|
|
Airborne bacteria associated with particulate matter from a highly urbanised metropolis: A potential risk to the population’s health |
María del Carmen Calderón-Ezquerro1( ), Elizabeth Selene Gómez-Acata1, Carolina Brunner-Mendoza2 |
1. Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico 2. Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico |
|
|
Abstract • The airborne bacteria of Mexico City are representative of urban environments. • Particle material<10 µm influenced the type and quantity of airborne bacteria. • The diversity and richness of bacteria were higher in the rainy season. • The emission & transport of airborne bacteria determine the atmosphere’s microbiome. • Bacterias as Kocuria, Paracoccus, and Staphylococcus were in the air of Mexico City. Bacteria in the air present patterns in space and time produced by different sources and environmental factors. Few studies have focused on the link between airborne pathogenic bacteria in densely populated cities, and the risk to the population’s health. Bacteria associated with particulate matter (PM) were monitored from the air of Mexico City (Mexico). We employed a metagenomic approach to characterise bacteria using the 16S rRNA gene. Airborne bacteria sampling was carried out in the north, centre, and south of Mexico City, with different urbanisation rates, during 2017. Bacteria added to the particles were sampled using high-volume PM10 samplers. To ascertain significant differences in bacterial diversity between zones and seasons, the Kruskal-Wallis, Wilcoxon tests were done on alpha diversity parameters. Sixty-three air samples were collected, and DNA was sequenced using next-generation sequencing. The results indicated that the bacterial phyla in the north and south of the city were Firmicutes, Cyanobacteria, Proteobacteria, and Actinobacteria, while in the central zone there were more Actinobacteria. There were no differences in the alpha diversity indices between the sampled areas. According to the OTUs, the richness of bacteria was higher in the central zone. Alpha diversity was higher in the rainy season than in the dry season; the Shannon index and the OTUs observed were higher in the central zone in the dry season. Pathogenic bacteria such as Kocuria, Paracoccus, and Micrococcus predominated in both seasonal times, while Staphylococcus, Corynebacterium, and Nocardioides were found during the rainy season, with a presence in the central zone.
|
Keywords
Airborne bacteria
Urbanisation
PM10
Mexico City
Microbiome
|
Corresponding Author(s):
María del Carmen Calderón-Ezquerro
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Issue Date: 02 March 2022
|
|
1 |
V Acosta-Martinez, S Van Pelt, J Moore-Kucera, M C Baddock, T M Zobeck (2015). Microbiology of wind-eroded sediments: Current knowledge and future research directions. Aeolian Research, 18: 99–113
https://doi.org/10.1016/j.aeolia.2015.06.001
|
2 |
M A Alghamdi, M Shamy, M A Redal, M Khoder, A H Awad, S Elserougy (2014). Microorganisms associated particulate matter: A prelimi-nary study. Science of the Total Environment, 479–480: 109–116
https://doi.org/10.1016/j.scitotenv.2014.02.006
pmid: 24561289
|
3 |
M Antoinette van Overeem (1937). On green organisms occurring in the lower troposphere. Recueil des Travaux Botaniques Néerlandais, 34(1): 388–442
|
4 |
L C Backer, S V McNeel, T Barber, B Kirkpatrick, C Williams, M Irvin, Y Zhou, T B Johnson, K Nierenberg, M Aubel, R LePrell, A Chapman, A Foss, S Corum, V R Hill, S M Kieszak, Y S Cheng (2010). Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon, 55(5): 909–921
https://doi.org/10.1016/j.toxicon.2009.07.006
pmid: 19615396
|
5 |
N A Be, J B Thissen, V Y Fofanov, J E Allen, M Rojas, G Golovko, Y Fofanov, H Koshinsky, C J Jaing (2015). Metagenomic analysis of the airborne environment in urban spaces. Microbial Ecology, 69(2): 346–355
https://doi.org/10.1007/s00248-014-0517-z
pmid: 25351142
|
6 |
J M Benson, J A Hutt, K Rein, S E Boggs, E B Barr, L E Fleming (2005). The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon, 45(6): 691–698
https://doi.org/10.1016/j.toxicon.2005.01.004
pmid: 15804518
|
7 |
G Berg, D Rybakova, D Fischer, T Cernava, M C C Vergès, T Charles, X Chen, L Cocolin, K Eversole, G H Corral, M Kazou, L Kinkel, L Lange, N Lima, A Loy, J A Macklin, E Maguin, T Mauchline, R McClure, B Mitter, M Ryan, I Sarand, H Smidt, B Schelkle, H Roume, G S Kiran, J Selvin, R S C Souza, L van Overbeek, B K Singh, M Wagner, A Walsh, A Sessitsch, M Schloter (2020). Microbiome, definition re-visited: Old concepts and new challenges. Microbiome, 8(1): 1–22
https://doi.org/10.1186/s40168-020-00875-0
pmid: 31901242
|
8 |
V Bertolini, I Gandolfi, R Ambrosini, G Bestetti, E Innocente, G Rampazzo, A Franzetti (2013). Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Applied Microbiology and Biotechnology, 97(14): 6561–6570
https://doi.org/10.1007/s00253-012-4450-0
pmid: 23053100
|
9 |
R M Bowers, N Clements, J B Emerson, C Wiedinmyer, M P Hannigan, N Fierer (2013). Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environmental Science & Techno-logy, 47(21): 12097–12106
https://doi.org/10.1021/es402970s
pmid: 24083487
|
10 |
R M Bowers, A P Sullivan, E K Costello, J L Collett Jr, R Knight, N Fierer (2011). Sources of bacteria in outdoor air across cities in the midwestern United States. Applied and Environmental Microbio-logy, 77(18): 6350–6356
https://doi.org/10.1128/AEM.05498-11
pmid: 21803902
|
11 |
H Bravo-Alvarez, R Torres-Jardón (2002). Air pollution levels and trends in the Mexico City metropolitan area. In: Fenn M de B L, Hernández-Tejeda T, eds. Urban Air Pollution and Forests. Resources at risk in the Mexico City air basin. New York: Springer–Verlag, 121–159
|
12 |
S M Burrows, T Butler, P Jockel, H Tost, A Kerkweg, U Poschl, M G Lawrence (2009a). Bacteria in the global atmosphere–Part 2: Modeling of emissions and transport between different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9281–9297
https://doi.org/10.5194/acp-9-9281-2009
|
13 |
S M Burrows, W Elbert, M G Lawrence, U Poschl (2009b). Bacteria in the global atmosphere–Part 1: Review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9263–9280
https://doi.org/10.5194/acp-9-9263-2009
|
14 |
M C Calderón-Ezquerro, C Guerrero-Guerra, B Martínez-López, F Fuentes-Rojas, F Téllez-Unzueta, E D López-Espinoza, M E Calderón-Segura, A Martínez-Arroyo, M M Trigo-Pérez (2016). First airbornepollen calendar for Mexico City and its relationship withbioclimatic factors. Aerobiologia, 32(2): 225–244
https://doi.org/10.1007/s10453-015-9392-4
|
15 |
M C Calderón-Ezquerro, N Serrano-Silva, C Brunner-Mendoza (2020). Metagenomic characterisation of bioaerosols during the dry season in Mexico City. Aerobiologia, 36(3): 493–505
https://doi.org/10.1007/s10453-020-09649-5
|
16 |
M C Calderón-Ezquerro, B Martinez-Lopez, C Guerrero-Guerra, E D López-Espinosa, W D Cabos-Narvaez (2018). Behaviour of Quercus pollen in the air, determination of its sources and transport through the atmosphere of Mexico City and conurbated areas. International Journal of Biometeorology, 62(9): 1721–1732
|
17 |
M D C Calderón-Ezquerro, N Serrano-Silva, C Brunner-Mendoza (2021). Aerobiological study of bacterial and fungal community composition in the atmosphere of Mexico City throughout an annual cycle. Environmental Pollution, 278: 116858
https://doi.org/10.1016/j.envpol.2021.116858
pmid: 33740598
|
18 |
M Camatini, V Corvaja, E Pezzolato, P Mantecca, M Gualtieri (2012). PM10-biogenic fraction drives the seasonal variation of proinflammatory response in A549 cells. Environmental Toxicology, 27(2): 63–73
https://doi.org/10.1002/tox.20611
pmid: 20549640
|
19 |
J G Caporaso, J Kuczynski, J Stombaugh, K Bittinger, F D Bushman, E K Costello, N Fierer, A G Peña, J K Goodrich, J I Gordon, G A Huttley, S T Kelley, D Knights, J E Koenig, R E Ley, C A Lozupone, D McDonald, B D Muegge, M Pirrung, J Reeder, J R Sevinsky, P J Turnbaugh, W A Walters, J Widmann, T Yatsunenko, J Zaneveld, R Knight, G A Huttley (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336
https://doi.org/10.1038/nmeth.f.303
pmid: 20383131
|
20 |
J L Carson, R M Brown Jr (1976). The correlation of soil algae airborne algae and fern spores with meteorological conditions on the Island of Hawaii. USA. Pacific Science, 30: 197–205
|
21 |
S Cha, S Srinivasan, J H Jang, D Lee, S Lim, K S Kim, W Jheong, D W Lee, E R Park, H M Chung, J Choe, M K Kim, T Seo (2017). Metagenomic analysis of airborne bacterial community and diversity in Seoul Korea during December 2014 Asian dust event. PLoS One, 12(1): e0170693
https://doi.org/10.1371/journal.pone.0170693
pmid: 28122054
|
22 |
K Chatterjee, V Sigler (2015). Evaluation of airborne microbial densities and assemblages following extended impaction onto a modified collection surface. Aerobiologia, 31(1): 21–32
https://doi.org/10.1007/s10453-014-9343-5
|
23 |
X Chen, D Kumari, V Achal (2020). A review on airborne microbes: The characteristics of sources pathogenicity and geography. Atmosphere, 11(9): 919
https://doi.org/10.3390/atmos11090919
|
24 |
I Chorus, M Welker (2021). Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences Monitoring and Management. London: Taylor & Francis, 858
|
25 |
A Chrisostomou, M Moustaka-Gouni, S Sgardelis, T Lanaras (2009). Air-dispersed phytoplankton in a Mediterranean river-reservoir system (Aliakmon-Polyphytos Greece). Journal of Plankton Research, 31(8): 877–884
https://doi.org/10.1093/plankt/fbp038
|
26 |
M Clauß (2015). Particle size distribution of airborne microorganisms in the environment: A review. Landbauforsch. Applied Agricultural and Forestry Research, 65(2): 77–100
https://doi.org/10.3220/LBF1444216736000
|
27 |
M De Cáceres, P Legendre, M Moretti (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10): 1674–1684
https://doi.org/10.1111/j.1600-0706.2010.18334.x
|
28 |
L Després, J P David, C Gallet (2007). The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology & Evolution, 22(6): 298–307
https://doi.org/10.1016/j.tree.2007.02.010
pmid: 17324485
|
29 |
V R Després, J A Huffman, S M Burrows, C Hoose, A S Savatov, G Buryak (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus Series B-Chemical and Physical Meteorology, 64(1): 15598
https://doi.org/10.3402/tellusb.v64i0.15598
|
30 |
P Du, R Du, W Ren, Z Lu, P Fu (2018). Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Science of the Total Environment, 610– 611: 308–315
https://doi.org/10.1016/j.scitotenv.2017.07.097
pmid: 28806548
|
31 |
M Dufrêne, P Legendre (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3): 345–366
https://doi.org/10.2307/2963459
|
32 |
S A Edgerton, X Bian, J C Doran, J D Fast, J M Hubbe, E L Malone, W J Shaw, C D Whiteman, S Zhong, J L Arriaga, E Ortiz, M Ruiz, G Sosa, E Vega, T Limon, F Guzman, J Archuleta, J E Bossert, S M Elliot, J T Lee, L A McNair, J C Chow, J G Watson, R L Coulter, P V Doskey, J S Gaffney, N A Marley, W Neff, R Petty (1999). Particulate air pollution in Mexico City: A collaborative research project. Journal of the Air & Waste Management Association, 49(10): 1221–1229
https://doi.org/10.1080/10473289.1999.10463915
pmid: 28060672
|
33 |
D W Ehresmann, M T Hatch (1975). Effect of relative humidity on the survival of airborne unicellular algae. Journal of Applied Microbiology, 29(3): 352–357
https://doi.org/10.1128/am.29.3.352-357.1975
pmid: 1115506
|
34 |
F Estrada, A Martínez-Arroyo, A Fernández-Eguiarte, E Luyando, C Gay (2009). Defining climate zones in Mexico City using multivariate analysis. Atmosfera, 22: 175–193
|
35 |
Z Fang, Z Ouyang, H Zheng, X Wang, L Hu (2007). Culturable airborne bacteria in outdoor environments in Beijing, China. Microbial Ecology, 54(3): 487–496
https://doi.org/10.1007/s00248-007-9216-3
pmid: 17308950
|
36 |
E J Flies, L J Clarke, B W Brook, P Jones (2020). Urbanisation reduces the abundance and diversity of airborne microbes–but what does that mean for our health? A systematic review. Science of the Total Environment, 738: 140337
https://doi.org/10.1016/j.scitotenv.2020.140337
pmid: 32806360
|
37 |
E J Flies, S Mavoa, G R Zosky, E Mantzioris, C Williams, R Eri, B W Brook, J C Buettel (2019). Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environment International, 133(Pt A): 105187
https://doi.org/10.1016/j.envint.2019.105187
pmid: 31648161
|
38 |
E J Flies, C Skelly, R Lovell, M F Breed, D Phillips, P Weinstein (2018). Cities biodiversity and health: We need healthy urban Microbiome, initiatives. Cities & Health, 2(2): 143–150
https://doi.org/10.1080/23748834.2018.1546641
|
39 |
E J Flies, C Skelly, S S Negi, P Prabhakaran, Q Liu, K Liu, F C Goldizen, C Lease, P Weinstein (2017). Biodiverse green spaces: A prescription for global urban health. Frontiers in Ecology and the Environment, 15(9): 510–516
https://doi.org/10.1002/fee.1630
|
40 |
A Franzetti, I Gandolfi, E Gaspari, R Ambrosini, G Bestetti (2011). Seasonal variability of bacteria in fine and coarse urban air particulate matter. Applied Microbiology and Biotechnology, 90(2): 745–753
https://doi.org/10.1007/s00253-010-3048-7
pmid: 21184061
|
41 |
J Fröhlich-Nowoisky, C J Kampf, B Weber, J A Huffman, C Pöhlker, M O Andreae, N Lang-Yona, S M Burrows, S S Gunthe, W Elbert, H Su, P Hoor, E Thines, T Hoffmann, V R Després, U Pöschl (2016). Bioaerosols in the Earth system: Climate health and ecosystem interactions. Atmospheric Research, 182: 346–376
https://doi.org/10.1016/j.atmosres.2016.07.018
|
42 |
I Gandolfi, V Bertolini, R Ambrosini, G Bestetti, A Franzetti (2013). Unravelling the bacterial diversity in the atmosphere. Applied Microbiology and Biotechnology, 97(11): 4727–4736
https://doi.org/10.1007/s00253-013-4901-2
pmid: 23604562
|
43 |
I Gandolfi, V Bertolini, G Bestetti, R Ambrosini, E Innocente, G Rampazzo, M Papacchini, A Franzetti (2015). Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. Applied Microbiology and Biotechnology, 99(11): 4867–4877
https://doi.org/10.1007/s00253-014-6348-5
pmid: 25592734
|
44 |
M Gao, R Jia, T Qiu, M Han, Y Song, X Wang (2015). Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days. Atmospheric Environment, 118: 203–210
https://doi.org/10.1016/j.atmosenv.2015.08.004
|
45 |
S Genitsaris, K A Kormas, M Moustaka-Gouni (2011). Airborne algae and cyanobacteria: Occurrence and related health effects. Frontiers in Bioscience, 3(2): 772–787
pmid: 21196350
|
46 |
T L Gonzáles (2007). Perspectives of environmental, geological risk in the Los Remedios river, the border area between the Federal District and Edo.From Mexico. Bachelor’s Thesis. Mexico City: School of Engineering and Architecture. National Polytechnic Institute
|
47 |
M R González (2015). Identificación de cianobacterias potencialmente productoras de cianotoxinas en la curva de salguero del río Cesar. Revista Luna Azul, 31: 17–25
|
48 |
N C Gouveia, M Maisonet (2006). Health effects of air pollution: An overview. In: World Health Organization, ed. Regional Office for Europe. Air Quality Guidelines: Global Update 2005: Particulate Matter Ozone Nitrogen Dioxide and Sulfur Dioxide. Copenhagen: World Health Organization. Regional Office for Europe
|
49 |
D W Griffin (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews, 20(3): 459–477
https://doi.org/10.1128/CMR.00039-06
pmid: 17630335
|
50 |
W Hesse (1884). t’ber quantitative Bestimmung der in der Luft enhaltenen Mikroorganismen. Mitt. aus dem kais. Gesundht. Berlin, 2: 182–207
|
51 |
W Hesse (1888). Bemerkungen zur quantitativen Bestimmung der Mikroorganismen in der Luft. Zeitschrift für Hygiene, 4(1): 19–21
https://doi.org/10.1007/BF02188079
|
52 |
S S Hirano, C D Upper (1983). Ecology and epidemiology of foliar bacterial plant pathogens. Annual Review of Phytopathology, 21(1): 243–270
https://doi.org/10.1146/annurev.py.21.090183.001331
|
53 |
H M Ho, C Y Rao, H H Hsu, Y H Chiu, C M Liu, H J Chao (2005). Characteristics and determinants of ambient fungal spores in Hualien China. Atmospheric Environment, 39(32): 5839–5850
https://doi.org/10.1016/j.atmosenv.2005.06.034
|
54 |
INEGI (2017). Anuario estadístico y geográfico de la Ciudad de México. 2017 / / Instituto nacional de Estadística y Geografía. Ciudad de México: INEGI, Instituto Nacional de Estadística y Geografía (México), 506
|
55 |
INEGI (2020). Panorama sociodemográfico de Ciudad de México: Censo de Población y Vivienda 2020: CPV / Instituto nacional de estadística y Geografía. Ciudad de México: INEGI, 51
|
56 |
E Innocente, S Squizzato, F Visin, C Facca, G Rampazzo, V Bertolini, I Gandolfi, A Franzetti, R Ambrosini, G Bestetti (2017). Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. Science of the Total Environment, 593–594: 677–687
https://doi.org/10.1016/j.scitotenv.2017.03.199
pmid: 28363180
|
57 |
Y Y Iossifova, T Reponen, D I Bernstein, L Levin, H Kalra, P Campo, M Villareal, J Lockey, G K K Hershey, G LeMasters (2007). House dust (1-3)-beta-D-glucan and wheezing in infants. Allergy, 62(5): 504–513
https://doi.org/10.1111/j.1398-9995.2007.01340.x
pmid: 17441791
|
58 |
T A Jackson (1978). The biogeochemistry of heavy metals in polluted lakes and streams at Flin Flon Canada and a proposed method for limiting heavy-metal pollution of natural waters. Environmental Geology, 2(3): 173–189
https://doi.org/10.1007/BF02430671
|
59 |
Joint Research Centre (2019). The Future of Cities-Opportunities, Challanges and the Way Forward. Luxembourg: Union EUR 29752 EN, Publications Office
|
60 |
A M Jones, R M Harrison (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations: A review. Science of the Total Environment, 326(1–3): 151–180
https://doi.org/10.1016/j.scitotenv.2003.11.021
pmid: 15142773
|
61 |
A Klindworth, E Pruesse, T Schweer, J Peplies, C Quast, M Horn, F O Glöckner (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1): e1
https://doi.org/10.1093/nar/gks808
pmid: 22933715
|
62 |
K R Kolde (2015). Maintainer Raivo. Package ‘pheatmap’. Version. 20151:0.8. Date: 2015-07-02. Tallinn: University of Tartu
|
63 |
N R Krieg, W Ludwig, W Whitman, B P Hedlund, B J Paster, J T Staley, N Ward, D Brown, A Parte ( 2010 ). Bergey’s Manual of Systematic Bacterioly: Volume Four The Bacteroidetes Spirochaetes Tenericutes (Mollicutes) Acidobacteria Fibrobacteres Fusobacteria Dictyoglomi Gemmatimonadetes Lentisphaerae Verrucomicrobia Chlamydiae and Planctomycetes. 2nd. ed. New York: Springer, 397
|
64 |
A U Lewandowska, S Śliwińska-Wilczewska, D Woźniczka (2017). Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Marine Pollution Bulletin, 125(1–2): 30–38
https://doi.org/10.1016/j.marpolbul.2017.07.064
pmid: 28823424
|
65 |
W Li, L Fu, B Niu, S Wu, J Wooley (2012). Ultrafast clustering algorithms for metagenomic sequence analysis. Briefings in Bioinformatics, 13(6): 656–668
https://doi.org/10.1093/bib/bbs035
pmid: 22772836
|
66 |
Y Li, H Liao, H Yao (2019). Prevalence of antibiotic resistance genes in air-conditioning systems in hospitals farms and residences. International Journal of Environmental Research and Public Health, 16(5): 683
https://doi.org/10.3390/ijerph16050683
pmid: 30813565
|
67 |
J Lindemann, C D Upper (1985). Aerial dispersal of epiphytic bacteria over bean plants. Applied and Environmental Microbiology, 50(5): 1229–1232
https://doi.org/10.1128/aem.50.5.1229-1232.1985
pmid: 16346928
|
68 |
H Liu, X Zhang, H Zhang, X Yao, M Zhou, J Wang, Z He, H Zhang, L Lou, W Mao, P Zheng, B Hu (2018). Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environmental Pollution, 233: 483–493
https://doi.org/10.1016/j.envpol.2017.10.070
pmid: 29101891
|
69 |
D S Lymperopoulou, R I Adams, S E Lindow (2016). Contribution of vegetation to the microbial composition of nearby outdoor air. Applied and Environmental Microbiology, 82(13): 3822–3833
https://doi.org/10.1128/AEM.00610-16
pmid: 27107117
|
70 |
T Magoč, S L Salzberg (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England), 27(21): 2957–2963
https://doi.org/10.1093/bioinformatics/btr507
pmid: 21903629
|
71 |
S Matthias-Maser, R Jaenicke (1994). Examination of atmospheric bioaerosol particles with radii > 0.2 μm. Journal of Aerosol Science, 25(8): 1605–1613
https://doi.org/10.1016/0021-8502(94)90228-3
|
72 |
S Matthias-Maser, R Jaenicke (2000). The size distribution of primary biological aerosol particles in the multiphase atmosphere. Aerobiologia, 16(2): 207–210
https://doi.org/10.1023/A:1007607614544
|
73 |
N W May, N E Olson, M Panas, J L Axson, P S Tirella, R M Kirpes, R L Craig, M J Gunsch, S China, A Laskin, A P Ault, K A Pratt (2018). Aerosol emissions from great lakes harmful algal blooms. Environmental Science & Technology, 52(2): 397–405
https://doi.org/10.1021/acs.est.7b03609
pmid: 29169236
|
74 |
T Meklin, T Reponen, M Toivola, V Koponen, T Husman, A Hyvärinen, A Nevalainen (2002). Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment, 36(39–40): 39–40
https://doi.org/10.1016/S1352-2310(02)00769-0
pmid: 12244747
|
75 |
G Mhuireach, B R Johnson, A E Altrichter, J Ladau, J F Meadow, K S Pollard, J L Green (2016). Urban greenness influences airborne bacterial community composition. Science of the Total Environment, 571: 680–687
https://doi.org/10.1016/j.scitotenv.2016.07.037
pmid: 27418518
|
76 |
T L Molina, B de Foy, O Vázquez-Martínez, V H Páramo-Figueroa (2009). Air Quality Weather and Climate in Mexico City. Geneva, Switzerland: WMO Bulletin n, 58
|
77 |
F Mu, Y Li, R Lu, Y Qi, W Xie, W Bai (2020). Source identification of airborne bacteria in the mountainous area and the urban areas. Atmospheric Research, 231: 104676
https://doi.org/10.1016/j.atmosres.2019.104676
|
78 |
D H Ogle( 2018 ). Introductory Fisheries Analyses with R. Boca Raton: Chapman & Hall/CRC
https://doi.org/10.1201/9781315371986
|
79 |
J Oksanen, F G Blanchet, M Friendly, R Kindt, P Legendre, D McGlinn, P R Minchin, R B O’Hara, G L Simpson, P Solymos, M Henry, H Stevens, E Szoecs, H Wagner (2017). Vegan: Community Ecology Package. R Package Version. 2 4–3. Oulu: University of Oulu
|
80 |
M Paściak, K Pawlik, A Gamian, B Szponar, J Skóra, B Gutarowska (2014). An airborne actinobacteria Nocardiopsis alba isolated from bioaerosol of a mushroom compost facility. Aerobiologia, 30(4): 413–422
https://doi.org/10.1007/s10453-014-9336-4
pmid: 25382928
|
81 |
S D Pillai, S C Ricke (2002). Bioaerosols from municipal and animal wastes: Background and contemporary issues. Canadian Journal of Microbiology, 48(8): 681–696
https://doi.org/10.1139/w02-070
pmid: 12381025
|
82 |
P N Polymenakou (2012). Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere, 3(1): 87–102
https://doi.org/10.3390/atmos3010087
|
83 |
G Roy-Ocotla, J Carrera (1993). Aeroalgae: Responses to some aerobiological questions. Grana, 32: 48e56
https://doi.org/10.1080/00173139309436419
|
84 |
T Ruiz-Gil, J J Acuña, S Fujiyoshi, D Tanaka, J Noda, F Maruyama, M A Jorquera (2020). Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145: 106156
https://doi.org/10.1016/j.envint.2020.106156
pmid: 33039877
|
85 |
C Santos-Burgoa, I Rosas, A Yela (1994). Occurrence of airborne enteric bacteria in Mexico City. Aerobiologia, 10(1): 39–45
https://doi.org/10.1007/BF02066745
|
86 |
N Serrano-Silva, M C Calderón-Ezquerro (2018). Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods. Environmental Pollution, 235: 20e29
https://doi.org/10.1016/j.envpol.2017.12.035
|
87 |
N K Sharma, A Rai, S Singh (2006a). Meteorological factors affecting the diversity of airborne algae in an urban atmosphere. Ecography, 29(5): 766–772
https://doi.org/10.1111/j.2006.0906-7590.04554.x
|
88 |
N K Sharma, A K Rai, S Singh, R M Brown Jr (2007). Airborne algae: Their present status and relevance. Journal of Phycology, 43(4): 615–627
https://doi.org/10.1111/j.1529-8817.2007.00373.x
|
89 |
N K Sharma, S Singh (2010). Differential aerosolization of algal and cyanobacterial particles in the atmosphere. Indian Journal of Microbiology, 50(4): 468–473
https://doi.org/10.1007/s12088-011-0146-x
pmid: 22282617
|
90 |
N K Sharma, S Singh, A K Rai (2006b). Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. Environmental Research, 102(3): 252–259
https://doi.org/10.1016/j.envres.2006.04.003
pmid: 16780831
|
91 |
W Smets, S Moretti, S Denys, S Lebeer (2016). Airborne bacteria in the atmosphere: Presence purpose and potential. Atmospheric Environment, 139: 214–221
https://doi.org/10.1016/j.atmosenv.2016.05.038
|
92 |
E Stackebrandt, C Koch, O Gvozdiak, P Schumann (1995). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Neste-renkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. International Journal of Systematic Bacteriology, 45(4): 682–692
https://doi.org/10.1099/00207713-45-4-682
pmid: 7547287
|
93 |
M M Stein, C L Hrusch, J Gozdz, C Igartua, V Pivniouk, S E Murray, J G Ledford, M Marques Dos Santos, R L Anderson, N Metwali, J W Neilson, R M Maier, J A Gilbert, M Holbreich, P S Thorne, F D Martinez, E von Mutius, D Vercelli, C Ober, A I Sperling (2016). Innate immunity and asthma risk in Amish and Hutterite Farm Children. New England Journal of Medicine, 375(5): 411–421
https://doi.org/10.1056/NEJMoa1508749
pmid: 27518660
|
94 |
L D Stetzenbach(2009). Airborne Infectious Microorganisms. Encyclopedia of Microbiology. Elsevier Public Health Emergency Collection. Amsterdam: Elsevier, 175–182
https://doi.org/10.1016/B978-012373944-5.00177-2
|
95 |
D Tanaka, K Sato, M Goto, S Fujiyoshi, F Maruyama, S Takato, T Shimada, A Sakatoku, K Aoki, S Nakamura (2019). Airborne microbial communities at high-altitude and suburban sites in Toyama Japan suggest a new perspective for bioprospecting. Frontiers in Bioengineering and Biotechnology, 7: 12
https://doi.org/10.3389/fbioe.2019.00012
pmid: 30805335
|
96 |
R Team (2020). “Core 2020.” R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Compu-ting
|
97 |
C Tomasi, S Fuzzi, A Kokhanovsky (2017). Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate. Hoboken,: John Wiley & Sons, First, 704
|
98 |
UNIATMOS (2020). Bases de datos y metadatos de la Unidad de Informática para las Ciencias Atmosféricas y Ambientales. Repositorio Institucional Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM. Mexico City: Institute of Atmospheric Sciences and Climate Change
|
99 |
K Wiśniewska, A U Lewandowska, S Śliwińska-Wilczewska (2019). The importance of cyanobacteria and microalgae present in aerosols to human health and the environment: Review study. Environment International, 131: 104964
https://doi.org/10.1016/j.envint.2019.104964
pmid: 31351382
|
100 |
C Xu, M Wei, J Chen, X Wang, C Zhu, J Li, L Zheng, G Sui, W Li, W Wang, Q Zhang, A Mellouki (2017). Bacterial characterization in ambient submicron particles during severe haze episodes at Ji’nan, China. Science of the Total Environment, 580: 188–196
https://doi.org/10.1016/j.scitotenv.2016.11.145
pmid: 28017418
|
101 |
D Yan, T Zhang, J Su, L L Zhao, H Wang, X M Fang, Y Q Zhang, H Y Liu, L Y Yu (2018). Structural variation in the bacterial community associated with airborne particulate matter in Beijing China during hazy and nonhazy days. Applied and Environmental Microbiology, 84(9): e00004–e00018
https://doi.org/10.1128/AEM.00004-18
pmid: 29549101
|
102 |
L Ye, T Zhang (2011). Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing. Environmental Science & Technology, 45(17): 7173–7179
https://doi.org/10.1021/es201045e
pmid: 21780772
|
103 |
S Yooseph, C Andrews-Pfannkoch, A Tenney, J McQuaid, S Williamson, M Thiagarajan, D Brami, L Zeigler-Allen, J Hoffman, J B Goll, D Fadrosh, J Glass, M D Adams, R Friedman, J C Venter (2013). A metagenomic framework for the study of airborne microbial communities. PLoS One, 8(12): e81862
https://doi.org/10.1371/journal.pone.0081862
pmid: 24349140
|
104 |
Q Zhang, C Liu, Y Tang, G Zhou, P Shen, C Fang, A Yokota (2007). Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. International Journal of Systematic and Evolutionary Microbiology, 57(8): 1752–1756
https://doi.org/10.1099/ijs.0.65033-0
pmid: 17684250
|
105 |
Q Zhen, Y Deng, Y Wang, X Wang, H Zhang, X Sun, Z Ouyang (2017). Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment, 601– 602: 703–712
https://doi.org/10.1016/j.scitotenv.2017.05.049
pmid: 28577405
|
106 |
G Zhou, X Luo, Y Tang, L Zhang, Q Yang, Y Qiu, C Fang (2008). Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. International Journal of Systematic and volutionary Microbiology, 58(6): 1304–1307
https://doi.org/10.1099/ijs.0.65323-0
pmid: 18523169
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|