids. A, Fluid Dynamics , 1989, 1(7): 1211–1224
doi: 10.1063/1.857344
94 Wang Q, Squires K D, Chen M, McLaughlin J B. On the role of the lift force in turbulence simulations of particle deposition. International Journal of Multiphase Flow , 1997, 23(4): 749–763
doi: 10.1016/S0301-9322(97)00014-1
95 Kuerten J G M, Vreman A W. Can turbophoresis be predicted by large-eddy simulation? Physics of Fluids , 2005, 17(1): 011701, 1-4
doi: 10.1063/1.1824151
96 Lee K W, Liu B Y H. Theoretical-study of aerosol filtration by fibrous filters. Aerosol Science and Technology , 1982, 1(2): 147–161
doi: 10.1080/02786828208958584
97 Lee K W, Ramamurthi M. Filter collection. In: Willeke K, Baron P A, eds. Aerosol Measurement: Principles, Techniques, and Applications . New York: van Nostrand Reinhold, 1993
98 Lee K W, Gieseke J A. Note on the approximation of interceptional collection efficiencies. Journal of Aerosol Science , 1980, 11(4): 335–341
doi: 10.1016/0021-8502(80)90041-5
99 Pich J. The Effectiveness of the barrier effect in fiber filters at small knudsen numbers. Staub Reinhaltung der Luft , 1966, 26: 1–4
100 Liu B Y H, Rubow K L. Efficiency, pressure drop and figure of merit of high efficiency fibrous and membrane filter media. In: Proceedings of the Fifth World Filtration Congress, NICE , 1990
101 Sbrizzai F, Verzicco R, Pidria M F, Soldati A. Mechanisms for selective radial dispersion of microparticles in the transitional region of a confined turbulent round jet. International Journal of Multiphase Flow , 2004, 30(11): 1389–1417
doi: 10.1016/j.ijmultiphaseflow.2004.07.004
102 Parker S, Nally J, Foat T, Preston S. Refinement and testing of the drift-flux model for indoor aerosol dispersion and deposition modelling. Journal of Aerosol Science , 2010, 41(10): 921–934
doi: 10.1016/j.jaerosci.2010.07.002
103 Zhang Z, Chen Q. Prediction of particle deposition onto indoor surfaces by CFD with a modified Lagrangian method. Atmospheric Environment , 2009, 43(2): 319–328
doi: 10.1016/j.atmosenv.2008.09.041
104 Tian Z F, Tu J Y, Yeoh G H, Yuen R K K. On the numerical study of contaminant particle concentration in indoor airflow. Building and Environment , 2006, 41(11): 1504–1514
doi: 10.1016/j.buildenv.2005.06.006
105 Jicha M, Pospisil J, Katolicky J. Dispersion of pollutants in street canyon under traffic induced flow and turbulence. Environmental Monitoring and Assessment , 2000, 65(1-2): 343–351
doi: 10.1023/A:1006452422885
106 Jicha M, Katolicky J, Pospisil J. Dispersion of pollutants in a street canyon and street intersection under traffic-induced flow and turbulence using a low Re k-epsilon model. International Journal of Environment and Pollution , 2002, 18(2): 160–170
doi: 10.1504/IJEP.2002.012126
107 Chan T L, Liu Y H, Chan C K. Direct quadrature method of moments for the exhaust particle formation and evolution in the wake of the studied ground vehicle. Journal of Aerosol Science , 2010, 41(6): 553–568
doi: 10.1016/j.jaerosci.2010.03.005
108 Carpentieri M, Kumar P, Robins A. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles. Environmental Pollution , 2011, 159(3): 685–693
doi: 10.1016/j.envpol.2010.11.041 pmid:21193254
109 Albriet B, Sartelet K N, Lacour S, Carissimo B, Seigneur C. Modelling aerosol number distributions from a vehicle exhaust with an aerosol CFD model. Atmospheric Environment , 2010, 44(8): 1126–1137
doi: 10.1016/j.atmosenv.2009.11.025
110 Jayaraju S T, Brouns M, Lacor C, Belkassem B, Verbanck S. Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth-throat. Journal of Aerosol Science , 2008, 39(10): 862–875
doi: 10.1016/j.jaerosci.2008.06.002
111 Lo Iacono G, Tucker P G, Reynolds A M. Predictions for particle deposition from LES of ribbed channel flow. International Journal of Heat and Fluid Flow , 2005, 26(4): 558–568
doi: 10.1016/j.ijheatfluidflow.2005.03.004
112 Longest P W, Hindle M, Das Choudhuri S, Byron P R. Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data. Aerosol Science and Technology , 2007, 41(10): 952–973
doi: 10.1080/02786820701607027
113 CD-adapco Inc. STAR-CCM+ 5.04.006 Guide and Documentation. Computer program manual, Melville , New York: CD-adapco Inc., 2010
114 Gosman A D, Ioannides E. Aspects of computer-simulation of liquid-fueled combustors. Journal of Energy , 1983, 7(6): 482–490
doi: 10.2514/3.62687
115 Friedlander S K, Johnstone H F. Deposition of suspended particles from turbulent gas streams. Industrial & Engineering Chemistry , 1957, 49(7): 1151–1156
doi: 10.1021/ie50571a039
116 Mednikov E P. Turbulent Transfer and Deposition of Aerosols. Moscow: Nauka, 1980 (in Russian)
117 Nerisson P, Simonin O, Ricciardi L, Douce A, Fazileabasse J. Improved CFD transport and boundary conditions models for low-inertia particles. Computers & Fluids , 2011, 40(1): 79–91
doi: 10.1016/j.compfluid.2010.08.013
118 Gao R, Li A G. Modeling deposition of particles in vertical square ventilation duct flows. Building and Environment , 2011, 46(1): 245–252
doi: 10.1016/j.buildenv.2010.07.020
119 Jiang H, Lu L, Sun K. Simulation of particle deposition in ventilation duct with a particle-wall impact model. Building and Environment , 2010, 45(5): 1184–1191
doi: 10.1016/j.buildenv.2009.11.001
120 Zhang F P, Li A G. CFD simulation of particle deposition in a horizontal turbulent duct flow. Chemical Engineering Research & Design , 2008, 86(1): 95–106
doi: 10.1016/j.cherd.2007.10.014
121 Kasper G, Schollmeier S, Meyer J, Hoferer J. The collection efficiency of a particle-loaded single filter fiber. Journal of Aerosol Science , 2009, 40(12): 993–1009
doi: 10.1016/j.jaerosci.2009.09.005
122 Fotovati S, Tafreshi H V, Ashari A, Hosseini S A, Pourdeyhimi B. Analytical expressions for predicting capture efficiency of bimodal fibrous filters. Journal of Aerosol Science , 2010, 41(3): 295–305
doi: 10.1016/j.jaerosci.2010.01.002
[1] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[2] Yueqi Jiang, Jia Xing, Shuxiao Wang, Xing Chang, Shuchang Liu, Aijun Shi, Baoxian Liu, Shovan Kumar Sahu. Understand the local and regional contributions on air pollution from the view of human health impacts[J]. Front. Environ. Sci. Eng., 2021, 15(5): 88-.
[3] Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng. An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation[J]. Front. Environ. Sci. Eng., 2021, 15(4): 63-.
[4] Guanyu Jiang, Can Wang, Lu Song, Xing Wang, Yangyang Zhou, Chunnan Fei, He Liu. Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster[J]. Front. Environ. Sci. Eng., 2021, 15(3): 46-.
[5] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[6] Wenwen Xie, Yanpeng Li, Wenyan Bai, Junli Hou, Tianfeng Ma, Xuelin Zeng, Liyuan Zhang, Taicheng An. The source and transport of bioaerosols in the air: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 44-.
[7] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[8] Pil Uthaug Rasmussen, Katrine Uhrbrand, Mette Damkjær Bartels, Helle Neustrup, Dorina Gabriela Karottki, Ute Bültmann, Anne Mette Madsen. Occupational risk of exposure to methicillin-resistant Staphylococcus aureus (MRSA) and the quality of infection hygiene in nursing homes[J]. Front. Environ. Sci. Eng., 2021, 15(3): 41-.
[9] Philippa Douglas, Daniela Fecht, Deborah Jarvis. Characterising populations living close to intensive farming and composting facilities in England[J]. Front. Environ. Sci. Eng., 2021, 15(3): 40-.
[10] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[11] Dongjie Shang, Jianfei Peng, Song Guo, Zhijun Wu, Min Hu. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China[J]. Front. Environ. Sci. Eng., 2021, 15(2): 34-.
[12] Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin. Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades[J]. Front. Environ. Sci. Eng., 2020, 14(5): 84-.
[13] Wei Fan, Qi Li, Mingxin Huo, Xiaoyu Wang, Shanshan Lin. Transport of bacterial cell (E. coli) from different recharge water resources in porous media during simulated artificial groundwater recharge[J]. Front. Environ. Sci. Eng., 2020, 14(4): 63-.
[14] Youfang Chen, Yimin Zhou, Xinyi Zhao. PM2.5 over North China based on MODIS AOD and effect of meteorological elements during 2003‒2015[J]. Front. Environ. Sci. Eng., 2020, 14(2): 23-.
[15] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed