Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 46-52    https://doi.org/10.1007/s11783-014-0717-2
RESEARCH ARTICLE
Biologic risk and source diagnose of 16 PAHs from Haihe River Basin, China
Qiuying CHEN1,2,Jingling LIU1,*(),Feng LIU1,Binbin WANG1,Zhiguo CAO1
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control & School of Environment, Beijing Normal University, Beijing 100875, China
2. College of Chemistry and Life Science, Shenyang Normal University, Shenyang 110034, China
 Download: PDF(400 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Surface sediments of rivers can exhibit spatial and temporal variations in contaminant concentrations that may significantly affect risk evaluations. As to pollution control and remediation of watershed, large-scale and further background data on PAHs in China were required urgently. Spatial distribution and compositional characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Haihe River Basin were investigated. A method based on effects range (ER) was used to assess ecosystem risk of ∑PAHs (the total of 16 PAH) sensitively and accurately. The results indicated that ∑PAHs content levels ranged from 257 to 16901 μg·kg−1 dry weight. The lower rings predominated in the samples, and 2-, 3-, 4-, 5- and 6-ring PAHs accounted for 12%, 21%, 30%, 30%, and 7% respectively in total PAHs. The ratio of Fl / (Fl+ Py) uniformly distributed in the interval 0.20–0.80, indicating that it may be affected by petroleum origin, oil combustion, biomass and coal combustion jointly. ∑PAHs in Cetian (S6), Dongwushi (S19), Handan (S20), Aixinzhuang (S21) and Tianjin (S37) exceeded effects range low (ERL), in which biologic effects were in a medium level with an adverse effect on biologic organisms. Thus, it is necessary to strengthen the PAHs monitoring and research of the Haihe River Basin.

Keywords polycyclic aromatic hydrocarbons (PAHs)      biological effects      sediment      Haihe River     
Corresponding Author(s): Jingling LIU   
Online First Date: 22 May 2014    Issue Date: 03 December 2015
 Cite this article:   
Feng LIU,Qiuying CHEN,Jingling LIU, et al. Biologic risk and source diagnose of 16 PAHs from Haihe River Basin, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 46-52.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0717-2
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/46
Fig.1  Location of Haihe River Basin and sample sites

(1 Chengdexia, 2 Wulongji, 3 Panjiakou, 4 Guantingshang, 5 Sangganhe, 6 Cetian, 7 Gangnan, 8 Huangbizhuang, 9 Wangkuai, 10 Xidayang, 11 Shijiazhuangxia, 12 Fuhe, 13 Bazhou, 14 Baodingxia, 15 Xinxiang, 16 Weihui, 17 Xiaonanhai, 18 Yuecheng, 19 Dongwushi, 20 Handan, 21 Aixinzhuang, 22 Hengshuihu, 23 Xinxian, 24 Guantao, 25 Longwangmiao, 26 Zhongbei, 27 Liaocheng, 28 Xuewangliu, 29 Yucheng, 30 Lijiaqiao, 31 Dezhou, 32 Xianxian, 33 Cangzhou, 34 Dashanzhen, 35 Xinjizha, 36 Jinghai, 37 Tianjin, 38 Duliujianhe estuary, 39 Ziyaxinhe estuary, 40 Majiahe estuary, 41 Tuhaihe estuary)

Fig.2  Concentration of PAHs in surface sediment of sample sites
Fig.3  Composition patterns and distribution of the different ring PAHs
Fig.4  Diagnostic ratios of PAHs in the sediment of Haihe River Basin
PAH name PAHs content(μg·kg−1, dry weight) ERL Number of sitesthat excessive ERL ERM Number of sitesthat excessive ERM
Na 113–1025 160 29 210 19
Ayl 1.9–172 44 4 640 0
Aen 4.5–319 16 15 500 0
F 16.2–521 19 37 540 0
Ph 45.0–1589 240 15 1500 1
An 4.9–530 85 6 1100 0
Fl 13.3–1877 600 5 5100 0
Py 11.4–1508 665 5 2600 0
BaA 6.2–1124 261 5 1600 0
Ch 7.5–1259 384 5 2800 0
BbF 3.0–1907 NA 35
BkF 1.9–664 NA 33
Bap 9.1–1934 430 4 1600 1
DA 7.4–1496 63.4 15 260 6
IP 2.2–454
BghiP 9.45–1903
∑PAHs 257–16901 4022 5 44792 0
Tab.1  Environment guideline values of PAHs compounds based on biologic effect experiment
1 US Environmental Protection Agency (USEPA). Health Effects from Exposure to PAHs, Prepared for US Department of Human Health Services. Washington, DC: Office of Environmental Information, 1990
2 Sower  G J, Anderson  K A. Spatial and temporal variation of freely dissolved polycyclic aromatic hydrocarbons in an urban river undergoing Superfund remediation. Environmental Science & Technology, 2008, 42(24): 9065–9071
https://doi.org/10.1021/es801286z pmid: 19174872
3 Saeedi  M, Li  L Y, Salmanzadeh  M. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials, 2012, 227–228: 9–17
https://doi.org/10.1016/j.jhazmat.2012.04.047 pmid: 22647232
4 Qin  N, He  W, Kong  X Z, Liu  W X, He  Q S, Yang  B, Ouyang  H L, Wang  Q M, Xu  F L. Ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the water from a large Chinese lake based on multiple indicators. Ecological Indicators, 2013, 24: 599–608
https://doi.org/10.1016/j.ecolind.2012.08.019
5 Means  J C. Compound-specific gas chromatographic/mass spectrometric analysis of alkylated and parent polycyclic aromatic hydrocarbons in waters, sediments and aquatic organisms. Journal of AOAC International, 1998, 81(3): 657–672
6 Khairy  M A, Kolb  M, Mostafa  A R, El-Fiky  A, Bahadir  M. Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semi-enclosed basin affected by human activities (Abu Qir Bay, Egypt). Journal of Hazardous Materials, 2009, 170(1): 389–397
https://doi.org/10.1016/j.jhazmat.2009.04.084 pmid: 19464106
7 Li  G, Xia  X, Yang  Z, Wang  R, Voulvoulis  N. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environmental Pollution, 2006, 144(3): 985–993
https://doi.org/10.1016/j.envpol.2006.01.047 pmid: 16603293
8 Li  Y, Liu  J, Cao  Z, Lin  C, Yang  Z. Spatial distribution and health risk of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the water of the Luanhe River Basin, China. Environmental Monitoring and Assessment, 2010, 163(1 – 4 ): 1–13
https://doi.org/10.1007/s10661-009-0811-2 pmid: 19255862
9 Cao  Z G, Liu  J L, Luan  Y, Li  Y L, Han  S L, Liu  B Y. Pollution characteristics, risk assessment and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments and water of the Luan River, China. Acta Scientiae Circumstantiae, 2010, 30(2): 246–253 (in Chinese)
10 Liu  F, Liu  J L, Chen  Q Y, Wang  B B, Cao  Z G. Pollution characteristics, ecological risk and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediment from Tuhai-Majia River system, China. Procedia Environmenta Sciences, 2012, 13: 1301–1314
https://doi.org/10.1016/j.proenv.2012.01.123
11 Wang  X J, Zheng  Y, Liu  R M, Li  B G, Cao  J, Tao  S. Kriging and PAH pollution assessment in the topsoil of Tianjin area. Bulletin of Environmental Contamination and Toxicology, 2003, 71(1): 189–195
https://doi.org/10.1007/s00128-003-0148-4 pmid: 12945861
12 Jagwani  D, Kulkarni  A, Shukla  P, Ramteke  D S, Juneja  H D. PAH composition of Water Based Drilling Mud and drill cuttings in the offshore region, east coast of India. Bulletin of Environmental Contamination and Toxicology, 2011, 87(5): 550–555
https://doi.org/10.1007/s00128-011-0340-x pmid: 21691860
13 Kwach  B O, Lalah  J O, Shem  W O. Spartial and seasonal variations in concentrations of polycyclic aromatic hydrocarbons in water and sediment of Kisumu City bay of Winam Gulf, Lake Victoria-Kenya. Bulletin of Environmental Contamination and Toxicology, 2009, 83(5): 734–741
https://doi.org/10.1007/s00128-009-9830-5 pmid: 19629366
14 Ko  F C, Baker  J E. Seasonal and annual loads of hydrophobic organic contaminants from the Susquehanna River basin to the Chesapeake Bay. Marine Pollution Bulletin, 2004, 48(9 – 10 ): 840–851
https://doi.org/10.1016/j.marpolbul.2003.10.014 pmid: 15111031
15 Fang  M D, Lee  C L, Yu  C S. Distribution and source recognition of polycyclic aromatic hydrocarbons in the sediments of Hsin-ta Harbour and adjacent coastal areas, Taiwan. Marine Pollution Bulletin, 2003, 46(8): 941–953
https://doi.org/10.1016/S0025-326X(03)00099-7 pmid: 12907187
16 Zhou  J L, Hong  H, Zhang  Z, Maskaoui  K, Chen  W. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China. Water Research, 2000, 34(7): 2132–2150
https://doi.org/10.1016/S0043-1354(99)00360-7
17 Koh  C H, Khim  J S, Kannan  K, Villeneuve  D L, Senthilkumar  K, Giesy  J P. Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) and 2,3,7,8-TCDD equivalents (TEQs) in sediment from the Hyeongsan River, Korea. Environmental Pollution, 2004, 132(3): 489–501
https://doi.org/10.1016/j.envpol.2004.05.001 pmid: 15325465
18 Long  E R, MacDonald  D D, Smith  S L, Calder  F D. Incidence of adverse biological effects within ranges of chemical concentrations in marine estuarine sediments. Environmental Management, 1995, 19(1): 81–97
https://doi.org/10.1007/BF02472006
19 Mai  B X, Fu  J M, Zhang  G, Lin  Z, Min  Y S, Sheng  G Y, Wang  X M. Polycyclic aromatic hydrocarbons in sediment from the Pearl river and estuary, China, spatial and temporal distribution and sources. Applied Geochemistry, 2001, 16(11 – 12 ): 1429–1445
https://doi.org/10.1016/S0883-2927(01)00050-6
20 Liu  W X, Chen  J L, Lin  X M, Tao  S. Distribution and characteristics of organic micropollutants in surface sediments from Bohai Sea. Environmental Pollution, 2006, 140(1): 4–8
https://doi.org/10.1016/j.envpol.2005.08.074 pmid: 16253407
21 Feng  C, Xia  X, Shen  Z, Zhou  Z. Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River, China. Environmental Monitoring and Assessment, 2007, 133(1 – 3 ): 447–458
https://doi.org/10.1007/s10661-006-9599-5 pmid: 17268918
22 Cao  Z, Liu  J, Luan  Y, Li  Y, Ma  M, Xu  J, Han  S. Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology (London, England), 2010, 19(5): 827–837
https://doi.org/10.1007/s10646-010-0464-5 pmid: 20151190
23 Yunker  M B, Macdonald  R W, Vingarzan  R, Mitchell  R H, Goyette  D, Sylvestre  S. PAHs in the Fraser river basin: a critical appraisal of PAH ratios as indicators of PAH sources and composition. Organic Geochemistry, 2002, 33(4): 489–515
https://doi.org/10.1016/S0146-6380(02)00002-5
24 Pathiratne  K A S, de Silva  O C P, Hehemann  D, Atkinson  I, Wei  R. Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in Bolgoda and Beira Lakes, Sri Lanka. Bulletin of Environmental Contamination and Toxicology, 2007, 79(2): 135–140
https://doi.org/10.1007/s00128-007-9092-z pmid: 17522750
25 Mannino  M R, Orecchio  S. Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: extraction, GC–MS analysis, distribution and sources. Atmospheric Environment, 2008, 42(8): 1801–1817
https://doi.org/10.1016/j.atmosenv.2007.11.031
26 Orecchio  S. Assessment of polycyclic aromatic hydrocarbons (PAHs) in soil of a Natural Reserve (Isola delle Femmine) (Italy) located in front of a plant for the production of cement. Journal of Hazardous Materials, 2010, 173(1 – 3 ): 358–368
https://doi.org/10.1016/j.jhazmat.2009.08.088 pmid: 19765897
27 Wang  X C, Zhang  Y X, Chen  R F. Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States. Marine Pollution Bulletin, 2001, 42(11): 1139–1149
https://doi.org/10.1016/S0025-326X(01)00129-1 pmid: 11763227
28 McCready  S, Slee  D J, Birch  G F, Taylor  S E. The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia. Marine Pollution Bulletin, 2000, 40(11): 999–1006
https://doi.org/10.1016/S0025-326X(00)00044-8
29 Shi  Z, Tao  S, Pan  B, Fan  W, He  X C, Zuo  Q, Wu  S P, Li  B G, Cao  J, Liu  W X, Xu  F L, Wang  X J, Shen  W R, Wong  P K. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environmental Pollution, 2005, 134(1): 97–111
https://doi.org/10.1016/j.envpol.2004.07.014 pmid: 15572228
[1] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[2] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[3] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[4] Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma. Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic aromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(4): 73-.
[5] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[6] Fang Zhang, Hao Zhang, Ying Yuan, Dun Liu, Chenyu Zhu, Di Zheng, Guanghe Li, Yuquan Wei, Dan Sun. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network[J]. Front. Environ. Sci. Eng., 2020, 14(2): 28-.
[7] Kun Li, Min Yang, Jianfeng Peng, Ruiping Liu, Tista Prasai Joshi, Yaohui Bai, Huijuan Liu. Rapid control of black and odorous substances from heavily-polluted sediment by oxidation: Efficiency and effects[J]. Front. Environ. Sci. Eng., 2019, 13(6): 87-.
[8] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[9] Qian Wang, Qionghua Zhang, Mawuli Dzakpasu, Nini Chang, Xiaochang Wang. Transferral of HMs pollution from road-deposited sediments to stormwater runoff during transport processes[J]. Front. Environ. Sci. Eng., 2019, 13(1): 13-.
[10] Qiang Li, Xiong Xu, Yaoyao Fang, Ruiyang Xiao, Donghong Wang, Wenjue Zhong. The temporal changes of the concentration level of typical toxic organics in the river sediments around Beijing[J]. Front. Environ. Sci. Eng., 2018, 12(6): 8-.
[11] Lin Lin, Ying-yu Li, Xiao-yan Li. Acidogenic sludge fermentation to recover soluble organics as the carbon source for denitrification in wastewater treatment: Comparison of sludge types[J]. Front. Environ. Sci. Eng., 2018, 12(4): 3-.
[12] Xiangqun Chi, Yingying Zhang, Daosheng Wang, Feihua Wang, Wei Liang. The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45[J]. Front. Environ. Sci. Eng., 2018, 12(1): 11-.
[13] Lei Xia, Guo Liu, Chunmei Chen, Meiyan Wen, Yangyang Gao. Red soil for sediment capping to control the internal nutrient release under flow conditions[J]. Front. Environ. Sci. Eng., 2016, 10(6): 14-.
[14] Wentao Zhao, Ying Guo, Shuguang Lu, Pingping Yan, Qian Sui. Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China[J]. Front. Environ. Sci. Eng., 2016, 10(6): 2-.
[15] Rufeng LI,Chenghong FENG,Dongxin WANG,Baohua LI,Zhenyao SHEN. Multiphase redistribution differences of polycyclic aromatic hydrocarbons (PAHs) between two successive sediment suspensions[J]. Front. Environ. Sci. Eng., 2016, 10(2): 381-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed