Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (9) : 120    https://doi.org/10.1007/s11783-022-1552-5
RESEARCH ARTICLE
Airborne bacteria associated with particulate matter from a highly urbanised metropolis: A potential risk to the population’s health
María del Carmen Calderón-Ezquerro1(), Elizabeth Selene Gómez-Acata1, Carolina Brunner-Mendoza2
1. Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
2. Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
 Download: PDF(1528 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• The airborne bacteria of Mexico City are representative of urban environments.

• Particle material<10 µm influenced the type and quantity of airborne bacteria.

• The diversity and richness of bacteria were higher in the rainy season.

• The emission & transport of airborne bacteria determine the atmosphere’s microbiome.

• Bacterias as Kocuria, Paracoccus, and Staphylococcus were in the air of Mexico City.

Bacteria in the air present patterns in space and time produced by different sources and environmental factors. Few studies have focused on the link between airborne pathogenic bacteria in densely populated cities, and the risk to the population’s health. Bacteria associated with particulate matter (PM) were monitored from the air of Mexico City (Mexico). We employed a metagenomic approach to characterise bacteria using the 16S rRNA gene. Airborne bacteria sampling was carried out in the north, centre, and south of Mexico City, with different urbanisation rates, during 2017. Bacteria added to the particles were sampled using high-volume PM10 samplers. To ascertain significant differences in bacterial diversity between zones and seasons, the Kruskal-Wallis, Wilcoxon tests were done on alpha diversity parameters. Sixty-three air samples were collected, and DNA was sequenced using next-generation sequencing. The results indicated that the bacterial phyla in the north and south of the city were Firmicutes, Cyanobacteria, Proteobacteria, and Actinobacteria, while in the central zone there were more Actinobacteria. There were no differences in the alpha diversity indices between the sampled areas. According to the OTUs, the richness of bacteria was higher in the central zone. Alpha diversity was higher in the rainy season than in the dry season; the Shannon index and the OTUs observed were higher in the central zone in the dry season. Pathogenic bacteria such as Kocuria, Paracoccus, and Micrococcus predominated in both seasonal times, while Staphylococcus, Corynebacterium, and Nocardioides were found during the rainy season, with a presence in the central zone.

Keywords Airborne bacteria      Urbanisation      PM10      Mexico City      Microbiome     
Corresponding Author(s): María del Carmen Calderón-Ezquerro   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 02 March 2022
 Cite this article:   
María del Carmen Calderón-Ezquerro,Elizabeth Selene Gómez-Acata,Carolina Brunner-Mendoza. Airborne bacteria associated with particulate matter from a highly urbanised metropolis: A potential risk to the population’s health[J]. Front. Environ. Sci. Eng., 2022, 16(9): 120.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1552-5
https://academic.hep.com.cn/fese/EN/Y2022/V16/I9/120
Territorial demarcation Urban land* Green area* Other (waterbody)* Total Number of inhabitants** Urbanisation rate&
(9209944
Inhabitants of Mexico City***)
Area (km2)*
Coyoacán (S) 93.05% 6.95% 0.00% 100% 620416 6.74 53.62
Gustavo A. Madero (N) 83.53% 16.31% 0.16% 100% 1185772 12.9 87.38
Cuauhtémoc (C) 100.00% 0.00% 0.00% 100% 521348 5.66 32.34
Tab.1  Characteristics of the sampling areas
Fig.1  Rarefaction curve for observed OTU metrics according to zone and season. The lines indicate the airborne samples from the centre zone (blue line), north zone (green line), and south zone (yellow line) in the rainy season and the airborne samples of the centre zone (red line), north zone (orange line), and south zone (lilac line) in the dry season. The error bars indicate the standard deviation (sd).
Fig.2  (a) Alpha diversity indices and observed OTUs of the three sampling areas. (b) Alpha diversity indices and observed OTUs between the dry and rainy seasons.
Alpha diversity parameter Zone Kruskal-Wallis test
Mean North Mean Centre Mean South p value
Simpson 0.846 0.924 0.923 0.789
Shannon 5.004 5.689 5.199 0.134
Observed OTUs 226.000 253.000 199.000 0.007*
Tab.2  A Alpha diversity indices in the three different sampling areas
Alpha diversity parameter Season Wilcoxon test
Mean Dry Mean Rainy p value
Simpson 0.868 0.938 <0.001
Shannon 4.908 5.800 <0.001
Observed OTUs 208.000 248.000 <0.001
  Table 2B Alpha diversity indices by season
Season Alpha diversity parameter Zone Kruskal-Wallis test
North Centre South p value
Dry Simpson 0.769 0.903 0.918 0.011*
Shannon 4.277 5.400 4.948 0.007**
Observed OTUs 201.000 242.000 179.000 0.002***
Rainy Simpson 0.939 0.948 0.929 0.268
Shannon 5.893 6.027 5.498 0.424
Observed OTUs 257.000 266.000 223.000 0.183
Tab.3  Alpha diversity indices corresponding to the three different sampling areas during the dry and rainy seasons
Fig.3  Heat map of the relative abundance of the most abundant taxonomic groups of airborne bacteria (a) by zone, (b) by zone and time of year, and (c) by season. *Genera of bacteria reported as pathogens.
Fig.4  Main taxa of airborne bacteria registered in the northern, central, and southern zones of Mexico City during the dry and rainy seasons.
1 V Acosta-Martinez, S Van Pelt, J Moore-Kucera, M C Baddock, T M Zobeck (2015). Microbiology of wind-eroded sediments: Current knowledge and future research directions. Aeolian Research, 18: 99–113
https://doi.org/10.1016/j.aeolia.2015.06.001
2 M A Alghamdi, M Shamy, M A Redal, M Khoder, A H Awad, S Elserougy (2014). Microorganisms associated particulate matter: A prelimi-nary study. Science of the Total Environment, 479–480: 109–116
https://doi.org/10.1016/j.scitotenv.2014.02.006 pmid: 24561289
3 M Antoinette van Overeem (1937). On green organisms occurring in the lower troposphere. Recueil des Travaux Botaniques Néerlandais, 34(1): 388–442
4 L C Backer, S V McNeel, T Barber, B Kirkpatrick, C Williams, M Irvin, Y Zhou, T B Johnson, K Nierenberg, M Aubel, R LePrell, A Chapman, A Foss, S Corum, V R Hill, S M Kieszak, Y S Cheng (2010). Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon, 55(5): 909–921
https://doi.org/10.1016/j.toxicon.2009.07.006 pmid: 19615396
5 N A Be, J B Thissen, V Y Fofanov, J E Allen, M Rojas, G Golovko, Y Fofanov, H Koshinsky, C J Jaing (2015). Metagenomic analysis of the airborne environment in urban spaces. Microbial Ecology, 69(2): 346–355
https://doi.org/10.1007/s00248-014-0517-z pmid: 25351142
6 J M Benson, J A Hutt, K Rein, S E Boggs, E B Barr, L E Fleming (2005). The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon, 45(6): 691–698
https://doi.org/10.1016/j.toxicon.2005.01.004 pmid: 15804518
7 G Berg, D Rybakova, D Fischer, T Cernava, M C C Vergès, T Charles, X Chen, L Cocolin, K Eversole, G H Corral, M Kazou, L Kinkel, L Lange, N Lima, A Loy, J A Macklin, E Maguin, T Mauchline, R McClure, B Mitter, M Ryan, I Sarand, H Smidt, B Schelkle, H Roume, G S Kiran, J Selvin, R S C Souza, L van Overbeek, B K Singh, M Wagner, A Walsh, A Sessitsch, M Schloter (2020). Microbiome, definition re-visited: Old concepts and new challenges. Microbiome, 8(1): 1–22
https://doi.org/10.1186/s40168-020-00875-0 pmid: 31901242
8 V Bertolini, I Gandolfi, R Ambrosini, G Bestetti, E Innocente, G Rampazzo, A Franzetti (2013). Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Applied Microbiology and Biotechnology, 97(14): 6561–6570
https://doi.org/10.1007/s00253-012-4450-0 pmid: 23053100
9 R M Bowers, N Clements, J B Emerson, C Wiedinmyer, M P Hannigan, N Fierer (2013). Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environmental Science & Techno-logy, 47(21): 12097–12106
https://doi.org/10.1021/es402970s pmid: 24083487
10 R M Bowers, A P Sullivan, E K Costello, J L Collett Jr, R Knight, N Fierer (2011). Sources of bacteria in outdoor air across cities in the midwestern United States. Applied and Environmental Microbio-logy, 77(18): 6350–6356
https://doi.org/10.1128/AEM.05498-11 pmid: 21803902
11 H Bravo-Alvarez, R Torres-Jardón (2002). Air pollution levels and trends in the Mexico City metropolitan area. In: Fenn M de B L, Hernández-Tejeda T, eds. Urban Air Pollution and Forests. Resources at risk in the Mexico City air basin. New York: Springer–Verlag, 121–159
12 S M Burrows, T Butler, P Jockel, H Tost, A Kerkweg, U Poschl, M G Lawrence (2009a). Bacteria in the global atmosphere–Part 2: Modeling of emissions and transport between different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9281–9297
https://doi.org/10.5194/acp-9-9281-2009
13 S M Burrows, W Elbert, M G Lawrence, U Poschl (2009b). Bacteria in the global atmosphere–Part 1: Review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9263–9280
https://doi.org/10.5194/acp-9-9263-2009
14 M C Calderón-Ezquerro, C Guerrero-Guerra, B Martínez-López, F Fuentes-Rojas, F Téllez-Unzueta, E D López-Espinoza, M E Calderón-Segura, A Martínez-Arroyo, M M Trigo-Pérez (2016). First airbornepollen calendar for Mexico City and its relationship withbioclimatic factors. Aerobiologia, 32(2): 225–244
https://doi.org/10.1007/s10453-015-9392-4
15 M C Calderón-Ezquerro, N Serrano-Silva, C Brunner-Mendoza (2020). Metagenomic characterisation of bioaerosols during the dry season in Mexico City. Aerobiologia, 36(3): 493–505
https://doi.org/10.1007/s10453-020-09649-5
16 M C Calderón-Ezquerro, B Martinez-Lopez, C Guerrero-Guerra, E D López-Espinosa, W D Cabos-Narvaez (2018). Behaviour of Quercus pollen in the air, determination of its sources and transport through the atmosphere of Mexico City and conurbated areas. International Journal of Biometeorology, 62(9): 1721–1732
17 M D C Calderón-Ezquerro, N Serrano-Silva, C Brunner-Mendoza (2021). Aerobiological study of bacterial and fungal community composition in the atmosphere of Mexico City throughout an annual cycle. Environmental Pollution, 278: 116858
https://doi.org/10.1016/j.envpol.2021.116858 pmid: 33740598
18 M Camatini, V Corvaja, E Pezzolato, P Mantecca, M Gualtieri (2012). PM10-biogenic fraction drives the seasonal variation of proinflammatory response in A549 cells. Environmental Toxicology, 27(2): 63–73
https://doi.org/10.1002/tox.20611 pmid: 20549640
19 J G Caporaso, J Kuczynski, J Stombaugh, K Bittinger, F D Bushman, E K Costello, N Fierer, A G Peña, J K Goodrich, J I Gordon, G A Huttley, S T Kelley, D Knights, J E Koenig, R E Ley, C A Lozupone, D McDonald, B D Muegge, M Pirrung, J Reeder, J R Sevinsky, P J Turnbaugh, W A Walters, J Widmann, T Yatsunenko, J Zaneveld, R Knight, G A Huttley (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336
https://doi.org/10.1038/nmeth.f.303 pmid: 20383131
20 J L Carson, R M Brown Jr (1976). The correlation of soil algae airborne algae and fern spores with meteorological conditions on the Island of Hawaii. USA. Pacific Science, 30: 197–205
21 S Cha, S Srinivasan, J H Jang, D Lee, S Lim, K S Kim, W Jheong, D W Lee, E R Park, H M Chung, J Choe, M K Kim, T Seo (2017). Metagenomic analysis of airborne bacterial community and diversity in Seoul Korea during December 2014 Asian dust event. PLoS One, 12(1): e0170693
https://doi.org/10.1371/journal.pone.0170693 pmid: 28122054
22 K Chatterjee, V Sigler (2015). Evaluation of airborne microbial densities and assemblages following extended impaction onto a modified collection surface. Aerobiologia, 31(1): 21–32
https://doi.org/10.1007/s10453-014-9343-5
23 X Chen, D Kumari, V Achal (2020). A review on airborne microbes: The characteristics of sources pathogenicity and geography. Atmosphere, 11(9): 919
https://doi.org/10.3390/atmos11090919
24 I Chorus, M Welker (2021). Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences Monitoring and Management. London: Taylor & Francis, 858
25 A Chrisostomou, M Moustaka-Gouni, S Sgardelis, T Lanaras (2009). Air-dispersed phytoplankton in a Mediterranean river-reservoir system (Aliakmon-Polyphytos Greece). Journal of Plankton Research, 31(8): 877–884
https://doi.org/10.1093/plankt/fbp038
26 M Clauß (2015). Particle size distribution of airborne microorganisms in the environment: A review. Landbauforsch. Applied Agricultural and Forestry Research, 65(2): 77–100
https://doi.org/10.3220/LBF1444216736000
27 M De Cáceres, P Legendre, M Moretti (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10): 1674–1684
https://doi.org/10.1111/j.1600-0706.2010.18334.x
28 L Després, J P David, C Gallet (2007). The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology & Evolution, 22(6): 298–307
https://doi.org/10.1016/j.tree.2007.02.010 pmid: 17324485
29 V R Després, J A Huffman, S M Burrows, C Hoose, A S Savatov, G Buryak (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus Series B-Chemical and Physical Meteorology, 64(1): 15598
https://doi.org/10.3402/tellusb.v64i0.15598
30 P Du, R Du, W Ren, Z Lu, P Fu (2018). Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Science of the Total Environment, 610– 611: 308–315
https://doi.org/10.1016/j.scitotenv.2017.07.097 pmid: 28806548
31 M Dufrêne, P Legendre (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3): 345–366
https://doi.org/10.2307/2963459
32 S A Edgerton, X Bian, J C Doran, J D Fast, J M Hubbe, E L Malone, W J Shaw, C D Whiteman, S Zhong, J L Arriaga, E Ortiz, M Ruiz, G Sosa, E Vega, T Limon, F Guzman, J Archuleta, J E Bossert, S M Elliot, J T Lee, L A McNair, J C Chow, J G Watson, R L Coulter, P V Doskey, J S Gaffney, N A Marley, W Neff, R Petty (1999). Particulate air pollution in Mexico City: A collaborative research project. Journal of the Air & Waste Management Association, 49(10): 1221–1229
https://doi.org/10.1080/10473289.1999.10463915 pmid: 28060672
33 D W Ehresmann, M T Hatch (1975). Effect of relative humidity on the survival of airborne unicellular algae. Journal of Applied Microbiology, 29(3): 352–357
https://doi.org/10.1128/am.29.3.352-357.1975 pmid: 1115506
34 F Estrada, A Martínez-Arroyo, A Fernández-Eguiarte, E Luyando, C Gay (2009). Defining climate zones in Mexico City using multivariate analysis. Atmosfera, 22: 175–193
35 Z Fang, Z Ouyang, H Zheng, X Wang, L Hu (2007). Culturable airborne bacteria in outdoor environments in Beijing, China. Microbial Ecology, 54(3): 487–496
https://doi.org/10.1007/s00248-007-9216-3 pmid: 17308950
36 E J Flies, L J Clarke, B W Brook, P Jones (2020). Urbanisation reduces the abundance and diversity of airborne microbes–but what does that mean for our health? A systematic review. Science of the Total Environment, 738: 140337
https://doi.org/10.1016/j.scitotenv.2020.140337 pmid: 32806360
37 E J Flies, S Mavoa, G R Zosky, E Mantzioris, C Williams, R Eri, B W Brook, J C Buettel (2019). Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environment International, 133(Pt A): 105187
https://doi.org/10.1016/j.envint.2019.105187 pmid: 31648161
38 E J Flies, C Skelly, R Lovell, M F Breed, D Phillips, P Weinstein (2018). Cities biodiversity and health: We need healthy urban Microbiome, initiatives. Cities & Health, 2(2): 143–150
https://doi.org/10.1080/23748834.2018.1546641
39 E J Flies, C Skelly, S S Negi, P Prabhakaran, Q Liu, K Liu, F C Goldizen, C Lease, P Weinstein (2017). Biodiverse green spaces: A prescription for global urban health. Frontiers in Ecology and the Environment, 15(9): 510–516
https://doi.org/10.1002/fee.1630
40 A Franzetti, I Gandolfi, E Gaspari, R Ambrosini, G Bestetti (2011). Seasonal variability of bacteria in fine and coarse urban air particulate matter. Applied Microbiology and Biotechnology, 90(2): 745–753
https://doi.org/10.1007/s00253-010-3048-7 pmid: 21184061
41 J Fröhlich-Nowoisky, C J Kampf, B Weber, J A Huffman, C Pöhlker, M O Andreae, N Lang-Yona, S M Burrows, S S Gunthe, W Elbert, H Su, P Hoor, E Thines, T Hoffmann, V R Després, U Pöschl (2016). Bioaerosols in the Earth system: Climate health and ecosystem interactions. Atmospheric Research, 182: 346–376
https://doi.org/10.1016/j.atmosres.2016.07.018
42 I Gandolfi, V Bertolini, R Ambrosini, G Bestetti, A Franzetti (2013). Unravelling the bacterial diversity in the atmosphere. Applied Microbiology and Biotechnology, 97(11): 4727–4736
https://doi.org/10.1007/s00253-013-4901-2 pmid: 23604562
43 I Gandolfi, V Bertolini, G Bestetti, R Ambrosini, E Innocente, G Rampazzo, M Papacchini, A Franzetti (2015). Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. Applied Microbiology and Biotechnology, 99(11): 4867–4877
https://doi.org/10.1007/s00253-014-6348-5 pmid: 25592734
44 M Gao, R Jia, T Qiu, M Han, Y Song, X Wang (2015). Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days. Atmospheric Environment, 118: 203–210
https://doi.org/10.1016/j.atmosenv.2015.08.004
45 S Genitsaris, K A Kormas, M Moustaka-Gouni (2011). Airborne algae and cyanobacteria: Occurrence and related health effects. Frontiers in Bioscience, 3(2): 772–787
pmid: 21196350
46 T L Gonzáles (2007). Perspectives of environmental, geological risk in the Los Remedios river, the border area between the Federal District and Edo.From Mexico. Bachelor’s Thesis. Mexico City: School of Engineering and Architecture. National Polytechnic Institute
47 M R González (2015). Identificación de cianobacterias potencialmente productoras de cianotoxinas en la curva de salguero del río Cesar. Revista Luna Azul, 31: 17–25
48 N C Gouveia, M Maisonet (2006). Health effects of air pollution: An overview. In: World Health Organization, ed. Regional Office for Europe. Air Quality Guidelines: Global Update 2005: Particulate Matter Ozone Nitrogen Dioxide and Sulfur Dioxide. Copenhagen: World Health Organization. Regional Office for Europe
49 D W Griffin (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews, 20(3): 459–477
https://doi.org/10.1128/CMR.00039-06 pmid: 17630335
50 W Hesse (1884). t’ber quantitative Bestimmung der in der Luft enhaltenen Mikroorganismen. Mitt. aus dem kais. Gesundht. Berlin, 2: 182–207
51 W Hesse (1888). Bemerkungen zur quantitativen Bestimmung der Mikroorganismen in der Luft. Zeitschrift für Hygiene, 4(1): 19–21
https://doi.org/10.1007/BF02188079
52 S S Hirano, C D Upper (1983). Ecology and epidemiology of foliar bacterial plant pathogens. Annual Review of Phytopathology, 21(1): 243–270
https://doi.org/10.1146/annurev.py.21.090183.001331
53 H M Ho, C Y Rao, H H Hsu, Y H Chiu, C M Liu, H J Chao (2005). Characteristics and determinants of ambient fungal spores in Hualien China. Atmospheric Environment, 39(32): 5839–5850
https://doi.org/10.1016/j.atmosenv.2005.06.034
54 INEGI (2017). Anuario estadístico y geográfico de la Ciudad de México. 2017 / / Instituto nacional de Estadística y Geografía. Ciudad de México: INEGI, Instituto Nacional de Estadística y Geografía (México), 506
55 INEGI (2020). Panorama sociodemográfico de Ciudad de México: Censo de Población y Vivienda 2020: CPV / Instituto nacional de estadística y Geografía. Ciudad de México: INEGI, 51
56 E Innocente, S Squizzato, F Visin, C Facca, G Rampazzo, V Bertolini, I Gandolfi, A Franzetti, R Ambrosini, G Bestetti (2017). Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. Science of the Total Environment, 593–594: 677–687
https://doi.org/10.1016/j.scitotenv.2017.03.199 pmid: 28363180
57 Y Y Iossifova, T Reponen, D I Bernstein, L Levin, H Kalra, P Campo, M Villareal, J Lockey, G K K Hershey, G LeMasters (2007). House dust (1-3)-beta-D-glucan and wheezing in infants. Allergy, 62(5): 504–513
https://doi.org/10.1111/j.1398-9995.2007.01340.x pmid: 17441791
58 T A Jackson (1978). The biogeochemistry of heavy metals in polluted lakes and streams at Flin Flon Canada and a proposed method for limiting heavy-metal pollution of natural waters. Environmental Geology, 2(3): 173–189
https://doi.org/10.1007/BF02430671
59 Joint Research Centre (2019). The Future of Cities-Opportunities, Challanges and the Way Forward. Luxembourg: Union EUR 29752 EN, Publications Office
60 A M Jones, R M Harrison (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations: A review. Science of the Total Environment, 326(1–3): 151–180
https://doi.org/10.1016/j.scitotenv.2003.11.021 pmid: 15142773
61 A Klindworth, E Pruesse, T Schweer, J Peplies, C Quast, M Horn, F O Glöckner (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1): e1
https://doi.org/10.1093/nar/gks808 pmid: 22933715
62 K R Kolde (2015). Maintainer Raivo. Package ‘pheatmap’. Version. 20151:0.8. Date: 2015-07-02. Tallinn: University of Tartu
63 N R Krieg, W Ludwig, W Whitman, B P Hedlund, B J Paster, J T Staley, N Ward, D Brown, A Parte ( 2010 ). Bergey’s Manual of Systematic Bacterioly: Volume Four The Bacteroidetes Spirochaetes Tenericutes (Mollicutes) Acidobacteria Fibrobacteres Fusobacteria Dictyoglomi Gemmatimonadetes Lentisphaerae Verrucomicrobia Chlamydiae and Planctomycetes. 2nd. ed. New York: Springer, 397
64 A U Lewandowska, S Śliwińska-Wilczewska, D Woźniczka (2017). Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Marine Pollution Bulletin, 125(1–2): 30–38
https://doi.org/10.1016/j.marpolbul.2017.07.064 pmid: 28823424
65 W Li, L Fu, B Niu, S Wu, J Wooley (2012). Ultrafast clustering algorithms for metagenomic sequence analysis. Briefings in Bioinformatics, 13(6): 656–668
https://doi.org/10.1093/bib/bbs035 pmid: 22772836
66 Y Li, H Liao, H Yao (2019). Prevalence of antibiotic resistance genes in air-conditioning systems in hospitals farms and residences. International Journal of Environmental Research and Public Health, 16(5): 683
https://doi.org/10.3390/ijerph16050683 pmid: 30813565
67 J Lindemann, C D Upper (1985). Aerial dispersal of epiphytic bacteria over bean plants. Applied and Environmental Microbiology, 50(5): 1229–1232
https://doi.org/10.1128/aem.50.5.1229-1232.1985 pmid: 16346928
68 H Liu, X Zhang, H Zhang, X Yao, M Zhou, J Wang, Z He, H Zhang, L Lou, W Mao, P Zheng, B Hu (2018). Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environmental Pollution, 233: 483–493
https://doi.org/10.1016/j.envpol.2017.10.070 pmid: 29101891
69 D S Lymperopoulou, R I Adams, S E Lindow (2016). Contribution of vegetation to the microbial composition of nearby outdoor air. Applied and Environmental Microbiology, 82(13): 3822–3833
https://doi.org/10.1128/AEM.00610-16 pmid: 27107117
70 T Magoč, S L Salzberg (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England), 27(21): 2957–2963
https://doi.org/10.1093/bioinformatics/btr507 pmid: 21903629
71 S Matthias-Maser, R Jaenicke (1994). Examination of atmospheric bioaerosol particles with radii > 0.2 μm. Journal of Aerosol Science, 25(8): 1605–1613
https://doi.org/10.1016/0021-8502(94)90228-3
72 S Matthias-Maser, R Jaenicke (2000). The size distribution of primary biological aerosol particles in the multiphase atmosphere. Aerobiologia, 16(2): 207–210
https://doi.org/10.1023/A:1007607614544
73 N W May, N E Olson, M Panas, J L Axson, P S Tirella, R M Kirpes, R L Craig, M J Gunsch, S China, A Laskin, A P Ault, K A Pratt (2018). Aerosol emissions from great lakes harmful algal blooms. Environmental Science & Technology, 52(2): 397–405
https://doi.org/10.1021/acs.est.7b03609 pmid: 29169236
74 T Meklin, T Reponen, M Toivola, V Koponen, T Husman, A Hyvärinen, A Nevalainen (2002). Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment, 36(39–40): 39–40
https://doi.org/10.1016/S1352-2310(02)00769-0 pmid: 12244747
75 G Mhuireach, B R Johnson, A E Altrichter, J Ladau, J F Meadow, K S Pollard, J L Green (2016). Urban greenness influences airborne bacterial community composition. Science of the Total Environment, 571: 680–687
https://doi.org/10.1016/j.scitotenv.2016.07.037 pmid: 27418518
76 T L Molina, B de Foy, O Vázquez-Martínez, V H Páramo-Figueroa (2009). Air Quality Weather and Climate in Mexico City. Geneva, Switzerland: WMO Bulletin n, 58
77 F Mu, Y Li, R Lu, Y Qi, W Xie, W Bai (2020). Source identification of airborne bacteria in the mountainous area and the urban areas. Atmospheric Research, 231: 104676
https://doi.org/10.1016/j.atmosres.2019.104676
78 D H Ogle( 2018 ). Introductory Fisheries Analyses with R. Boca Raton: Chapman & Hall/CRC
https://doi.org/10.1201/9781315371986
79 J Oksanen, F G Blanchet, M Friendly, R Kindt, P Legendre, D McGlinn, P R Minchin, R B O’Hara, G L Simpson, P Solymos, M Henry, H Stevens, E Szoecs, H Wagner (2017). Vegan: Community Ecology Package. R Package Version. 2 4–3. Oulu: University of Oulu
80 M Paściak, K Pawlik, A Gamian, B Szponar, J Skóra, B Gutarowska (2014). An airborne actinobacteria Nocardiopsis alba isolated from bioaerosol of a mushroom compost facility. Aerobiologia, 30(4): 413–422
https://doi.org/10.1007/s10453-014-9336-4 pmid: 25382928
81 S D Pillai, S C Ricke (2002). Bioaerosols from municipal and animal wastes: Background and contemporary issues. Canadian Journal of Microbiology, 48(8): 681–696
https://doi.org/10.1139/w02-070 pmid: 12381025
82 P N Polymenakou (2012). Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere, 3(1): 87–102
https://doi.org/10.3390/atmos3010087
83 G Roy-Ocotla, J Carrera (1993). Aeroalgae: Responses to some aerobiological questions. Grana, 32: 48e56
https://doi.org/10.1080/00173139309436419
84 T Ruiz-Gil, J J Acuña, S Fujiyoshi, D Tanaka, J Noda, F Maruyama, M A Jorquera (2020). Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145: 106156
https://doi.org/10.1016/j.envint.2020.106156 pmid: 33039877
85 C Santos-Burgoa, I Rosas, A Yela (1994). Occurrence of airborne enteric bacteria in Mexico City. Aerobiologia, 10(1): 39–45
https://doi.org/10.1007/BF02066745
86 N Serrano-Silva, M C Calderón-Ezquerro (2018). Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods. Environmental Pollution, 235: 20e29
https://doi.org/10.1016/j.envpol.2017.12.035
87 N K Sharma, A Rai, S Singh (2006a). Meteorological factors affecting the diversity of airborne algae in an urban atmosphere. Ecography, 29(5): 766–772
https://doi.org/10.1111/j.2006.0906-7590.04554.x
88 N K Sharma, A K Rai, S Singh, R M Brown Jr (2007). Airborne algae: Their present status and relevance. Journal of Phycology, 43(4): 615–627
https://doi.org/10.1111/j.1529-8817.2007.00373.x
89 N K Sharma, S Singh (2010). Differential aerosolization of algal and cyanobacterial particles in the atmosphere. Indian Journal of Microbiology, 50(4): 468–473
https://doi.org/10.1007/s12088-011-0146-x pmid: 22282617
90 N K Sharma, S Singh, A K Rai (2006b). Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. Environmental Research, 102(3): 252–259
https://doi.org/10.1016/j.envres.2006.04.003 pmid: 16780831
91 W Smets, S Moretti, S Denys, S Lebeer (2016). Airborne bacteria in the atmosphere: Presence purpose and potential. Atmospheric Environment, 139: 214–221
https://doi.org/10.1016/j.atmosenv.2016.05.038
92 E Stackebrandt, C Koch, O Gvozdiak, P Schumann (1995). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Neste-renkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. International Journal of Systematic Bacteriology, 45(4): 682–692
https://doi.org/10.1099/00207713-45-4-682 pmid: 7547287
93 M M Stein, C L Hrusch, J Gozdz, C Igartua, V Pivniouk, S E Murray, J G Ledford, M Marques Dos Santos, R L Anderson, N Metwali, J W Neilson, R M Maier, J A Gilbert, M Holbreich, P S Thorne, F D Martinez, E von Mutius, D Vercelli, C Ober, A I Sperling (2016). Innate immunity and asthma risk in Amish and Hutterite Farm Children. New England Journal of Medicine, 375(5): 411–421
https://doi.org/10.1056/NEJMoa1508749 pmid: 27518660
94 L D Stetzenbach(2009). Airborne Infectious Microorganisms. Encyclopedia of Microbiology. Elsevier Public Health Emergency Collection. Amsterdam: Elsevier, 175–182
https://doi.org/10.1016/B978-012373944-5.00177-2
95 D Tanaka, K Sato, M Goto, S Fujiyoshi, F Maruyama, S Takato, T Shimada, A Sakatoku, K Aoki, S Nakamura (2019). Airborne microbial communities at high-altitude and suburban sites in Toyama Japan suggest a new perspective for bioprospecting. Frontiers in Bioengineering and Biotechnology, 7: 12
https://doi.org/10.3389/fbioe.2019.00012 pmid: 30805335
96 R Team (2020). “Core 2020.” R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Compu-ting
97 C Tomasi, S Fuzzi, A Kokhanovsky (2017). Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate. Hoboken,: John Wiley & Sons, First, 704
98 UNIATMOS (2020). Bases de datos y metadatos de la Unidad de Informática para las Ciencias Atmosféricas y Ambientales. Repositorio Institucional Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM. Mexico City: Institute of Atmospheric Sciences and Climate Change
99 K Wiśniewska, A U Lewandowska, S Śliwińska-Wilczewska (2019). The importance of cyanobacteria and microalgae present in aerosols to human health and the environment: Review study. Environment International, 131: 104964
https://doi.org/10.1016/j.envint.2019.104964 pmid: 31351382
100 C Xu, M Wei, J Chen, X Wang, C Zhu, J Li, L Zheng, G Sui, W Li, W Wang, Q Zhang, A Mellouki (2017). Bacterial characterization in ambient submicron particles during severe haze episodes at Ji’nan, China. Science of the Total Environment, 580: 188–196
https://doi.org/10.1016/j.scitotenv.2016.11.145 pmid: 28017418
101 D Yan, T Zhang, J Su, L L Zhao, H Wang, X M Fang, Y Q Zhang, H Y Liu, L Y Yu (2018). Structural variation in the bacterial community associated with airborne particulate matter in Beijing China during hazy and nonhazy days. Applied and Environmental Microbiology, 84(9): e00004–e00018
https://doi.org/10.1128/AEM.00004-18 pmid: 29549101
102 L Ye, T Zhang (2011). Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing. Environmental Science & Technology, 45(17): 7173–7179
https://doi.org/10.1021/es201045e pmid: 21780772
103 S Yooseph, C Andrews-Pfannkoch, A Tenney, J McQuaid, S Williamson, M Thiagarajan, D Brami, L Zeigler-Allen, J Hoffman, J B Goll, D Fadrosh, J Glass, M D Adams, R Friedman, J C Venter (2013). A metagenomic framework for the study of airborne microbial communities. PLoS One, 8(12): e81862
https://doi.org/10.1371/journal.pone.0081862 pmid: 24349140
104 Q Zhang, C Liu, Y Tang, G Zhou, P Shen, C Fang, A Yokota (2007). Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. International Journal of Systematic and Evolutionary Microbiology, 57(8): 1752–1756
https://doi.org/10.1099/ijs.0.65033-0 pmid: 17684250
105 Q Zhen, Y Deng, Y Wang, X Wang, H Zhang, X Sun, Z Ouyang (2017). Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment, 601– 602: 703–712
https://doi.org/10.1016/j.scitotenv.2017.05.049 pmid: 28577405
106 G Zhou, X Luo, Y Tang, L Zhang, Q Yang, Y Qiu, C Fang (2008). Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. International Journal of Systematic and volutionary Microbiology, 58(6): 1304–1307
https://doi.org/10.1099/ijs.0.65323-0 pmid: 18523169
[1] FSE-21128-OF-CMC_suppl_1 Download
[1] Bingdi Liu, Lin Zhang, Jason H. Knouft, Fangqiong Ling. Meter-scale variation within a single transect demands attention to taxon accumulation curves in riverine microbiome studies[J]. Front. Environ. Sci. Eng., 2022, 16(5): 64-.
[2] Liu Cao, Lu Yang, Clifford S. Swanson, Shuai Li, Qiang He. Comparative analysis of impact of human occupancy on indoor microbiomes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 89-.
[3] Shuai Li, Zhiyao Yang, Da Hu, Liu Cao, Qiang He. Understanding building-occupant-microbiome interactions toward healthy built environments: A review[J]. Front. Environ. Sci. Eng., 2021, 15(4): 65-.
[4] Min Gao, Ziye Yang, Yajie Guo, Mo Chen, Tianlei Qiu, Xingbin Sun, Xuming Wang. The size distribution of airborne bacteria and human pathogenic bacteria in a commercial composting plant[J]. Front. Environ. Sci. Eng., 2021, 15(3): 39-.
[5] Pol Masclans Abelló, Vicente Medina Iglesias, M. Antonia de los Santos López, Jesús Álvarez-Flórez. Real drive cycles analysis by ordered power methodology applied to fuel consumption, CO2, NOx and PM emissions estimation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 4-.
[6] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[7] Xinghua Li, Junzan Han, Lei Duan. PM10 emissions from industrial coal-fired chain-grate boilers[J]. Front. Environ. Sci. Eng., 2017, 11(6): 18-.
[8] LOU Shujuan, MAO Jietai, WANG Meihua. Observation of black carbon aerosol in Beijing, 2003[J]. Front.Environ.Sci.Eng., 2007, 1(3): 345-349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed