|
|
DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial fuel cell |
Yanping HOU, Haiping LUO, Guangli LIU( ), Renduo ZHANG, Yong LUO, Bangyu QIN, Shanshan CHEN |
The Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract In this study, DOW CORNING 1-2577 Conformal Coating was proposed for the cathode diffusion layer of the microbial fuel cell (MFC). In MFCs, stainless steel mesh cathodes using DOW CORNING 1-2577 Conformal Coating/carbon as the diffusion layer and two poly (dimethylsiloxane) (PDMS)/carbon diffusion layers and carbon cloth cathode with four poly (tetrafluoroethylene) (PTFE) diffusion layers were constructed for comparison. Under the same operational condition, the MFCs with the DOW CORNING 1-2577 Conformal Coating/carbon diffusion layer produced the maximum power density of 1585±52 mW·m-2, compared with those using poly (tetrafluoroethylene) (PTFE) diffusion layers (1421±45 mW·m-2) and poly (dimethylsiloxane) (PDMS)/carbon diffusion layers (1353±49 mW·m-2). The DOW CORNING 1-2577 Conformal Coating could be an alternative for the diffusion layer construction in the MFC due to its remarkable performance and much simple construction procedure.
|
Keywords
microbial fuel cell
diffusion layer
power density
DOW CORNING1-2577 Conformal Coating
|
Corresponding Author(s):
LIU Guangli,Email:liugl@mail.sysu.edu.cn
|
Issue Date: 01 August 2013
|
|
1 |
Oh S E, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science & Technology , 2004, 38(18): 4900-4904 doi: 10.1021/es049422p pmid:15487802
|
2 |
Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology , 2005, 23(6): 291-298 doi: 10.1016/j.tibtech.2005.04.008 pmid:15922081
|
3 |
Lovley D R. The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology , 2008, 19(6): 564-571 doi: 10.1016/j.copbio.2008.10.005 pmid:19000760
|
4 |
Logan B E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews. Microbiology , 2009, 7(5): 375-381 doi: 10.1038/nrmicro2113 pmid:19330018
|
5 |
Cheng S A, Liu H, Logan B E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications , 2006, 8(3): 489-494 doi: 10.1016/j.elecom.2006.01.010
|
6 |
Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology , 2004, 38(14): 4040-4046 doi: 10.1021/es0499344 pmid:15298217
|
7 |
Logan B E, Cheng S A, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology , 2007, 41(9): 3341-3346 doi: 10.1021/es062644y pmid:17539547
|
8 |
Cheng S A, Liu H, Logan B E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Environmental Science & Technology , 2006, 40(1): 364-369 doi: 10.1021/es0512071 pmid:16433373
|
9 |
Zhang F, Saito T, Cheng S A, Hickner M A, Logan B E. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environmental Science & Technology , 2010, 44(4): 1490-1495 doi: 10.1021/es903009d pmid:20099808
|
10 |
Luo Y, Zhang F, Wei B, Liu G L, Zhang R D, Logan B E. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. Journal of Power Sources , 2011, 196(22): 9317-9321 doi: 10.1016/j.jpowsour.2011.07.077
|
11 |
Lovley D R, Phillips E J P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology , 1988, 54(6): 1472-1480 pmid:16347658
|
12 |
Logan B E, Hamelers B, Rozendal R, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology , 2006, 40(17): 5181-5192 doi: 10.1021/es0605016 pmid:16999087
|
13 |
Zhang F, Merrill M D, Tokash J C, Saito T, Cheng S A, Hickner M A, Logan B E. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel current collectors. Journal of Power Sources , 2011, 196(3): 1097-1102 doi: 10.1016/j.jpowsour.2010.08.011
|
14 |
Chen Y F, Lv Z S, Xu J M, Peng D Q, Liu Y X, Chen J X, Sun X B, Feng C H, Wei C H. Stainless steel mesh coated with MnO2/carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials. Journal of Power Sources , 2012, 201: 136-141 doi: 10.1016/j.jpowsour.2011.10.134
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|