Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (11) : 141    https://doi.org/10.1007/s11783-022-1576-x
RESEARCH ARTICLE
The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure
Yifan Liu1,2, Qiongfang Zhang1,2, Ainiwaer Sidike3, Nuerla Ailijiang1,2(), Anwar Mamat4, Guangxiao Zhang1,2, Miao Pu1,2, Wenhu Cheng1,2, Zhengtao Pang1,2
1. Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
2. Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
3. School of Geographical Sciences, Xinjiang University, Urumqi 830017, China
4. School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
 Download: PDF(4878 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Presented coupled system enhanced biodegradation of antibiotic chloramphenicol.

● HRT and electrical stimulation modes were key influencing factors.

● Electrical stimulation had little effect on the chloramphenicol metabolic pathway.

● Microbial community structure varied with the voltage application mode.

Exoelectrogenic biofilms have received considerable attention for their ability to enhance electron transfer between contaminants and electrodes in bioelectrochemical systems. In this study, we constructed anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) with different voltage application modes, voltages and hydraulic retention times (HRTs). In addition, we evaluated their capacity to remove chloramphenicol (CAP). AO-UBER can effectively mineralize CAP and its metabolites through electrical stimulation when an appropriate voltage is applied. The CAP removal efficiencies were ~81.1%±6.1% (intermittent voltage application mode) and 75.2%±4.6% (continuous voltage application mode) under 0.5 V supply voltage, which were ~21.5% and 15.6% greater than those in the control system without voltage applied, respectively. The removal efficiency is mainly attributed to the anaerobic chamber. High-throughput sequencing combined with catabolic pathway analysis indicated that electrical stimulation selectively enriched Megasphaera, Janthinobacterium, Pseudomonas, Emticicia, Zoogloea, Cloacibacterium and Cetobacterium, which are capable of denitrification, dechlorination and benzene ring cleavage, respectively. This study shows that under the intermittent voltage application mode, AO-UBERs are highly promising for treating antibiotic-contaminated wastewater.

Keywords Electrical stimulation      Biodegradation      Microbial community      Chloramphenicol     
Corresponding Author(s): Nuerla Ailijiang   
Issue Date: 31 May 2022
 Cite this article:   
Yifan Liu,Qiongfang Zhang,Ainiwaer Sidike, et al. The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure[J]. Front. Environ. Sci. Eng., 2022, 16(11): 141.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1576-x
https://academic.hep.com.cn/fese/EN/Y2022/V16/I11/141
Fig.1  (A) Schematic diagram of AO-UBER. (B) AO-UBER photos. (1, CFNs; 2, titanium mesh (screen mesh size of 50 mm × 50 mm); 3, titanium mesh (screen mesh size of 2 mm × 2 mm); 4, titanium plate; 5, GACs; and 6, sampling port); (R1: intermittent voltage applied; R2: continuous voltage applied; and R3: control reactor without voltage applied).
Fig.2  (A) CAP removal performances of AO-UBERs during the long-term operation and (B) COD removal performances of AO-UBERs during stage 5.
Fig.3  CAP removal performance in the anaerobic zones (A) and aerobic zones (B) of AO-UBERs under different HRTs and applied voltages.
Sample ID ACEa) Chao1a) Simpsonb) Shannonb) log10 (copies/ one CFN or g GAC)
IAn 692.9 700.3 0.94 5.7 10.11
CAn 686.4 699.2 0.95 5.9 10.05
ZAn 697.6 698.2 0.92 5.3 10.02
IAe 682.6 691.3 0.94 5.7 9.45
CAe 709.9 709.6 0.95 5.8 9.50
ZAe 705.3 705.4 0.94 6.1 9.63
RAn 661.0 671.2 0.89 4.9 /
RAe 692.2 698.5 0.96 6.1 /
Tab.1  Microbial community diversity, abundance index and Q-PCR quantification of microbial samples
Fig.4  Relative abundance of bacterial community composition in (A) eight samples at the phylum level and (B) the heatmap of the most abundant genera. Only the most populous 41 genera were used to build the heat map, and the color intensity showed the relative abundance of the genera in a sample. RAn and RAe were from anaerobic and aerobic seed sludges. IAn, CAn and ZAn biofilm samples were from the anaerobic zones of R1, R2 and R3; IAe, CAe and ZAe biofilm samples from the aerobic zones of R1, R2 and R3.
Fig.5  Metabolic pathway of chloramphenicol and its metabolites in the reactor.
1 N Ailijiang, J Chang, P Liang, P Li, Q Wu, X Zhang, X Huang. (2016). Electrical stimulation on biodegradation of phenol and responses of microbial communities in conductive carriers supported biofilms of the bioelectrochemical reactor. Bioresource Technology, 201 : 1– 7
https://doi.org/10.1016/j.biortech.2015.11.026
2 N Ailijiang, J L Chang, P Liang, X Y Zhang, X Huang. (2021a). Electrical stimulation on biodegradation of phenolics in a novel anaerobic–aerobic-coupled upflow bioelectrochemical reactor. Chemical Engineering Journal, 421 : 127840
https://doi.org/10.1016/j.cej.2020.127840
3 N Ailijiang J L Chang P Liang X Y Zhang X (2021b) Huang. Impact of electrical stimulation modes on the degradation of refractory phenolics and the analysis of microbial communities in an anaerobic-aerobic-coupled upflow bioelectrochemical reactor. Bioresource Technology, 320(Pt B): 124371
4 C Cao, J Huang, C N Yan. (2022). Unveiling changes of microbial community involved in N and P removal in constructed wetlands with exposing to silver nanoparticles. Journal of Hazardous Materials, 432 : 128642
https://doi.org/10.1016/j.jhazmat.2022.128642
5 Z Cao, M Zhang, J Zhang, H Zhang. (2016). Impact of continuous and intermittent supply of electric assistance on high-strength 2,4-dichlorophenol (2,4-DCP) degradation in electro-microbial system. Bioresource Technology, 212 : 138– 143
https://doi.org/10.1016/j.biortech.2016.03.165
6 A Cébron, T Beguiristain, J Bongoua-Devisme, J Denonfoux, P Faure, C Lorgeoux, S Ouvrard, N Parisot, P Peyret, C Leyval. (2015). Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environmental Science and Pollution Research International, 22( 18): 13724– 13738
https://doi.org/10.1007/s11356-015-4117-3
7 Y J Cho, Y J Jung, S G Hong, O S Kim. (2017). Complete genome sequence of a psychrotolerant denitrifying bacterium, Janthinobacterium svalbardensis PAMC 27463. Genome Announcements, 5( 46): e01178– 17
https://doi.org/10.1128/genomeA.01178-17
8 S J Gregory, C W N Anderson, M Camps-Arbestain, P J Biggs, A R D Ganley, J M O’Sullivan, M T McManus. (2015). Biochar in co-contaminated soil manipulates arsenic solubility and microbiological community structure, and promotes organochlorine degradation. PLoS One, 10( 4): e0125393
https://doi.org/10.1371/journal.pone.0125393
9 E A Grice, H H Kong, S Conlan, C B Deming, J Davis, A C Young, G G Bouffard, R W Blakesley, P R Murray, E D Green, M L Turner, J A Segre. (2009). Topographical and temporal diversity of the human skin microbiome. Science, 324( 5931): 1190– 1192
https://doi.org/10.1126/science.1171700
10 H Hassan, B Jin, E Donner, S Vasileiadis, C Saint, S Dai. (2018). Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: Microbial consortia could make differences. Chemical Engineering Journal, 332 : 647– 657
https://doi.org/10.1016/j.cej.2017.09.114
11 X Jiang, J Shen, Y Han, S Lou, W Han, X Sun, J Li, Y Mu, L Wang. (2016). Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: A comprehensive study. Water Research, 88 : 257– 265
https://doi.org/10.1016/j.watres.2015.10.023
12 X B Jiang, D Chen, Y Mu, D Pant, H Y Cheng, J Y Shen. (2021). Electricity-stimulated anaerobic system (ESAS) for enhanced energy recovery and pollutant removal: A critical review. Chemical Engineering Journal, 411 : 128548
https://doi.org/10.1016/j.cej.2021.128548
13 B C Kim, C Moon, Y Choi, K Nam. (2022). Long-term stability of high-n-caproate specificity-ensuring anaerobic membrane bioreactors: controlling microbial competitions through feeding strategies. ACS Sustainable Chemistry & Engineering, 10( 4): 1595– 1604
https://doi.org/10.1021/acssuschemeng.1c07259
14 B Liang, H Y Cheng, D Y Kong, S H Gao, F Sun, D Cui, F Y Kong, A J Zhou, W Z Liu, N Q Ren, W M Wu, A J Wang, D J Lee. (2013). Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode. Environmental Science & Technology, 47( 10): 5353– 5361
15 B Liang, D Kong, J Ma, C Wen, T Yuan, D J Lee, J Zhou, A Wang. (2016). Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification. Water Research, 100 : 157– 168
https://doi.org/10.1016/j.watres.2016.05.028
16 B Liang, J Ma, W Cai, Z Li, W Liu, M Qi, Y Zhao, X Ma, Y Deng, A Wang, J Zhou. (2019). Response of chloramphenicol-reducing biocathode resistome to continuous electrical stimulation. Water Research, 148 : 398– 406
https://doi.org/10.1016/j.watres.2018.10.073
17 H Z Lin L A Zhu X Y Xu L L Zang Y Kong( 2011). Reductive transformation and dechlorination of chloronitrobenzenes in UASB reactor enhanced with zero-valent iron addition. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 86( 2): 290− 298
18 B E Logan, K Rabaey. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337( 6095): 686– 690
https://doi.org/10.1126/science.1217412
19 B E Logan, R Rossi, A Ragab, P E Saikaly. (2019). Electroactive microorganisms in bioelectrochemical systems. Nature Reviews. Microbiology, 17( 5): 307– 319
https://doi.org/10.1038/s41579-019-0173-x
20 M Marounek, K Fliegrova, S Bartos. (1989). Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Applied and Environmental Microbiology, 55( 6): 1570– 1573
https://doi.org/10.1128/aem.55.6.1570-1573.1989
21 M V Monferrán, J R Echenique, D A Wunderlin. (2005). Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere, 61( 1): 98– 106
https://doi.org/10.1016/j.chemosphere.2005.03.003
22 T Nagao, A Kumabe, F Komatsu, H Yagi, H Suzuki, T Ohshiro. (2017). Gene identification and characterization of fucoidan deacetylase for potential application to fucoidan degradation and diversification. Journal of Bioscience and Bioengineering, 124( 3): 277– 282
https://doi.org/10.1016/j.jbiosc.2017.04.002
23 D T Ta, C Y Lin, T M Ta, C Y Chu. (2020). Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time. Bioresource Technology, 317 : 123986
https://doi.org/10.1016/j.biortech.2020.123986
24 H Tang, J Q Wang, S Zhang, H W Pang, X X Wang, Z S Chen, M Li, G Song, M Q Qiu, S J Yu. (2021). Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges. Journal of Cleaner Production, 319 : 128641
https://doi.org/10.1016/j.jclepro.2021.128641
25 S Wang, M Xu, B Jin, U J Wünsch, Y Su, Y Zhang. (2022). Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water. Water Research, 211 : 118046
https://doi.org/10.1016/j.watres.2022.118046
26 Q Wu, J L Chang, X Yan, N Ailijiang, Q X Fan, S H Wang, P Liang, X Y Zhang, X Huang. (2016). Electrical stimulation enhanced denitrification of nitrite-dependent anaerobic methane-oxidizing bacteria. Biochemical Engineering Journal, 106 : 125– 128
https://doi.org/10.1016/j.bej.2015.11.014
27 R Xiong X Wei W Jiang Z Lu Q Tang Y Chen Z Liu J Kang Y Ye D (2022) Liu. Photodegradation of chloramphenicol in micro-polluted water using a circulatory thin-layer inclined plate reactor. Chemosphere, 291(Pt 2): 132883
pmid: 34780746
28 Y Xue, Z H Wang, R Bush, F Yang, R X Yuan, J S Liu, N Smith, M H Huang, R Dharmarajan, P Annamalai. (2021). Resistance of alkyl chloride on chloramphenicol to oxidative degradation by sulfate radicals: Kinetics and mechanism. Chemical Engineering Journal, 415 : 129041
https://doi.org/10.1016/j.cej.2021.129041
29 Y J Yang, L J Xu, J L Wang. (2021). An enhancement of singlet oxygen generation from dissolved oxygen activated by three-dimensional graphene wrapped nZVI-doped amorphous Al species for chloramphenicol removal in the Fenton-like system. Chemical Engineering Journal, 425 : 131497
https://doi.org/10.1016/j.cej.2021.131497
30 J Zhang, Y Zhang, X Quan, S Chen. (2013). Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC)−anaerobic reactor. Water Research, 47( 15): 5719– 5728
https://doi.org/10.1016/j.watres.2013.06.056
31 J L Zhang, J Hu, T T Zhang, Z P Cao. (2019). Improvement of 2,4-dichlorophenol degradation and analysis of functional bacteria in anaerobic microbial system enhanced with electric assistance. Bioresource Technology Reports, 5 : 80– 85
https://doi.org/10.1016/j.biteb.2018.08.010
32 X Q Zhang, H J Feng, D Shan, J Shentu, M Z Wang, J Yin, D S Shen, B C Huang, Y C Ding. (2014). The effect of electricity on 2-fluoroaniline removal in a bioelectrochemically assisted microbial system (BEAMS). Electrochimica Acta, 135 : 439– 446
https://doi.org/10.1016/j.electacta.2014.05.033
33 R Zhao J Feng J Huang X Li B Li ( 2021). Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors. Science of the Total Environment, 755(Pt 2): 142632
pmid: 33045611
34 M Q Zheng, C Y Xu, D Zhong, Y X Han, Z W Zhang, H Zhu, H J Han. (2019). Synergistic degradation on aromatic cyclic organics of coal pyrolysis wastewater by lignite activated coke-active sludge process. Chemical Engineering Journal, 364 : 410– 419
https://doi.org/10.1016/j.cej.2019.01.121
[1] Yinghui Mo, Liping Sun, Lu Zhang, Jianxin Li, Jixiang Li, Xiuru Chu, Liang Wang. Electrocatalytic biofilm reactor for effective and energy-efficient azo dye degradation: the synergistic effect of MnOx/Ti flow-through anode and biofilm on the cathode[J]. Front. Environ. Sci. Eng., 2023, 17(4): 49-.
[2] Ping Zhu, Shuangshuang Gong, Mingqiang Deng, Bin Xia, Yazheng Yang, Jiakang Tang, Guangren Qian, Fang Yu, Ashantha Goonetilleke, Xiaowei Li. Biodegradation of waste refrigerator polyurethane by mealworms[J]. Front. Environ. Sci. Eng., 2023, 17(3): 38-.
[3] Ying Xue, Keke Xiao, Xiang Wu, Mei Sun, Yifei Liu, Bei Ou, Jiakuan Yang. Insights into the changes of amino acids, microbial community, and enzymatic activities related with the nutrient quality of product during the composting of food waste[J]. Front. Environ. Sci. Eng., 2023, 17(3): 35-.
[4] Cheng Hou, Xinbai Jiang, Na Li, Zhenhua Zhang, Qian Zhang, Jinyou Shen, Xiaodong Liu. Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism[J]. Front. Environ. Sci. Eng., 2022, 16(8): 98-.
[5] Qiong Guo, Zhichao Yang, Bingliang Zhang, Ming Hua, Changhong Liu, Bingcai Pan. Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi[J]. Front. Environ. Sci. Eng., 2022, 16(6): 71-.
[6] Zecong Yu, Keke Xiao, Yuwei Zhu, Mei Sun, Sha Liang, Jingping Hu, Huijie Hou, Bingchuan Liu, Jiakuan Yang. Comparison of different valent iron on anaerobic sludge digestion: Focusing on oxidation reduction potential, dissolved organic nitrogen and microbial community[J]. Front. Environ. Sci. Eng., 2022, 16(6): 80-.
[7] Yi Xiong, Boya Wang, Chao Zhou, Huan Chen, Gang Chen, Youneng Tang. Determination of growth kinetics of microorganisms linked with 1,4-dioxane degradation in a consortium based on two improved methods[J]. Front. Environ. Sci. Eng., 2022, 16(5): 62-.
[8] Yanan Bai, Xiuning Wang, Fang Zhang, Raymond Jianxiong Zeng. Acid Orange 7 degradation using methane as the sole carbon source and electron donor[J]. Front. Environ. Sci. Eng., 2022, 16(3): 34-.
[9] Zaishan Wei, Meiru Tang, Zhenshan Huang, Huaiyong Jiao. Mercury removal from flue gas using nitrate as an electron acceptor in a membrane biofilm reactor[J]. Front. Environ. Sci. Eng., 2022, 16(2): 20-.
[10] Shilpa, Nitai Basak, Sumer Singh Meena. Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective[J]. Front. Environ. Sci. Eng., 2022, 16(12): 161-.
[11] Qinghui Sun, Juan Li, Chen Wang, Anqi Chen, Yanli You, Shupeng Yang, Huihui Liu, Guibin Jiang, Yongning Wu, Yanshen Li. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment[J]. Front. Environ. Sci. Eng., 2022, 16(1): 1-.
[12] Shuhan Li, Xin Zhou, Xiwei Cao, Jiabo Chen. Insights into simultaneous anammox and denitrification system with short-term pyridine exposure: Process capability, inhibition kinetics and metabolic pathways[J]. Front. Environ. Sci. Eng., 2021, 15(6): 139-.
[13] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[14] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[15] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed