Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (3) : 15    https://doi.org/10.1007/s11783-018-1042-y
RESEARCH ARTICLE
Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation
Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang(), Zhiwei Wang
State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(517 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

GO/TiO2 membrane was prepared by assembling GO nanosheets and TiO2 nanotubes.

The intercalation of TiO2 nanotubes enlarged the space of GO interlayers and modified the surface morphology.

Hydrophilic/underwater superoleophobic property of GO/TiO2 membrane was obtained.

Water permeability, hydrophilicity, oleophobicity and antifouling ability of GO-based membrane were all enhanced by intercalating TiO2 nontubes.

Membrane technology for oil/water separation has received increasing attention in recent years. In this study, the hydrophilic/underwater superoleophobic membrane with enhanced water permeability and antifouling ability were fabricated by synergistically assembling graphene oxide(GO) nanosheets and titanium dioxide (TiO2) nanotubes for oil/water separation. GO/TiO2 membrane exhibits hydrophilic and underwater superoleophobic properties with water contact angle of 62° and under water oil contact angle of 162.8°. GO/TiO2 membrane shows greater water permeability with the water flux up to 531 L/(m2·h·bar), which was more than 5 times that of the pristine GO membrane. Moreover, GO/TiO2membrane had excellent oil/water separation efficiency and anti-oil-fouling capability, as oil residual in filtrate after separation was below 5 mg/L and flux recovery ratios were over 80%.The results indicate that the intercalation of TiO2 nanotubes into adjacent GO nanosheets enlarged the channel structure and modified surface topography of the obtained GO/TiO2 membranes, which improved the hydrophilicity, permeability and anti-oil-fouling ability of the membranes, enlightening the great prospects of GO/TiO2 membrane in oil-water treatment.

Keywords Hydrophilic      Superoleophobic      Graphene oxide      Membrane      Titanium dioxide nanotubes      Oil-water separation     
Corresponding Author(s): Qiaoying Wang   
Issue Date: 19 April 2018
 Cite this article:   
Zhichao Wu,Chang Zhang,Kaiming Peng, et al. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1042-y
https://academic.hep.com.cn/fese/EN/Y2018/V12/I3/15
Fig.1  Schematic diagram of the fabrication process of GO and GO/TiO2 membranes via vacuum-assisted filtration
Fig.2  SEM images of (a) GO membrane, (b) GO/TiO2 membrane (TiO2/GO= 2), (c) GO/TiO2 membrane (TiO2/GO= 4), (d) GO/TiO2 membrane (TiO2/GO= 6), and (e) GO/TiO2 membrane (TiO2/GO= 8). (f) XRD patterns of GO membrane and GO/TiO2 membrane
Fig.3  Photographs of GO/TiO2 (a, b) and GO (c, d) membranes before and after ultra-sonication and oscillation
Fig.4  Permeate flux of GO/TiO2 membranes with different TiO2/GO mass ratios
Fig.5  (a) Apparent water contact angles in air and (b) apparent oil contact angle under water of GO/TiO2 membranes with different TiO2/GO mass ratios. Snap shots of the oil/water/membrane interfaces of (c) GO and (d) GO/TiO2 membranes (TiO2/GO= 4). Snap shots of underwater oil adhesion test of (e) GO membrane and (f) GO/TiO2 membrane (TiO2/GO= 4)
Fig.6  (a) Oil/water separation performance of GO and GO/TiO2 membranes, and (b) Schematic representation of oil/water separation mechanism
Fig.7  Flux recovery test of GO and GO/TiO2 membranes with different mass ratios of TiO2/GO (a, b). Flux recovery test of GO/TiO2 membranes in different concentration of oil emulsion (c, d)
Membrane Water flux
(L/(m2·h))
Oil flux
(L/(m2·h))
Oil rejection ratio (%) Flux recovery ratio (%)
GO/TiO2 membrane 4020 1980 70.2 84.5
Ultrafiltration membrane 505 228 65.3 70.8
Tab.1  Permeate flux, oil rejection ratio and flux recovery ratio of GO/TiO2 membrane and commercial ultrafiltration membrane.
1 Nriagu J, Udofia E A, Ekong I, Ebuk G. Health risks associated with oil pollution in the Niger Delta, Nigeria. International Journal of Environmental Research and Public Health, 2016, 13(3): 346
https://doi.org/10.3390/ijerph13030346 pmid: 27007391
2 Polmear R, Stark J S, Roberts D, McMinn A. The effects of oil pollution on Antarctic benthic diatom communities over 5 years. Marine Pollution Bulletin, 2015, 90(1-2): 33–40
https://doi.org/10.1016/j.marpolbul.2014.11.035 pmid: 25499184
3 Coca-Prados J, Gutiérrez G, Benito J M. Treatment of Oily Wastewater by Membrane Hybrid Processes. Netherlands: Springer, 2013
4 Ma J, Yan G, Ma W, Cheng C, Wang Q, Guo S. Isolation and characterization of oil-degrading microorganisms for bench-scale evaluations of autochthonous bioaugmentation for soil remediation. Water, Air, and Soil Pollution, 2015, 226(8): 1–10
https://doi.org/10.1007/s11270-015-2491-6
5 Bhattacharyya D, Jumawan A B, Grieves R B, Harris L R. Ultrafiltration characteristics of oil-detergent-water systems: Membrane fouling mechanisms. Separation Science and Technology, 1979, 14(6): 529–549
https://doi.org/10.1080/01496397908068474
6 Silalahi S H D, Leiknes T O. Cleaning strategies in ceramic microfiltration membranes fouled by oil and particulate matter in produced water. Desalination, 2009, 236(1): 160–169
https://doi.org/10.1016/j.desal.2007.10.063
7 Wang B, Liang W, Guo Z, Liu W. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chemical Society Reviews, 2015, 44(1): 336–361
https://doi.org/10.1039/C4CS00220B pmid: 25311259
8 Che H, Huo M, Peng L, Fang T, Liu N, Feng L, Wei Y, Yuan J. CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angewandte Chemie International Edition, 2015, 54(31): 8934–8938
https://doi.org/10.1002/anie.201501034 pmid: 26079643
9 Wang Z, Lin S. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability. Water Research, 2017, 112: 38–47
https://doi.org/10.1016/j.watres.2017.01.022 pmid: 28129554
10 Li H, Zhao X, Wu P, Zhang S, Geng B. Facile preparation of superhydrophobic and superoleophilic porous polymer membranes for oil/water separation from a polyarylester polydimethylsiloxane block copolymer. Journal of Materials Science, 2016, 51(6): 3211–3218
https://doi.org/10.1007/s10853-015-9632-6
11 Prince J A, Bhuvana S, Anbharasi V, Ayyanar N, Boodhoo K V K, Singh G. Ultra-wetting graphene-based PES ultrafiltration membrane—A novel approach for successful oil-water separation. Water Research, 2016, 103: 311–318
https://doi.org/10.1016/j.watres.2016.07.042 pmid: 27475120
12 Chen L, Si Y, Zhu H, Jiang T, Guo Z. A study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/water mixtures and nano-emulsions. Journal of Membrane Science, 2016, 520: 760–768
https://doi.org/10.1016/j.memsci.2016.08.026
13 Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28(8): 7
https://doi.org/10.1021/ie50320a024
14 Nakajima A. Design of hydrophobic surfaces for liquid droplet control. NPG Asia Materials, 2011, 3(5): 49–56
https://doi.org/10.1038/asiamat.2011.55
15 Lee C H, Johnson N, Drelich J, Yap Y K. The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration. Carbon, 2011, 49(2): 669–676
https://doi.org/10.1016/j.carbon.2010.10.016
16 Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Advanced Materials, 2011, 23(37): 4270–4273
https://doi.org/10.1002/adma.201102616 pmid: 22039595
17 Liang J, Zhou Y, Jiang G, Wang R, Wang X, Hu R, Xi X. Transformation of hydrophilic cotton fabrics into superhydrophobic surfaces for oil/water separation. Journal of the Textile Institute, 2013, 104(3): 305–311
https://doi.org/10.1080/00405000.2012.721207
18 Kocherginsky N M, Tan C L, Lu W F. Demulsification of water-in-oil emulsions via filtration through a hydrophilic polymer membrane. Journal of Membrane Science, 2003, 220(1–2): 117–128
https://doi.org/10.1016/S0376-7388(03)00223-0
19 Ribeiro A P B, Moura J M L N D, Gonçalves L A G, Petrus J C C, Viotto L A. Solvent recovery from soybean oil/hexane miscella by polymeric membranes. Journal of Membrane Science, 2006, 282(1–2): 328–336
https://doi.org/10.1016/j.memsci.2006.05.036
20 Goh P S, Ismail A F. Graphene-based nanomaterial: The state-of-the-art material for cutting edge desalination technology. Desalination, 2015, 356, 115–128
21 Mishra A K. 2. Potentialities of Graphene-Based Nanomaterials for Wastewater Treatment. New York: John Wiley & Sons, Inc., 2016
22 Perreault F, Fonseca de Faria A, Elimelech M. Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44(16): 5861–5896
https://doi.org/10.1039/C5CS00021A pmid: 25812036
23 Huang H, Mao Y, Ying Y, Liu Y, Sun L, Peng X. Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes. Chemical Communications, 2013, 49(53): 5963–5965
https://doi.org/10.1039/c3cc41953c pmid: 23715402
24 Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H. Selective ion penetration of graphene oxide membranes. ACS Nano, 2013, 7(1): 428–437
https://doi.org/10.1021/nn304471w pmid: 23214493
25 Hegab H M, Zou L. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. Journal of Membrane Science, 2015, 484, 95–106
26 Wang N, Ji S, Zhang G, Li J, Wang L. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Chemical Engineering Journal, 2012, 213(12): 318–329
https://doi.org/10.1016/j.cej.2012.09.080
27 Han Y, Jiang Y, Gao C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 2015, 7(15): 8147–8155
https://doi.org/10.1021/acsami.5b00986 pmid: 25837883
28 Fujishima A. TiO2 Photocatalysis and Related Surface Phenomena. In: the 60th Annual Meeting of the International Society of Electrochemistry, 2009, 515–582
29 Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453: 7195, 638
30 Zhao X, Su Y, Liu Y, Li Y, Jiang Z. Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation. ACS Applied Materials & Interfaces, 2016, 8(12): 8247–8256
https://doi.org/10.1021/acsami.5b12876 pmid: 26978041
31 Wang P, Wang Z, Wu Z, Zhou Q, Yang D. Effect of hypochlorite cleaning on the physiochemical characteristics of polyvinylidene fluoride membranes. Chemical Engineering Journal, 2010, 162(3): 1050–1056
https://doi.org/10.1016/j.cej.2010.07.019
32 Zhang F, Gao S, Zhu Y, Jin J. Alkaline-induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for high-efficient oil/water separation. Journal of Membrane Science, 2016, 513: 67–73
https://doi.org/10.1016/j.memsci.2016.04.020
33 Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442–444
https://doi.org/10.1126/science.1211694 pmid: 22282806
[1] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[2] Shan Xue, Shaobin Sun, Weihua Qing, Taobo Huang, Wen Liu, Changqing Liu, Hong Yao, Wen Zhang. Experimental and computational assessment of 1,4-Dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 95-.
[3] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[4] Shujuan Meng, Rui Wang, Kaijing Zhang, Xianghao Meng, Wenchao Xue, Hongju Liu, Dawei Liang, Qian Zhao, Yu Liu. Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration[J]. Front. Environ. Sci. Eng., 2021, 15(4): 64-.
[5] Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng. An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation[J]. Front. Environ. Sci. Eng., 2021, 15(4): 63-.
[6] Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance[J]. Front. Environ. Sci. Eng., 2021, 15(1): 11-.
[7] Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang. Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 107-.
[8] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[9] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[10] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[11] Lu Song, Can Wang, Yizhu Wang. Optimized determination of airborne tetracycline resistance genes in laboratory atmosphere[J]. Front. Environ. Sci. Eng., 2020, 14(6): 95-.
[12] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[13] Feng Zhu, Zhijian Yao, Wenliang Ji, Deye Liu, Hao Zhang, Aimin Li, Zongli Huo, Qing Zhou. An efficient resin for solid-phase extraction and determination by UPLCMS/MS of 44 pharmaceutical personal care products in environmental waters[J]. Front. Environ. Sci. Eng., 2020, 14(3): 51-.
[14] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[15] Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed