|
|
Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit |
Hongtao ZHU1( ), Wenna LI1,2 |
1. School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; 2. Tianjin Guangyao Dongfang Property & Investment Co. Ltd., Tianjin 300450, China |
|
|
Abstract Forward osmotic membrane bioreactor is an emerging technology that combines the advantages of forward osmosis and conventional membrane bioreactor. In this paper, bisphenol A removal by using a forward osmotic membrane bioreactor and a conventional membrane bioreactor that shared one biologic reactor was studied. The total removal rate of bisphenol A by the conventional membrane bioreactor and forward osmotic membrane bioreactor was as high as 93.9% and 98%, respectively. Biodegradation plays a dominant role in the total removal of bisphenol A in both processes. In comparison of membrane rejection, the forward osmosis membrane can remove approximately 70% bisphenol A from the feed, much higher than that of the microfiltration membrane (below 10%). Forward osmosis membrane bioreactor should be operated with its BPA loading rate under 0.08 mg·g-1·d-1 to guarantee the effluent bisphenol A concentration less than10 μg·L-1.
|
Keywords
forward osmosis
membrane bioreactor
bisphenol A
microfiltration
|
Corresponding Author(s):
ZHU Hongtao,Email:zhuhongtao@bjfu.edu.cn
|
Issue Date: 01 April 2013
|
|
1 |
Silva C P, Otero M, Esteves V. Processes for the elimination of estrogenic steroid hormones from water: a review. Environmental Pollution , 2012, 165: 38–58 doi: 10.1016/j.envpol.2012.02.002 pmid:22402263
|
2 |
Sipma J, Osuna B, Collado N, Monclús H, Ferrero G, Comas J, Rodrigues-Roda I. Comparison of removal of pharmaceuticals in MBR and activated sludge systems. Desalination , 2010, 250(2): 653–659 doi: 10.1016/j.desal.2009.06.073
|
3 |
Bertanza G, Pedrazzani R, Dal Grande M, Papa M, Zambarda V, Montani C, Steimberg N, Mazzoleni G, Di Lorenzo D. Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. Water Research , 2011, 45(8): 2473–2484 doi: 10.1016/j.watres.2011.01.026 pmid:21420711
|
4 |
Reif R, Suárez S, Omil F, Lema J M. Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage. Desalination , 2008, 221(1-3): 511–517 doi: 10.1016/j.desal.2007.01.111
|
5 |
Abegglen C, Joss A, McArdell C S, Fink G, Schlüsener M P, Ternes T A, Siegrist H. The fate of selected micropollutants in a single-house MBR. Water Research , 2009, 43(7): 2036–2046 doi: 10.1016/j.watres.2009.02.005 pmid:19269669
|
6 |
Tambosi J L, de Sena R F, Favier M, Gebhardt W, José H J, Schr?der H F, de Fátima Peralta Muniz Moreira R. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination , 2010, 261(1-2): 148–156 doi: 10.1016/j.desal.2010.05.014
|
7 |
Radjenovi? J, Petrovi? M, Barceló D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research , 2009, 43(3): 831–841 doi: 10.1016/j.watres.2008.11.043 pmid:19091371
|
8 |
Bo L, Urase T, Wang X. Biodegradation of trace pharmaceutical substances in wastewater by a membrane bioreactor. Frontiers of Environmental Science & Engineering in China , 2009, 3(2): 236–240 doi: 10.1007/s11783-009-0004-9
|
9 |
Hai F I, Li X, Price W E, Nghiem L D. Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions. Bioresource Technology , 2011, 102(22): 10386–10390 doi: 10.1016/j.biortech.2011.09.019 pmid:21963248
|
10 |
Hai F I, Tessmer K, Nguyen L N, Kang J, Price W E, Nghiem L D. Removal of micropollutants by membrane bioreactor under temperature variation. Journal of Membrane Science , 2011, 383(1-2): 144–151 doi: 10.1016/j.memsci.2011.08.047
|
11 |
Pollice A, Laera G, Cassano D, Diomede S, Pinto A, Lopez A, Mascolo G. Removal of nalidixic acid and its degradation products by an integrated MBR-ozonation system. Journal of Hazardous Materials , 2012, 203-204: 46–52 doi: 10.1016/j.jhazmat.2011.11.072 pmid:22206976
|
12 |
Li X, Hai F I, Nghiem L D. Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal. Bioresource Technology , 2011, 102(9): 5319–5324 doi: 10.1016/j.biortech.2010.11.070 pmid:21145232
|
13 |
Dolar D, Gros M, Rodriguez-Mozaz S, Moreno J, Comas J, Rodriguez-Roda I, Barceló D. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. Journal of Hazardous Materials , 2012, 239- 240: 64–69 doi: 10.1016/j.jhazmat.2012.03.029 pmid:22476093
|
14 |
Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science , 2006, 281(1-2): 70–87 doi: 10.1016/j.memsci.2006.05.048
|
15 |
Chung T S, Zhang S, Wang K Y, Su J, Ling M M. Forward osmosis processes: Yesterday, today and tomorrow. Desalination , 2012, 287: 78–81 doi: 10.1016/j.desal.2010.12.019
|
16 |
Zhao S, Zou L, Tang C Y, Mulcahy D. Recent developments in forward osmosis: Opportunies and challenges. Journal of Membrane Science , 2012, 396: 1–21 doi: 10.1016/j.memsci.2011.12.023
|
17 |
Xie M, Nghiem L D, Price W E, Elimelech M. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Water Research , 2012, 46(8): 2683–2692 doi: 10.1016/j.watres.2012.02.023 pmid:22402269
|
18 |
Valladares Linares R, Yangali-Quintanilla V, Li Z, Amy G. Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Research , 2011, 45(20): 6737–6744 doi: 10.1016/j.watres.2011.10.037 pmid:22055122
|
19 |
Xie M, Price W E, Nghiem L D. Rejection of pharmaceutically active compounds by forward osmosis: role of solution pH and membrane orientation. Separation and Purification Technology , 2012, 93: 107–114 doi: 10.1016/j.seppur.2012.03.030
|
20 |
Jin X, Shan J, Wang C, Wei J, Tang C Y. Rejection of pharmaceuticals by forward osmosis membranes. Journal of Hazardous Materials , 2012, 227-228: 55–61 . doi: 10.1016/j.jhazmat.2012.04.077 pmid:21237563
|
21 |
Achilli A, Cath T Y, Marchand E A, Childress A E. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination , 2009, 239(1-3): 10–21 doi: 10.1016/j.desal.2008.02.022
|
22 |
Cornelissen E R, Harmsen D, de Korte K F, Ruiken C J, Qin J-J, Oo H, Wessels L P. Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science , 2008, 319(1-2): 158–168 doi: 10.1016/j.memsci.2008.03.048
|
23 |
Xiao D, Tang C Y, Zhang J, Lay W C L, Wang R, Fane A G. Modeling salt accumulation in osmotic membrane bioreactors: implications for FO membrane selection and system operation. Journal of Membrane Science , 2011, 366(1-2): 314–324 doi: 10.1016/j.memsci.2010.10.023
|
24 |
Lay W C L, Zhang Q, Zhang J, McDougald D, Tang C, Wang R, Liu Y, Fane A G. Study of integration of forward osmosis and biological process: membrane performance under elevated salt environment. Desalination , 2011, 283: 123–130 doi: 10.1016/j.desal.2011.01.036
|
25 |
Zhang H, Ma Y, Jiang T, Zhang G, Yang F. Influence of activated sludge properties on flux behavior in osmosis membrane bioreactor (OMBR). Journal of Membrane Science , 2012, 390-391: 270–276 doi: 10.1016/j.memsci.2011.11.048
|
26 |
Yap W J, Zhang J, Lay W C L, Cao B, Fane A G, Liu Y. State of the art of osmotic membrane bioreactors for water reclamation. Bioresource Technology, 2012, 122: 217–222
|
27 |
Alturki A, McDonald J, Khan S J, Hai F I, Price W E, Nghiem L D. Performance of a novel osmotic membrane bioreactor (OMBR) system: flux stability and removal of trace organics. Bioresource Technology , 2012, 113: 201–206 doi: 10.1016/j.biortech.2012.01.082 pmid:22342586
|
28 |
Chen J, Huang X, Lee D. Bisphenol A removal by a membrane bioreactor. Process Biochemistry , 2008, 43(4): 451–456 doi: 10.1016/j.procbio.2008.01.001
|
29 |
Clara M, Strenn B, Saracevic E, Kreuzinger N. Adsorption of bisphenol-A, 17 beta-estradiole and 17 alpha-ethinylestradiole to sewage sludge. Chemosphere , 2004, 56(9): 843–851 doi: 10.1016/j.chemosphere.2004.04.048 pmid:15261530
|
30 |
Dong B, Chu H, Wang L, Xia S, Gao N. The removal of bisphenol A by hollow fiber microfiltration membrane. Desalination , 2010, 250(2): 693–697 doi: 10.1016/j.desal.2009.05.022
|
31 |
Hancock N T, Xu P, Heil D M, Bellona C, Cath T Y. Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis. Environmental Science & Technology , 2011, 45(19): 8483–8490 doi: 10.1021/es201654k pmid:21838294
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|