Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 362-367    https://doi.org/10.1007/s11783-015-0803-0
RESEARCH ARTICLE
Approaching the binding between Cu(II) and aerobic granules by a modified titration and µ-XRF
Hongwei LUO,Longfei WANG,Zhonghua TONG,Hanqing YU,Guoping SHENG()
CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(815 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Interactions between metals and activated sludge can substantially affect the fate and transport of heavy metals in wastewater treatment plants. Therefore, it is important to develop a simple, fast and efficient method to elucidate the interaction. In this study, a modified titration method with a dynamic mode was developed to investigate the binding of Cu(II), a typical heavy metal, onto aerobic granules. The titration results indicated that pH and ionic strength both had a positive effect on the biosorption capacity of the granular sludge. The µ-XRF results demonstrated that the distribution of metals on the granular surface was heterogeneous, and Cu showed strong correlations and had the same “hot spots” positions with other metal ions (e.g., Ca, Mg, Fe etc.). Ion exchange and complexing were the main mechanisms for the biosorption of Cu(II) by aerobic granules. These results would be beneficial for better understanding of Cu(II) migration and its fate in wastewater treatment plants.

Keywords aerobic granules      Cu(II)      modified titration      µ-XRF analysis     
Corresponding Author(s): Guoping SHENG   
Online First Date: 02 July 2015    Issue Date: 01 February 2016
 Cite this article:   
Hongwei LUO,Longfei WANG,Zhonghua TONG, et al. Approaching the binding between Cu(II) and aerobic granules by a modified titration and µ-XRF[J]. Front. Environ. Sci. Eng., 2016, 10(2): 362-367.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0803-0
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/362
Fig.1  Cu(II) titration onto aerobic granules at different sludge concentrations using dynamic mode. Other experimental conditions: solution pH 6.5, ionic strength 0.001 mol·L−1
experimental conditions qmax/(mg·g−1) b/(L·mg−1) R2
pH ionic strength/(mol·L−1) MLSS/(g·L−1)
3.0 0.01 4.5 72.41 0.038 0.994
5.0 83.28 0.046 0.997
7.0 98.57 0.059 0.998
6.0 0.001 4.5 54.32 0.036 0.988
0.01 90.16 0.044 0.981
0.1 121.79 0.065 0.962
6.5 0.001 1.5 94.62 0.051 0.974
4.5 91.96 0.048 0.991
Tab.1  Parameters for Cu(II) titration onto aerobic granules obtained from nonlinear regression of the titration data at the experimental conditions
Fig.2  Influences of (a) pH and (b) ionic strength on the Cu(II) titration onto aerobic granules using a dynamic mode
Fig.3  Synchrotron-based µ-XRF mapping images showing the distribution of heavy metals on the granule after Cu(II) titration
ions metal released/Cu uptake amounts/(mg·g−1) metal released in control test/(mg·g−1)
Ca 5.95 0.04
Mg 2.05 0.02
Na 0.54 0.25
K 7.18 0.40
Cu 21.87
Tab.2  Released amounts of different light metal ions during Cu(II) biosorption by aerobic granules
Fig.4  ATR-FTIR spectra of aerobic granules before and after Cu(II) biosorption
1 Adav S S, Lee D J, Show K Y, Tay J H. Aerobic granular sludge: recent advances. Biotechnology Advances, 2008, 26(5): 411−423
https://doi.org/10.1016/j.biotechadv.2008.05.002 pmid: 18573633
2 Shi X Y, Sheng G P, Li X Y, Yu H Q. Operation of a sequencing batch reactor for cultivating autotrophic nitrifying granules. Bioresource Technology, 2010, 101(9): 2960−2964
https://doi.org/10.1016/j.biortech.2009.11.099 pmid: 20047829
3 Liu X W, Sheng G P, Yu H Q. Physicochemical characteristics of microbial granules. Biotechnology Advances, 2009, 27(6): 1061−1070
https://doi.org/10.1016/j.biotechadv.2009.05.020 pmid: 19464355
4 Luo J, Hao T, Wei L, Mackey H R, Lin Z, Chen G H. Impact of influent COD/N ratio on disintegration of aerobic granular sludge. Water Research, 2014, 62: 127−135
https://doi.org/10.1016/j.watres.2014.05.037 pmid: 24950459
5 Yao L, Ye Z F, Tong M P, Lai P, Ni J R. Removal of Cr3+ from aqueous solution by biosorption with aerobic granules. Journal of Hazardous Materials, 2009, 165(1−3): 250−255
https://doi.org/10.1016/j.jhazmat.2008.09.110 pmid: 19013022
6 van Loosdrecht M C M, Brdjanovic D. Anticipating the next century of wastewater treatment. Science, 2014, 344(6191): 1452−1453
https://doi.org/10.1126/science.1255183 pmid: 24970066
7 Wang X H, Song R H, Teng S X, Gao M M, Ni J Y, Liu F F, Wang S G, Gao B Y. Characteristics and mechanisms of Cu(II) biosorption by disintegrated aerobic granules. Journal of Hazardous Materials, 2010, 179(1−3): 431−437
https://doi.org/10.1016/j.jhazmat.2010.03.022 pmid: 20362391
8 Xu H, Liu Y, Tay J H. Effect of pH on nickel biosorption by aerobic granular sludge. Bioresource Technology, 2006, 97(3): 359−363
https://doi.org/10.1016/j.biortech.2005.03.011 pmid: 15905090
9 Benaïssa H, Elouchdi M A. Biosorption of copper (II) ions from synthetic aqueous solutions by drying bed activated sludge. Journal of Hazardous Materials, 2011, 194: 69−78
https://doi.org/10.1016/j.jhazmat.2011.07.063 pmid: 21924832
10 Sağ Y, Tatar B, Kutsal T. Biosorption of Pb(II) and Cu(II) by activated sludge in batch and continuous-flow stirred reactors. Bioresource Technology, 2003, 87(1): 27−33
https://doi.org/10.1016/S0960-8524(02)00210-9 pmid: 12733571
11 Luo H W, Chen J J, Sheng G P, Su J H, Wei S Q, Yu H Q. Experimental and theoretical approaches for the surface interaction between copper and activated sludge microorganisms at molecular scale. Scientific Reports, 2014, 4: 7078
https://doi.org/10.1038/srep07078 pmid: 25399801
12 Chen Y L, Hong X Q, He H, Luo H W, Qian T T, Li R Z, Jiang H, Yu H Q. Biosorption of Cr (VI) by Typha angustifolia: mechanism and responses to heavy metal stress. Bioresource Technology, 2014, 160: 89−92
https://doi.org/10.1016/j.biortech.2014.01.022 pmid: 24485750
13 Gonzalez-Gil G, Holliger C. Aerobic granules: microbial landscape and architecture, stages, and practical implications. Applied and Environmental Microbiology, 2014, 80(11): 3433−3441
https://doi.org/10.1128/AEM.00250-14 pmid: 24657859
14 Gai L H, Wang S G, Gong W X, Liu X W, Gao B Y, Zhang H Y. Influence of pH and ionic strength on Cu(II) biosorption by aerobic granular sludge and biosorption mechanism. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2008, 83(6): 806−813
https://doi.org/10.1002/jctb.1869
15 Xu H, Liu Y. Mechanisms of Cd2+, Cu2+ and Ni2+ biosorption by aerobic granules. Separation and Purification Technology, 2008, 58(3): 400−411
https://doi.org/10.1016/j.seppur.2007.05.018
16 Mungasavalli D P, Viraraghavan T, Jin Y C. Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2007, 301(1−3): 214−223
https://doi.org/10.1016/j.colsurfa.2006.12.060
17 Wan C, Yang X, Lee D J, Zhang Q, Li J, Liu X. Formation of filamentous aerobic granules: role of pH and mechanism. Applied Microbiology and Biotechnology, 2014, 98(19): 8389−8397
https://doi.org/10.1007/s00253-014-5857-6 pmid: 24928656
18 Liu X M, Sheng G P, Luo H W, Zhang F, Yuan S J, Xu J, Zeng R J, Wu J G, Yu H Q. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environmental Science & Technology, 2010, 44(11): 4355−4360
https://doi.org/10.1021/es9016766 pmid: 20446688
19 Stumm W, Morgan J J. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. New York, NY: Wiley-Interscience, 1981, 599−684
20 Ren T T, Liu L, Sheng G P, Liu X W, Yu H Q, Zhang M C, Zhu J R. Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. Water Research, 2008, 42(13): 3343−3352
https://doi.org/10.1016/j.watres.2008.04.015 pmid: 18514253
[1] Jie Liao, Chaoxiang Liu, Lin Liu, Jie Li, Hongyong Fan, Jiaqi Ye, Zhichao Zeng. Influence of hydraulic retention time on behavior of antibiotics and antibiotic resistance genes in aerobic granular reactor treating biogas slurry[J]. Front. Environ. Sci. Eng., 2019, 13(3): 31-.
[2] Xiaorong Meng, Conghui Wang, Pan Zhou, Xiaoqiang Xin, Lei Wang. Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium[J]. Front. Environ. Sci. Eng., 2017, 11(6): 9-.
[3] Lin LIU,Qiyu YOU,Valerie GIBSON,Xu HUANG,Shaohua CHEN,Zhilong YE,Chaoxiang LIU. Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1139-1148.
[4] Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG. Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1084-1095.
[5] Yanlai HAN,Michael D. Y. YANG,Weixian ZHANG,Weile YAN. Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment[J]. Front. Environ. Sci. Eng., 2015, 9(5): 813-822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed