Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2014, Vol. 8 Issue (3) : 405-410    https://doi.org/10.1007/s11783-013-0565-5
RESEARCH ARTICLE
Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill
Ziyang LOU1,2(), Xiaoli CHAI2, Youcai ZHAO2(), Yu SONG2, Nanwen ZHU1, Jinping JIA1
1. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(183 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Variation and evolution process of leachate can be applied as a reference for landfill stabilization phase. In this work, leachates with different ages were collected from Laogang Refuse Landfill, and characterized with 14 key parameters. Simultaneously, principal component analysis (PCA) was applied to develop a synthetic parameter-F based on these 14 parameters, and a logarithm equation was simulated for the landfill stabilization process finally. It was predicted that leachates would meet Class I and Class II in standard for pollution control on the landfill site of municipal solid waste (GB 16889-1997) after 32 years and 22 years disposal under the natural attenuation in the humid and warm southern areas of China, respectively. The predication of landfill state would be more accurate and useful according to the synthetic parameter F of leachate from a working landfill.

Keywords landfill stabilization      leachate evolution      principal component analysis     
Corresponding Author(s): Ziyang LOU,Youcai ZHAO   
Issue Date: 19 May 2014
 Cite this article:   
Ziyang LOU,Xiaoli CHAI,Youcai ZHAO, et al. Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill[J]. Front. Environ. Sci. Eng., 2014, 8(3): 405-410.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0565-5
https://academic.hep.com.cn/fese/EN/Y2014/V8/I3/405
Fig.1  Schematic map of landfill compartment used at Laogang Refuse Landfill
Fig.2  Separation process of hydrophobic/hydrophilic fractions in leachate sample
Fig.3  Molecular weight distribution in leachates with different ages
Fig.4  Occupation rate of different hydrophobic/hydrophilic fractions in leachate
component initial eigenvalues extraction sums of squared loadings
total % of variance cumulative/% total % of variance Cumulative/%
1 11.590 82.786 82.786 11.590 82.786 82.786
2 1.028 7.340 90.125 1.028 7.340 90.125
3 0.611 4.367 94.493
4 0.361 2.579 97.071
5 0.156 1.112 98.183
6 0.137 0.977 99.160
7 0.048 0.341 99.501
8 0.037 0.261 99.762
9 0.021 0.152 99.914
10 0.011 0.079 99.993
11 0.001 0.005 99.998
12 0.000 0.002 100.000
13 0.000 0.000 100.000
14 0.000 0.000 100.000
Tab.1  Total variance explained results of landfill leachate based on Principal Component Analysis a)
Fig.5  Relationship between F values of leachate with different ages with disposal ages
1 Z Lou, Y Zhao, X Chai, T Yuan, Y Song, D Niu. Landfill refuse stabilization process characterized by nutrient change. Environmental Engineering Science, 2009, 26(11): 1655−1660
https://doi.org/10.1089/ees.2008.0128
2 USEPA. Municipal solid waste in the United States: 2005 Facts and Figures. 2007.
3 Y Zhao, J Liu, R Huang, G Gu. Long-term monitoring and prediction for leachate concentrations in Shanghai refuse landfill. Water, Air, and Soil Pollution, 2000, 122(3/4): 281−297
https://doi.org/10.1023/A:1005235714688
4 V Francois, G Feuillade, N Skhiri, T Lagier, G Matejka. Indicating the parameters of the state of degradation of municipal solid waste. Journal of Hazardous Materials, 2006, 137(2): 1008−1015
https://doi.org/10.1016/j.jhazmat.2006.03.026 pmid: 16713080
5 J F Rees. The fate of carbon compounds in the landfill disposal of organic matter. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1980, 30(1): 161−170
https://doi.org/10.1002/jctb.503300121
6 E T Marty. Organic carbon content stabilization through landfill leachate recirculation. Journal-Water Pollution Control Federation, 1982, 54(5):428−433
7 Q Zhu, Y Zhao, D Xu. Refuse degradation and stabilizing process in municipal refuse test lysimeters. Journal of Tongji University (natural science), 1996, 24(5): 596−600 (in Chinese)
8 I Šan, T T Onay. Impact of various leachate recirculation regimes on municipal solid waste degradation. Journal of Hazardous Materials, 2001, 87(1-3): 259−271
https://doi.org/10.1016/S0304-3894(01)00290-4 pmid: 11566414
9 T H Christensen, P Kjeldsen, P L Bjerg, D L Jensen, J B Christensen, Anders B, H J Albrechtsen, G Heron. Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 2001, 16(7-8): 659−718
https://doi.org/10.1016/S0883-2927(00)00082-2
10 Z Lou, Y Zhao, T Yuan, Y Song, H Chen, N Zhu, R Huan. Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages. The Science of the Total Environment, 2009, 407(10): 3385−3391
https://doi.org/10.1016/j.scitotenv.2009.01.028 pmid: 19217144
11 M S Bilgili, A Demir, E Akkaya, B Ozkaya. COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors. Journal of Hazardous Materials, 2008, 158(1): 157−163
https://doi.org/10.1016/j.jhazmat.2008.01.055 pmid: 18314262
12 X Tang, J Yu, R Sylveste. Stabilization process in the refuse-lysimeter. Shanghai Environmental Science, 2000, 19(7): 345−348 (in Chinese)
13 R Valencia, W van der Zon, H Woelders, H J Lubberding, H J Gijzen. Achieving “Final Storage Quality” of municipal solid waste in pilot scale bioreactor landfills. Waste Management, 2009, 29(1): 78−85
https://doi.org/10.1016/j.wasman.2008.02.008 pmid: 18406126
14 E Smidt, K Meissl, J Tintner. Investigation of 15-year-old municipal solid waste deposit profiles by means of FTIR spectroscopy and thermal analysis. Journal of Environmental Monitoring: JEM, 2007, 9(12): 1387−1393
https://doi.org/10.1039/b711905d pmid: 18049778
15 N N Sang, S Soda, K Sei, M Ike. Effect of aeration on stabilization of organic solid waste and microbial population dynamics in lab-scale landfill bioreactors. Journal of Bioscience and Bioengineering, 2008, 106(5): 425−432
https://doi.org/10.1263/jbb.106.425 pmid: 19111637
16 G J Farquhar, W Parker. Interactions of leachates with natural and synthetic envelopes. In: P Baccini, ed. Lecture Notes in Earth Sciences, The landfill, Reactor and Final Storage. Berlin: Springer, 1989, 174−200
17 J A Leenheer. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science and Technology, 1981, 15(5): 578−587
https://doi.org/10.1021/es00087a010 pmid: 22283952
18 C Maccà, G G Bombi. Linearity range of Gran plots for the end-point in potentiometric titrations. The Analyst, 1989, 114(4): 463−470
https://doi.org/10.1039/an9891400463
19 U.S. Environmental Protection Agency (US EPA). Methods for Chemical Analysis of Water and Wastes. EPA Number 600479020. Cincinnati, Washington D.C.: US EPA, 1983
20 P Kjeldsen, M A Barlaz, A P Rooker, A Baun, A Ledin, T H Christensen. Present and long term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 2002, 32(4): 297−336
https://doi.org/10.1080/10643380290813462
21 R M Koerner, T Y Soong. Leachate in landfills: the stability issues. Geotextiles and Geomembranes, 2000, 18(5): 293−309
https://doi.org/10.1016/S0266-1144(99)00034-5
22 J Liu, D Xu, Y Zhao, S Chen, G Li, Q Zhou. Long-term monitoring and prediction for settlement and composition of refuse in Shanghai Laogang Municipal Landfill. Environmental Management, 2004, 34(3): 441−448
https://doi.org/10.1007/s00267-004-2762-2
[1] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[2] Chuanjia JIANG, Pengyi ZHANG. Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors[J]. Front Envir Sci Eng, 2012, 6(2): 184-194.
[3] Pinjing HE, Na YANG, Wenjuan FANG, Fan Lü, Liming SHAO. Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium[J]. Front Envir Sci Eng Chin, 2011, 5(2): 175-185.
[4] Juan WU, Jian ZHANG, Wenlin JIA, Huijun XIE, Bo ZHANG. Relationships of nitrous oxide fluxes with water quality parameters in free water surface constructed wetlands[J]. Front Envir Sci Eng Chin, 2009, 3(2): 241-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed