|
|
Competitive adsorption and desorption of copper and lead in some soil of North China |
Fengjie ZHANG1,2, Xiaoxia OU2, Shuo CHEN1( ), Chunqiu RAN2, Xie QUAN1 |
1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; 2. College of Environment and Resources, Dalian Nationalities University, Dalian 116600, China |
|
|
Abstract The competitive adsorption and desorption of Pb(II) and Cu(II) ions in the soil of three sites in North China were investigated using single and binary metal solutions with 0.01 mol·L-1 CaCl2 as background electrolyte. The desorption isotherms of Pb(II) and Cu(II) were similar to the adsorption isotherms, which can be fitted well by Freundlich equation (R2>0.96). The soil in the three sites had greater sorption capacities for Pb(II) than Cu(II), which was affected strongly by the soil characteristics. In the binary metal solution containing 1∶1 molar ratio of Pb(II) and Cu(II), the total amount of Pb(II) and Cu(II) adsorption was affected by the simultaneous presence of the two metal ions, indicating the existence of adsorption competition between the two metal ions. Fourier transform infrared (FT-IR) spectroscopy was used to investigate the interaction between soil and metal ions, and the results revealed that the carboxyl and hydroxyl groups in the soil were the main binding sites of metal ions.
|
Keywords
competitive adsorption
desorption
copper
lead
soil
|
Corresponding Author(s):
CHEN Shuo,Email:shuochen@dlut.edu.cn
|
Issue Date: 01 August 2012
|
|
1 |
Bhuiyan M A H, Parvez L, Islam M A, Dampare S B, Suzuki S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials , 2010, 173(1-3): 384–392 doi: 10.1016/j.jhazmat.2009.08.085 pmid:19744789
|
2 |
Thévenot D R, Moilleron R, Lestel L, Gromaire M C, Rocher V, Cambier P, Bonté P, Colin J L, de Pontevès C, Meybeck M. Critical budget of metal sources and pathways in the Seine River basin (1994-2003) for Cd, Cr, Cu, Hg, Ni, Pb and Zn. The Science of the Total Environment , 2007, 375(1-3): 180–203 doi: 10.1016/j.scitotenv.2006.12.008 pmid:17267024
|
3 |
Jung M C. Contamination by Cd, Cu, Pb, and Zn in mine wastes from abandoned metal mines classified as mineralization types in Korea. Environmental Geochemistry and Health , 2008, 30(3): 205–217 doi: 10.1007/s10653-007-9109-x pmid:17687627
|
4 |
Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature , 1988, 333(6169): 134–139 doi: 10.1038/333134a0 pmid:3285219
|
5 |
Paulson A J. The transport and fate of Fe, Mn, Cu, Zn, Cd, Pb and SO4 in a groundwater plume and in downstream surface waters in the Coeur d'Alene Mining District, Idaho, U.S.A. Applied Geochemistry , 1997, 12(4): 447–464 doi: 10.1016/S0883-2927(97)00013-9
|
6 |
Chen K P, Jiao J J. Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas: a case study in Shenzhen, China. Environmental Pollution , 2008, 151(3): 576–584 doi: 10.1016/j.envpol.2007.04.004 pmid:17543432
|
7 |
Lu S G, Xu Q F. Competitive adsorption of Cd, Cu, Pb and Zn by different soils of Eastern China. Environmental Geology , 2009, 57(3): 685–693 doi: 10.1007/s00254-008-1347-4
|
8 |
Vasudevan D, Cooper E M, Van Exem O L. Sorption-desorption of ionogenic compounds at the mineral-water interface: study of metal oxide-rich soils and pure-phase minerals. Environmental Science & Technology , 2002, 36(3): 501–511 doi: 10.1021/es0109390 pmid:11871567
|
9 |
Vega F A, Covelo E F, Andrade M L. Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. Journal of Colloid and Interface Science , 2006, 298(2): 582–592 doi: 10.1016/j.jcis.2006.01.012 pmid:16458917
|
10 |
Scheinost A C, Abend S, Pandya K I, Sparks D L. Kinetic controls on Cu and Pb sorption by ferrihydrite. Environmental Science & Technology , 2001, 35(6): 1090–1096 doi: 10.1021/es000107m pmid:11347919
|
11 |
Trivedi P, Axe L. Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides. Environmental Science & Technology , 2001, 35(9): 1779–1784 doi: 10.1021/es001644+ pmid:11355192
|
12 |
Srivastava P, Singh B, Angove M. Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science , 2005, 290(1): 28–38 doi: 10.1016/j.jcis.2005.04.036 pmid:15935360
|
13 |
Jalali M, Moharrami S. Competitive adsorption of trace elements in calcareous soils of western Iran. Geoderma , 2007, 140(1-2): 156–163 doi: 10.1016/j.geoderma.2007.03.016
|
14 |
Covelo E F, Vega F A, Andrade M L. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. selectivity sequences. Journal of Hazardous Materials , 2007, 147(3): 852–861 doi: 10.1016/j.jhazmat.2007.01.123 pmid:17346879
|
15 |
Serrano S, Garrido F, Campbell C G, García-González M T. Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma , 2005, 124(1-2): 91–104 doi: 10.1016/j.geoderma.2004.04.002
|
16 |
Papageorgiou S K, Katsaros F K, Kouvelos E P, Kanellopoulos N K. Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. Journal of Hazardous Materials , 2009, 162(2-3): 1347–1354 pmid:18653278
|
17 |
Wang S B, Terdkiatburana T, Tadé M O. Single and co-adsorption of heavy metals and humic acid on fly ash. Separation and Purification Technology , 2008, 58(3): 353–358 doi: 10.1016/j.seppur.2007.05.009
|
18 |
El-Bayaa A A, Badawy N A, Alkhalik E A. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. Journal of Hazardous Materials , 2009, 170(2-3): 1204–1209 doi: 10.1016/j.jhazmat.2009.05.100 pmid:19524366
|
19 |
Vaughan T, Seo C W, Marshall W E. Removal of selected metal ions from aqueous solution using modified corncobs. Bioresource Technology , 2001, 78(2): 133–139 doi: 10.1016/S0960-8524(01)00007-4 pmid:11333031
|
20 |
Entezari M H, Soltani T. Simultaneous removal of copper and lead ions from a binary solution by sono-sorption process. Journal of Hazardous Materials , 2008, 160(1): 88–93 doi: 10.1016/j.jhazmat.2008.02.108 pmid:18423860
|
21 |
Mohapatra H, Gupta R. Concurrent sorption of Zn(II), Cu(II) and Co(II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Bioresource Technology , 2005, 96(12): 1387–1398 doi: 10.1016/j.biortech.2004.11.004 pmid:15792587
|
22 |
Mouni L, Merabet D, Robert D, Bouzaza A.Batch studies for the investigation of the sorption of the heavy metals Pb2+ and Zn2+ onto Amizour soil (Algeria). Geoderma , 2009, 154(1-2): 30–35 doi: 10.1016/j.geoderma.2009.09.007
|
23 |
Díaz-Barrientos E, Madrid L, Maqueda C, Morillo E, Ruiz-Cortés E, Basallote E, Carrillo M. Copper and zinc retention by an organically amended soil. Chemosphere , 2003, 50(7): 911–917 doi: 10.1016/S0045-6535(02)00695-1 pmid:12504129
|
24 |
Merdy P, Gharbi L T, Lucas Y. Pb, Cu and Cr interactions with soil: sorption experiments and modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 347(1-3): 192–199 doi: 10.1016/j.colsurfa.2009.04.004
|
25 |
Pehlivan E, Ozkan A M, Din? S, Parlayici S. Adsorption of Cu2+ and Pb2+ ion on dolomite powder. Journal of Hazardous Materials , 2009, 167(1-3): 1044–1049 doi: 10.1016/j.jhazmat.2009.01.096 pmid:19237240
|
26 |
Wang F, Pan G X, Li L Q. Effects of free iron oxyhydrates and soil organic matter on copper sorption-desorption behavior by size fractions of aggregates from two paddy soils. Journal of Environmental Sciences-China , 2009, 21(5): 618–624 doi: 10.1016/S1001-0742(08)62316-5 pmid:20108663
|
27 |
Usman R A. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma , 2008, 144(1-2): 334–343 doi: 10.1016/j.geoderma.2007.12.004
|
28 |
De Matos A T, Fontes M P F, da Costa L M, Martinez M A. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environmental pollution , 2001, 111(3): 429–435 doi: 10.1016/S0269-7491(00)00088-9 pmid:11202747
|
29 |
Lee S Z, Chang L Z, Yang H H, Chen C M, Liu M C. Adsorption characteristics of lead onto soils. Journal of Hazardous Materials , 1998, 63(1): 37–49 doi: 10.1016/S0304-3894(98)00203-9
|
30 |
Dyer J A, Trivedi P, Scrivner N C, Sparks D L. Lead sorpion onto ferrihydrite. 2. Surface complexation modeling. Environmental Science & Technology , 2003, 37(5): 915–922 doi: 10.1021/es025794r pmid:12666921
|
31 |
Viventsova Ruth E, Kumpiene J, Gunneriusson L, Holmgren A. Changes in soil organic matter composition and quantity with distance to a nickel smelter — a case study on the Kola Peninsula, NW Russia. Geoderma , 2005, 127(3-4): 216–226 doi: 10.1016/j.geoderma.2004.12.010
|
32 |
Futalan C M, Kan C C, Dalida M L, Hsien K J, Pascua C, Wan M W. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydrate Polymers , 2011, 83(2): 528–536 doi: 10.1016/j.carbpol.2010.08.013
|
33 |
Arias M, Pérez-Novo C, Osorio F, López E, Soto B. Adsorption and desorption of copper and zinc in the surface layer of acid soils. Journal of Colloid and Interface Science , 2005, 288(1): 21–29 doi: 10.1016/j.jcis.2005.02.053 pmid:15927557
|
34 |
Trivedi P, Axe L, Dyer J. Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2001, 191(1-2): 107–121 doi: 10.1016/S0927-7757(01)00768-3
|
35 |
Arias M, Pérez-Novo C, López E, Soto B. Competitive adsorption and desorption of copper and zinc in acid soils. Geoderma , 2006, 133(3-4): 151–159 doi: 10.1016/j.geoderma.2005.07.002
|
36 |
Singh A, Kumar D, Gaur J P. Copper(II) and lead(II) sorption from aqueous solution by non-living Spirogyra neglecta. Bioresource Technology , 2007, 98(18): 3622–3629 doi: 10.1016/j.biortech.2006.11.041 pmid:17223556
|
37 |
Flogeac K, Guillon E, Aplincourt M. Competitive sorption of metal ions onto a north-eastern France soil. Isotherms and XAFS studies. Geoderma , 2007, 139(1-2): 180–189 doi: 10.1016/j.geoderma.2007.01.016
|
38 |
Oh S, Kwak M Y, Shin W S. Competitive sorption of lead and cadmium onto sediments. Chemical Engineering Journal , 2009, 152(2-3): 376–388 doi: 10.1016/j.cej.2009.04.061
|
39 |
Ma L, Xu R K, Jiang J. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China. Journal of Environmental Sciences-China , 2010, 22(5): 689–695 doi: 10.1016/S1001-0742(09)60164-9 pmid:20608504
|
40 |
Qiu W, Zheng Y. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal , 2009, 145(3) 483–488 doi: 10.1016/j.cej.2008.05.001
|
41 |
Arias M, Barral M T, Mejuto J C. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere , 2002, 48(10): 1081–1088 doi: 10.1016/S0045-6535(02)00169-8 pmid:12227513
|
42 |
Sposito G. The Surface Chemistry of Soil. New York: Oxford University Press, 1984
|
43 |
Wan Y, Bao Y Y, Zhou Q X. Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil. Chemosphere , 2010, 80(7): 807–812 doi: 10.1016/j.chemosphere.2010.04.066 pmid:20510430
|
44 |
Lim S F, Zheng Y M, Zou S W, Chen J P. Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study. Environmental Science & Technology , 2008, 42(7): 2551–2556 doi: 10.1021/es7021889 pmid:18504995
|
45 |
Iqbal M, Saeed A, Zafar S I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials , 2009, 164(1): 161–171 doi: 10.1016/j.jhazmat.2008.07.141 pmid:18799258
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|