Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 589-597    https://doi.org/10.1007/s11783-013-0495-2
RESEARCH ARTICLE
PCDD/Fs emission, risk characterization, and reduction in China’s secondary copper production industry
Haiqian LI1,2, Yonglong LU1(), Li LI1,2
1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. University of Chinese Academy of Sciences, Beijing 100039, China
 Download: PDF(391 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Secondary copper production is one of the key polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) emission sources in China, but research and data on this issue are rare. In 2004, when the Stockholm Convention entered into force in China, PCDD/Fs emissions from secondary copper production contributed to 32.2% of the total release. In this paper, PCDD/Fs emission dynamics from secondary copper industry were discussed and cumulative risks were characterized. From 2004 to 2009, industrial policies played an indirect role in PCDD/Fs reduction, but its effects are still limited. The Yangtze River Delta, Pearl River Delta and central regions were among the top three of dioxin emissions from secondary copper production in China. Shanghai, Shandong, Zhejiang, and Jiangxi had comparatively higher accumulated risk and were recommended as the priority regions for promoting PCDD/Fs emission control in China. From 2009 to 2015, the PCDD/Fs emission dynamics in the secondary copper industry were presented through simulation. PCDD/Fs emission equations were established, resulting in the recommendation of control technology conversion rate at 30% for small scale smelters and 51%–57% for large and medium-sized enterprises in 2015. In conclusion, both indirect policy and direct control technology retrofitting should be integrated for more effective PCDD/Fs emission reduction in secondary copper industry.

Keywords polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)      secondary copper production      emission      risk      China     
Corresponding Author(s): LU Yonglong,Email:yllu@rcees.ac.cn   
Issue Date: 01 August 2013
 Cite this article:   
Haiqian LI,Yonglong LU,Li LI. PCDD/Fs emission, risk characterization, and reduction in China’s secondary copper production industry[J]. Front Envir Sci Eng, 0, (): 589-597.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0495-2
https://academic.hep.com.cn/fese/EN/Y0/V/I/589
Fig.1  Basic processes of secondary copper production in China
Fig.2  PCDD/Fs emission variation according to adjustment of industrial structure
Fig.3  PCDD/Fs emissions cumulative distribution from secondary copper production in China 2004-2009 (No data from Hong Kong, Macao, and Taiwan)
orderregional emission land load indexper capita emissions load indexmedian emission indexpopulation impact index
1ShanghaiJiangxiShanghaiShanghai
2TianjinZhejiangTianjinShandong
3ZhejiangShanghaiZhejiangZhejiang
4ShandongShandongJiangxiJiangxi
5JiangxiTianjinShandongAnhui
6AnhuiXizangAnhuiHenan
7JiangsuAnhuiJiangsuJiangsu
8HenanHenanHenanGuangdong
9GuangdongJiangsuGuangdongTianjin
10HubeiYunnanFujianHubei
Tab.1  PCDD/Fs emissions risk of the four indexes, ranked by region (2004-2009)
Fig.4  Population impact index accumulative value variation in 2004-2009 (No data from Hong Kong, Macao, and Taiwan)
Fig.5  PCDD/Fs emissions from secondary copper production in business as usual conditions (2009-2015)
-5%-2.5%0+ 2.5%+ 5%
K1, K2 = 55%,ΔY = RY-Y201550%, -11.152.5%, 24.4555%, 6057.5%, 95.7060%, 131.32
K2, K1 = 30%ΔY= RY-Y201525%, -153.6827.5%, -46.830%, 6032.5%, 166.9435%, 273.82
Tab.2  Sensitivity analysis results of the recommended portfolio ( = 30%, = 55%, = 5%)
1 UNEP. The Stockholm Convention on Persistent Organic Pollution. 2004. Available online at http://chm.pops.int/Convention/ConventionText/tabid/2232/Default.aspx (accessed November19, 2012)
2 Kannan K, Aldous K M. Dioxins. In: Worsfold P, Townshend A, Poole C, eds. Encyclopedia of Analytical Science . Oxford: Elsevier, 2005
3 Zheng G J, Leung A O W, Jiao L P, Wong M H. Polychlorinated dibenzo-p-dioxins and dibenzofurans pollution in China: sources, environmental levels and potential human health impacts. Environment International , 2008, 34(7): 1050-1061
doi: 10.1016/j.envint.2008.02.011 pmid:18440070
4 Srogi K. Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: a review. Environmental Chemistry Letters , 2008, 6(1): 1-28
doi: 10.1007/s10311-007-0105-2
5 Chen C M. The emission inventory of PCDD/PCDF in Taiwan. Chemosphere , 2004, 54(10): 1413-1420
doi: 10.1016/j.chemosphere.2003.10.039 pmid:14659943
6 Ba T, Zheng M H, Zhang B, Liu W B, Xiao K, Zhang L F. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China. Chemosphere , 2009, 75(9): 1173-1178
doi: 10.1016/j.chemosphere.2009.02.052 pmid:19329140
7 Tian B, Huang J, Wang B, Deng S, Yu G. Emission characterization of unintentionally produced persistent organic pollutants from iron ore sintering process in China. Chemosphere , 2012, 89(4): 409-415
doi: 10.1016/j.chemosphere.2012.05.069 pmid:22727897
8 Li H, Lu Y, Luo W, Gosens J, Li L.Polychlorinated dibenzo-p-dioxins and dibenzofurans emissions in a primary copper smelter in China. Chemistry and Ecology,2012,
doi: 10.1080/02757540.2012.744832
9 China Environmental Protection Administration. The People’s Republic of China National Implementation Plan for the Stockholm Convention on Persistent Organic Pollutants 2007. Available online at http://www.china-pops.net/download_view.asp?id=90 (accessed November19, 2012)
10 Nie Z, Liu G, Liu W, Zhang B, Zheng M. Characterization and quantification of unintentional POP emissions from primary and secondary copper metallurgical processes in China. Atmospheric Environment , 2012, 57(9): 109-115
doi: 10.1016/j.atmosenv.2012.04.048
11 Lee C C, Shih T S, Chen H L. Distribution of air and serum PCDD/F levels of electric arc furnaces and secondary aluminum and copper smelters. Journal of Hazardous Materials , 2009, 172(2-3): 1351-1356
doi: 10.1016/j.jhazmat.2009.07.148 pmid:19717228
12 Yu B W, Jin G Z, Moon Y H, Kim M K, Kyoung J D, Chang Y S. Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea. Chemosphere , 2006, 62(3): 494-501
doi: 10.1016/j.chemosphere.2005.04.031 pmid:15939459
13 Hu J, Zheng M, Nie Z, Liu W, Liu G, Zhang B, Xiao K. Polychlorinated dibenzo-p-dioxin and dibenzofuran and polychlorinated biphenyl emissions from different smelting stages in secondary copper metallurgy. Chemosphere , 2012, 90(1): 89-94
14 Kakuta Y, Matsuto T, Tojo Y, Tomikawa H. Characterization of residual carbon influencing on de novo synthesis of PCDD/Fs in MSWI fly ash. Chemosphere , 2007, 68(5): 880-886
doi: 10.1016/j.chemosphere.2007.02.017 pmid:17412391
15 Lin W Y, Wang L C, Wang Y F, Li H W, Chang C, Guo P. Removal characteristics of PCDD/Fs by the dual bag filter system of a fly ash treatment plant. Journal of Hazardous Materials , 2008, 153(3): 1015-1022
doi: 10.1016/j.jhazmat.2007.09.054 pmid:17961915
16 Chen T, Yan J H, Lu S Y, Li X D, Gu Y L, Dai H F, Ni M J, Cen K F. Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in China. Journal of Hazardous Materials , 2008, 150(3): 510-514
doi: 10.1016/j.jhazmat.2007.04.131 pmid:17574738
17 Guerriero E, Guarnieri A, Mosca S, Rossetti G, Rotatori M. PCDD/Fs removal efficiency by electrostatic precipitator and wet fine scrubber in an iron ore sintering plant. Journal of Hazardous Materials , 2009, 172(2-3): 1498-1504
doi: 10.1016/j.jhazmat.2009.08.019 pmid:19733437
18 ?berg T. Low-temperature formation and degradation of chlorinated benzenes, PCDD and PCDF in dust from steel production. Science of the total environment , 2007, 382(1): 153-158
doi: 10.1016/j.scitotenv.2007.03.015 pmid:17451790
19 Chemicals U N E P. Standardized Toolkit for Identification and Quantification of Dioxin and Furan Releases. 2005. Available online at http://chm.pops.int/Overview/tabid/372/Default.aspx (accessed November19, 2012)
20 Zhu J, Hirai Y, Sakai S I, Zheng M. Potential source and emission analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in China. Chemosphere , 2008, 73(1 Suppl): S72-S77
doi: 10.1016/j.chemosphere.2007.06.092 pmid:18439643
21 China Environmental Protection Administration. Dioxin Pollution Prevention Guidance. 2010 SEPA No.123 . 2010. Available online at http://www.zhb.gov.cn/gkml/hbb/bwj/201011/t20101104_197138.htm (accessed November19, 2012)
22 Zheng M, Sun Y, Liu W. Dioxin Emission Inventory Research in China. Beijing: China Environmental Scientific Press, 2008, 85-105
23 Yu G, Yang X, Huang J. Dioxin Emission Reduction Strategy Research in China. Beijing: China Environmental Science Press, 2008
24 China Non-Ferrous Metal Association. China Secondary Non-Ferrous Metals Special Plan 2009-2015. 2011. Available online at http://www.cnmc.com.cn/detail.jsp?article_millseconds=1318934732316&column_no=010304 (accessed November19, 2012)
25 China’s Ministry of Industrial and Information Technology. China’s Secondary Non-Ferrous Industry Development and Promotion Plan. 2011. Available online at http://www.miit.gov.cn/n11293472/n11293832/n11294042/n11302360/13644605.html (accessed November19, 2012)
[1] Hui Li, Jiaxin Qiu, Kexin Zhang, Bo Zheng. Monitoring fossil fuel CO2 emissions from co-emitted NO2 observed from space: progress, challenges, and future perspectives[J]. Front. Environ. Sci. Eng., 2025, 19(1): 2-.
[2] Na Zhao, Yuqiang Zhang, Likun Xue. Nonlinear relationship between air pollution and precursor emissions in Qingdao, eastern China[J]. Front. Environ. Sci. Eng., 2025, 19(1): 9-.
[3] Daniela M. Pampanin, Daniel Schlenk, Matteo Vitale, Pierre Liboureau, Magne O Sydnes. Use of DREAM to assess relative risks of presence of pharmaceuticals and personal care products from a wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2024, 18(9): 113-.
[4] Jian Lu, Jun Wu, Cui Zhang, Jianhua Wang, Xia He. Occurrence and possible sources of antibiotic resistance genes in seawater of the South China Sea[J]. Front. Environ. Sci. Eng., 2024, 18(9): 108-.
[5] Wan Huang, Ziren Wan, Di Zheng, Lifeng Cao, Guanghe Li, Fang Zhang. Evolution of soil DOM during thermal remediation below 100 °C: concentration, spectral characteristics and complexation ability[J]. Front. Environ. Sci. Eng., 2024, 18(8): 94-.
[6] Miao He, Guijian Liu, Xiaodan Shi, Lei Wu, Qiang Chen. Distribution, bioaccumulation, trophic transfer and risk assessment of trace elements in fish from a typical shallow outflow lake basin, China[J]. Front. Environ. Sci. Eng., 2024, 18(7): 89-.
[7] Jianguo Liu, Ziyu Zhou, Pengyu Li, Zixuan Wang, Ying Yan, Xuezheng Yu, Wenkai Li, Tianlong Zheng, Yingnan Cao, Wenjun Wu, Wenqian Cai, Zhining Shi, Junxin Liu. Characteristics of rural domestic sewage discharge and their driving mechanisms: evidence from the Northern Region, China[J]. Front. Environ. Sci. Eng., 2024, 18(7): 83-.
[8] Ru Zheng, Kuo Zhang, Lingrui Kong, Sitong Liu. Research progress and prospect of low-carbon biological technology for nitrate removal in wastewater treatment[J]. Front. Environ. Sci. Eng., 2024, 18(7): 80-.
[9] Bin Zhao, Shuxiao Wang, Jiming Hao. Challenges and perspectives of air pollution control in China[J]. Front. Environ. Sci. Eng., 2024, 18(6): 68-.
[10] Changbo Qin, Qiang Xue, Jiawei Zhang, Lu Lu, Shangao Xiong, Yang Xiao, Xiaojing Zhang, Jinnan Wang. A Beautiful China Initiative Towards the Harmony between Humanity and the Nature[J]. Front. Environ. Sci. Eng., 2024, 18(6): 71-.
[11] Chiheng Chu, Lizhong Zhu. Paving the way toward soil safety and health: current status, challenges, and potential solutions[J]. Front. Environ. Sci. Eng., 2024, 18(6): 74-.
[12] Shuanggang Hu, Hongzhi Zhang, Yongjie Yang, Kangping Cui, Junjie Ao, Xuneng Tong, Mengchen Shi, Yi Wang, Xing Chen, Chenxuan Li, Yihan Chen. Comprehensive insight into the occurrence characteristics, influencing factors and risk assessments of antibiotics in the Chaohu Basin[J]. Front. Environ. Sci. Eng., 2024, 18(5): 57-.
[13] Hankun Yang, Yujuan Li, Hongyu Liu, Nigel J. D. Graham, Xue Wu, Jiawei Hou, Mengjie Liu, Wenyu Wang, Wenzheng Yu. The variation of DOM during long distance water transport by the China South to North Water Diversion Scheme and impact on drinking water treatment[J]. Front. Environ. Sci. Eng., 2024, 18(5): 59-.
[14] Sumit Kumar, Sonali Banerjee, Saibal Ghosh, Santanu Majumder, Jajati Mandal, Pankaj Kumar Roy, Pradip Bhattacharyya. Appraisal of pollution and health risks associated with coal mine contaminated soil using multimodal statistical and Fuzzy-TOPSIS approaches[J]. Front. Environ. Sci. Eng., 2024, 18(5): 60-.
[15] Zhiguo Su, Lyujun Chen, Donghui Wen. Impact of wastewater treatment plant effluent discharge on the antibiotic resistome in downstream aquatic environments: a mini review[J]. Front. Environ. Sci. Eng., 2024, 18(3): 36-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed