Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (1) : 12    https://doi.org/10.1007/s11783-023-1612-5
VIEWS
Understanding and addressing the environmental risk of microplastics
Han Qu1, Hongting Diao1, Jiajun Han3, Bin Wang2(), Gang Yu2
1. College of Pharmacy, The University of Arizona, Tucson, AZ 85724, USA
2. Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
3. Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
 Download: PDF(3902 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Over the past decades, the plastic production has been dramatically increased. Indeed, a category of small plastic particles mainly with the shapes of fragments, fibers, or spheres, called microplastics (particles smaller than 5 mm) and nanoplastics (particles smaller than 1 μm) have attracted particular attention. Because of its wide distribution in the environment and potential adverse effects to animal and human, microplastic pollution has been reported as a serious environment problem receiving increased attention in recent years. As one of the commonly detected emerging contaminants in the environment, recent evidence indicates that the concentration of microplastics show an increasing trend, for the reason that up to 12.7 million metric tons of plastic litter is released into aquatic environment from land-based sources each year. Furthermore, microplastic exposure levels of model organisms in laboratory studies are usually several orders of magnitude higher than those found in environment, and the microplastics exposure conditions are also different with those observed in the environment. Additionally, the detection of microplastics in feces indicates that they can be excreted out of the bodies of animal and human. Hence, great uncertainties might exist in microplastics exposure and health risk assessment based on current studies, which might be exaggerated. Policies reduce microplastic emission sources and hence minimize their environmental risks are determined. To promote the above policies, we must first overcome the technical obstacles of detecting microplastics in various samples.

Keywords Emerging contaminants      Microplastics      Environment risk      Health effect     
Corresponding Author(s): Bin Wang   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 22 August 2022
 Cite this article:   
Han Qu,Hongting Diao,Jiajun Han, et al. Understanding and addressing the environmental risk of microplastics[J]. Front. Environ. Sci. Eng., 2023, 17(1): 12.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1612-5
https://academic.hep.com.cn/fese/EN/Y2023/V17/I1/12
Fig.1  Potential environmental exposure pathways and effects of microplastics.
Fig.2  Do microplastics cause serious human health?
1 R Akhbarizadeh , F Moore , B Keshavarzi . (2018). Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environmental Pollution, 232 : 154– 163
https://doi.org/10.1016/j.envpol.2017.09.028 pmid: 28943346
2 E Besseling , P Redondo-Hasselerharm , E M Foekema , A A Koelmans . (2019). Quantifying ecological risks of aquatic micro- and nanoplastic. Critical Reviews in Environmental Science and Technology, 49( 1): 32– 80
https://doi.org/10.1080/10643389.2018.1531688
3 K D Cox , G A Covernton , H L Davies , J F Dower , F Juanes , S E Dudas . (2019). Human consumption of microplastics. Environmental Science & Technology, 53( 12): 7068– 7074
https://doi.org/10.1021/acs.est.9b01517 pmid: 31184127
4 J Duan , N Bolan , Y Li , S Ding , T Atugoda , M Vithanage , B Sarkar , D C W Tsang , M B Kirkham . (2021). Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Research, 196 : 117011
https://doi.org/10.1016/j.watres.2021.117011 pmid: 33743325
5 N Evangeliou , H Grythe , Z Klimont , C Heyes , S Eckhardt , S Lopez-Aparicio , A Stohl . (2020). Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 11( 1): 3381
https://doi.org/10.1038/s41467-020-17201-9 pmid: 32665541
6 R C Hale ( 2018). Are the risks from microplastics truly trivial? Environmental Science & Technology, 52( 3): 931
https://doi.org/10.1021/acs.est.7b06615 pmid: 29373012
7 D Huang , H Chen , M Shen , J Tao , S Chen , L Yin , W Zhou , X Wang , R Xiao , R Li . (2022). Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. Journal of Hazardous Materials, 438 : 129515
https://doi.org/10.1016/j.jhazmat.2022.129515 pmid: 35816806
8 S Khan , M Naushad , M Govarthanan , J Iqbal , S M Alfadul . (2022). Emerging contaminants of high concern for the environment: current trends and future research. Environmental Research, 207 : 112609
https://doi.org/10.1016/j.envres.2021.112609 pmid: 34968428
9 S Liu , E Shang , J Liu , Y Wang , N Bolan , M B Kirklam , Y Li . (2022). What have we known so far for fluorescence staining and quantification of microplastics: a tutorial review. Frontiers of Environmental Science & Engineering, 16( 1): 8
https://doi.org/10.1007/s11783-021-1442-2
10 L Lu , T Luo , Y Zhao , C Cai , Z Fu , Y Jin . (2019). Interaction between microplastics and microorganism as well as gut microbiota: a consideration on environmental animal and human health. Science of the Total Environment, 667 : 94– 100
https://doi.org/10.1016/j.scitotenv.2019.02.380 pmid: 30826685
11 B A Maher , I A M Ahmed , V Karloukovski , D A MacLaren , P G Foulds , D Allsop , D M Mann , R Torres-Jardón , L Calderon-Garciduenas . (2016). Magnetite pollution nanoparticles in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 113( 39): 10797– 10801
https://doi.org/10.1073/pnas.1605941113 pmid: 27601646
12 N H Mohamed Nor , M Kooi , N J Diepens , A A Koelmans . (2021). Lifetime accumulation of microplastic in children and adults. Environmental Science & Technology, 55( 8): 5084– 5096
https://doi.org/10.1021/acs.est.0c07384 pmid: 33724830
13 N N Phuong, A Zalouk-Vergnoux, L Poirier, A Kamari, A Châtel, C Mouneyrac, F Lagarde ( 2016). Is there any consistency between the microplastics found in the field and those used in laboratory experiments? Environmental Pollution, 211: 111– 123
https://doi.org/10.1016/j.envpol.2015.12.035 pmid: 26745396
14 H Qu , R Ma , H Barrett , B Wang , J Han , F Wang , P Chen , W Wang , G Peng , G Yu . (2020). How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis). Environment International, 136 : 105480
https://doi.org/10.1016/j.envint.2020.105480 pmid: 31962271
15 H Qu , R Ma , B Wang , J Yang , L Duan , G Yu . (2019). Enantiospecific toxicity, distribution and bioaccumulation of chiral antidepressant venlafaxine and its metabolite in loach (Misgurnus anguillicaudatus) co-exposed to microplastic and the drugs. Journal of Hazardous Materials, 370 : 203– 211
https://doi.org/10.1016/j.jhazmat.2018.04.041 pmid: 29706475
16 H Qu , R Ma , B Wang , Y Zhang , L Yin , G Yu , S Deng , J Huang , Y Wang . (2018). Effects of microplastics on the uptake, distribution and biotransformation of chiral antidepressant venlafaxine in aquatic ecosystem. Journal of Hazardous Materials, 359 : 104– 112
https://doi.org/10.1016/j.jhazmat.2018.07.016 pmid: 30014905
17 S Rist , B Carney Almroth , N B Hartmann , T M Karlsson . (2018). A critical perspective on early communications concerning human health aspects of microplastics. Science of the Total Environment, 626 : 720– 726
https://doi.org/10.1016/j.scitotenv.2018.01.092 pmid: 29396337
18 SAPEA (2019). A scientific Perspective on Microplastics in Nature and Society. Science Advice for Policy by European Academies. Berlin: Oceanrep Geomar
19 A Treyer , M Pujato , X Pechuan , A Müsch . (2016). Iterative sorting of apical and basolateral cargo in Madin-Darby canine kidney cells. Molecular Biology of the Cell, 27( 14): 2259– 2271
https://doi.org/10.1091/mbc.E16-02-0096 pmid: 27226480
20 X Wang , N Bolan , D C W Tsang , B Sarkar , L Bradney , Y Li . (2021). A review of microplastics aggregation in aquatic environment: influence factors, analytical methods, and environmental implications. Journal of Hazardous Materials, 402 : 123496
https://doi.org/10.1016/j.jhazmat.2020.123496 pmid: 32717542
21 X Wang , Y Li , J Zhao , X Xia , X Shi , J Duan , W Zhang . (2020). UV-induced aggregation of polystyrene nanoplastics: effects of radicals, surface functional groups and electrolyte. Environmental Science. Nano, 7( 12): 3914– 3926
https://doi.org/10.1039/D0EN00518E
22 S L Wright, F J Kelly ( 2017). Plastic and human health: a micro issue? Environmental Science & Technology, 51( 12): 6634– 6647
https://doi.org/10.1021/acs.est.7b00423 pmid: 28531345
23 D Yang , H Shi , L Li , J Li , K Jabeen , P Kolandhasamy . (2015). Microplastic pollution in table salts from China. Environmental Science & Technology, 49( 22): 13622– 13627
https://doi.org/10.1021/acs.est.5b03163 pmid: 26486565
24 C Q Y Yong , S Valiyaveettil , B L Tang . (2020). Toxicity of microplastics and nanoplastics in mammalian systems. International Journal of Environmental Research and Public Health, 17( 5): 1509
https://doi.org/10.3390/ijerph17051509 pmid: 32111046
25 J Yuan , J Ma , Y Sun , T Zhou , Y Zhao , F Yu . (2020). Microbial degradation and other environmental aspects of microplastics/plastics. Science of the Total Environment, 715 : 136968
https://doi.org/10.1016/j.scitotenv.2020.136968 pmid: 32014782
26 W Yuan , Y Zhou , X Liu , J Wang . (2019). New perspective on the nanoplastics disrupting the reproduction of an endangered fern in artificial freshwater. Environmental Science & Technology, 53( 21): 12715– 12724
27 J Zhang , L Wang , T Leonardo , K Kurunthachalam . (2021). Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environmental Science & Technology Letters, 8( 11): 989– 994
https://doi.org/10.1021/acs.estlett.1c00559
28 S Zhang , H Gao , G Bao . (2015). Physical principles of nanoparticle cellular endocytosis. ACS Nano, 9( 9): 8655– 8671
https://doi.org/10.1021/acsnano.5b03184 pmid: 26256227
29 W Zhang , Q Wang , H Chen . (2022). Challenges in characterization of nanoplastics in the environment. Frontiers of Environmental Science & Engineering, 16( 1): 11
https://doi.org/10.1007/s11783-021-1445-z
[1] Weiyi Liu, Ting Pan, Hang Liu, Mengyun Jiang, Tingting Zhang. Adsorption behavior of imidacloprid pesticide on polar microplastics under environmental conditions: critical role of photo-aging[J]. Front. Environ. Sci. Eng., 2023, 17(4): 41-.
[2] Wenwen Gong, Yu Xing, Lihua Han, Anxiang Lu, Han Qu, Li Xu. Occurrence and distribution of micro- and mesoplastics in the high-latitude nature reserve, northern China[J]. Front. Environ. Sci. Eng., 2022, 16(9): 113-.
[3] Jie Wu, Jian Lu, Jun Wu. Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(8): 104-.
[4] Xue Bai, Chang Li, Lingyu Ma, Pei Xin, Fengjie Li, Zhenjia Xu. Quantitative analysis of microplastics in coastal tidal-flat reclamation in Dongtai, China[J]. Front. Environ. Sci. Eng., 2022, 16(8): 107-.
[5] Ying Cai, Jun Wu, Jian Lu, Jianhua Wang, Cui Zhang. Fate of microplastics in a coastal wastewater treatment plant: Microfibers could partially break through the integrated membrane system[J]. Front. Environ. Sci. Eng., 2022, 16(7): 96-.
[6] Bin Wang, Gang Yu. Emerging contaminant control: From science to action[J]. Front. Environ. Sci. Eng., 2022, 16(6): 81-.
[7] Jinkai Xue, Seyed Hesam-Aldin Samaei, Jianfei Chen, Ariana Doucet, Kelvin Tsun Wai Ng. What have we known so far about microplastics in drinking water treatment? A timely review[J]. Front. Environ. Sci. Eng., 2022, 16(5): 58-.
[8] Yujia Huang, Ting Zhang, Jianing Lou, Peng Wang, Lei Huang. Effective interventions on health effects of Chinese rural elderly under heat exposure[J]. Front. Environ. Sci. Eng., 2022, 16(5): 66-.
[9] Yu Xia, Xuyang Zhang, Miao Zhang, Liming Chen, Xiaotong Tang, Yuhong Sun, Xiang Li. Plastic materials and water sources actively select and shape wastewater plastispheres over time[J]. Front. Environ. Sci. Eng., 2022, 16(11): 145-.
[10] Sen Dong, Peng Gao, Benhang Li, Li Feng, Yongze Liu, Ziwen Du, Liqiu Zhang. Occurrence and migration of microplastics and plasticizers in different wastewater and sludge treatment units in municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2022, 16(11): 142-.
[11] Yanhui Dai, Jian Zhao, Chunxiao Sun, Diying Li, Xia Liu, Zhenyu Wang, Tongtao Yue, Baoshan Xing. Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment[J]. Front. Environ. Sci. Eng., 2022, 16(10): 136-.
[12] Qinghui Sun, Juan Li, Chen Wang, Anqi Chen, Yanli You, Shupeng Yang, Huihui Liu, Guibin Jiang, Yongning Wu, Yanshen Li. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment[J]. Front. Environ. Sci. Eng., 2022, 16(1): 1-.
[13] Zuyin Chen, Lihua Li, Lichong Hao, Yu Hong, Wencai Wang. Hormesis-like growth and photosynthetic physiology of marine diatom Phaeodactylum tricornutum Bohlin exposed to polystyrene microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(1): 2-.
[14] Jian Lu, Jun Wu, Jianhua Wang. Metagenomic analysis on resistance genes in water and microplastics from a mariculture system[J]. Front. Environ. Sci. Eng., 2022, 16(1): 4-.
[15] Xianying Ma, Xinhui Zhou, Mengjie Zhao, Wenzhuo Deng, Yanxiao Cao, Junfeng Wu, Jingcheng Zhou. Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions[J]. Front. Environ. Sci. Eng., 2022, 16(1): 3-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed