Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (2) : 24    https://doi.org/10.1007/s11783-023-1624-1
REVIEW ARTICLE
Reducing environmental impacts through socioeconomic transitions: critical review and prospects
Sai Liang(), Qiumeng Zhong
Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
 Download: PDF(14332 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Reducing environmental impacts through socioeconomic structural transitions.

● Simulation of looping the dynamic material cycle should be concerned.

● Transboundary effects of socioeconomic transitions need to be analyzed.

● Facilitating interregional cooperation and synergetic control mechanisms.

Rapid socioeconomic development has caused numerous environmental impacts. Human production and consumption activities are the underlying drivers of resource uses, environmental emissions, and associated environmental impacts (e.g., ecosystem quality and human health). Reducing environmental impacts requires an understanding of the complex interactions between socioeconomic system and environmental system. Existing studies have explored the relationships among human society, economic system, and environmental system. However, it is unclear about the research progress in the effects of socioeconomic activities on environmental impacts and the potential directions of future research. This critical review finds that existing studies have identified critical regions, sectors, and transmission pathways for resource uses, environmental emissions, and environmental impacts from supply chain perspectives. Moreover, scholars have characterized the impacts of socioeconomic transitions on resource uses and environmental emissions. However, existing studies overlook the dynamic nature of the interconnections among human society, economic system, and environmental system. In addition, the effects of socioeconomic structural transitions on environmental impacts remain unknown. This review proposes four prospects and possible solutions that will contribute to a better understanding of the complex interactions among human society, economic system, and environmental system. They can help identify more effective solutions to reduce environmental impacts through socioeconomic transitions.

Keywords Environmental pressures      Environmental impacts      Nexus      Supply chains      Trade      Coupled systems     
Corresponding Author(s): Sai Liang   
Issue Date: 17 October 2022
 Cite this article:   
Sai Liang,Qiumeng Zhong. Reducing environmental impacts through socioeconomic transitions: critical review and prospects[J]. Front. Environ. Sci. Eng., 2023, 17(2): 24.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1624-1
https://academic.hep.com.cn/fese/EN/Y2023/V17/I2/24
Fig.1  Relationships among human society, economic system, and environmental system.
Topics Keywords
Socioeconomic process & environmental pressure “socioeconomic” and “environmental pressure”;
“socioeconomic” and “resource use”;
“socioeconomic” and “environmental emission”.
Socioeconomic process & nexus “socioeconomic” and “nexus”;
Socioeconomic process & environmental impact “socioeconomic” and “environmental impact”;
Human intervention & environmental impact “environmental impact” and “human intervention”;
“environmental impact” and “anthropogenic impact”.
Tab.1  Keywords used in literature search
Fig.2  Conceptual framework of socioeconomic processes driving resource uses and environmental emissions.
Categories Nexus Regions Time Methods References
Energy-related Energy-water China 1990–2014 MRIO-SDAa Duan and Chen, 2020
Energy-carbon Europe 1995–2010 LMDIb Moutinho et al., 2015
Energy-carbon-water Provinces-China 2000–2016 LMDIb Li et al., 2021a
Energy-carbon-water-land Provinces-China 2005–2013 LMDIb Zhao and Chen, 2014
Food-related Food-water USA 1995–2010 MRIO-SDAa Avelino and Dall’erba, 2020
Food-carbon Guangdong-China 1993–2013 LMDIb Zhen et al., 2017
Food-water-land Provinces-China 2002–2012 MRIO-SDAa Cai et al., 2020
Food-energy-water China 2012–2017 IO-SDAc Lee et al., 2021
Air pollutants PM, CO2 Provinces-China 2007–2012 MRIO-SDAa Shao et al., 2020
SO2, NOx China 2003–2014 LMDIb Jia et al., 2018
SO2, NOx, PM, CO2 China 2014 LMDIb Qian et al., 2021
Tab.2  Studies related to the impact of socioeconomic transitions on the nexus
Fig.3  Processes from socioeconomic activities to environmental impacts.
Environmental impacts Detailed impacts Models Time Regions Key driver-receptor relationships References
Resource depletion Fossil fuel scarcity MRIOa 2012 China Central and Northwest-Central Coast Wang et al., 2020
Land & mineral scarcity MRIOa 2007 World Developed regions-Developing regions Font Vivanco et al., 2017
Environmental quality PM2.5 concentration InMAPb, MRIOa 2003–2015 USA Non-Hispanic white-Black and Hispanic Tessum et al., 2019
Atmospheric Pb concentration CanMETOPc, MRIOa 2012 China Eastern and southern-Central and western Wang et al., 2021b
Human health IQ decrement, Fatal heart attack GEOS-Chem, MRIOa 2010 China USA Western Europe, and Japan-China Li et al., 2020b
Premature death GAINSd, MRIOa 2010 India Higher income groups-Lower income groups Rao et al., 2021
Ecosystem quality Biodiversity loss GLOBIOe, MRIOa 2007 World Developed economies-Other economies Wilting et al., 2017
Radiative forcing OSCAR, MRIOa 2007–2012 China Beijing-Tianjin, East Coast, and South Coast-less developed regions Du et al., 2021
Resource, economic, and labor loss Economic loss CMAQf; WRF-ARWg; MRIOa 2010 Asia Wealthy consumption countries-low income producers Nansai et al., 2020
Tab.3  Selected studies on critical socioeconomic drivers of environmental impacts
Fig.4  Natural and anthropogenic factors affecting environmental impacts.
Fig.5  Prospects for future research (The numbers in the circles represent four prospects: ① Simulation of looping the dynamic material cycle, ② Socioeconomic structural transitions influencing environmental impacts, ③ Transboundary effects of socioeconomic transitions, and ④ Interregional cooperation mechanisms for synergetic control of multiple environmental impacts).
  
1 Ackerman F, Decanio S J, Howarth R B, Sheeran K (2009). Limitations of integrated assessment models of climate change. Climatic Change, 95(3–4): 297–315
2 V Acuña, F Bregoli, C Font, D Barceló, L Corominas, A Ginebreda, M Petrovic, I Rodríguez-Roda, S Sabater, R Marcé. (2020). Management actions to mitigate the occurrence of pharmaceuticals in river networks in a global change context. Environment International, 143: 105993
https://doi.org/10.1016/j.envint.2020.105993 pmid: 32738769
3 T R Albrecht, A Crootof, C A Scott. (2018). The water-energy-food nexus: a systematic review of methods for nexus assessment. Environmental Research Letters, 13(4): 043002
https://doi.org/10.1088/1748-9326/aaa9c6
4 E B Barbier, J P Hochard. (2018). Land degradation and poverty. Nature Sustainability, 1(11): 623–631
https://doi.org/10.1038/s41893-018-0155-4
5 B Beckage, L J Gross, K Lacasse, E Carr, S S Metcalf, J M Winter, P D Howe, N Fefferman, T Franck, A Zia, A Kinzig, F M Hoffman. (2018). Linking models of human behaviour and climate alters projected climate change. Nature Climate Change, 8(1): 79–84
https://doi.org/10.1038/s41558-017-0031-7
6 R Bleischwitz, C Spataru, S D Vandeveer, M Obersteiner, E Van Der Voet, C Johnson, P Andrews-Speed, T Boersma, H Hoff, D P Van Vuuren. (2018). Resource nexus perspectives towards the United Nations sustainable development goals. Nature Sustainability, 1(12): 737–743
https://doi.org/10.1038/s41893-018-0173-2
7 X Bo, M Jia, X Xue, L Tang, Z Mi, S Wang, W Cui, X Chang, J Ruan, G Dong, B Zhou, S J Davis. (2021). Effect of strengthened standards on Chinese ironmaking and steelmaking emissions. Nature Sustainability, 4(9): 811–820
https://doi.org/10.1038/s41893-021-00736-0
8 M Brauer, M Amann, R T Burnett, A Cohen, F Dentener, M Ezzati, S B Henderson, M Krzyzanowski, R V Martin, R Van Dingenen, A van Donkelaar, G D Thurston. (2012). Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environmental Science & Technology, 46(2): 652–660
https://doi.org/10.1021/es2025752 pmid: 22148428
9 B A Bryan, R K Runting, T Capon, M P Perring, S C Cunningham, M E Kragt, M Nolan, E A Law, A R Renwick, S Eber, R Christian, K A Wilson. (2016). Designer policy for carbon and biodiversity co-benefits under global change. Nature Climate Change, 6(3): 301–305
https://doi.org/10.1038/nclimate2874
10 B Cai, K Hubacek, K Feng, W Zhang, F Wang, Y Liu. (2020). Tension of agricultural land and water use in China’s trade: tele-connections, hidden drivers and potential solutions. Environmental Science & Technology, 54(9): 5365–5375
https://doi.org/10.1021/acs.est.0c00256 pmid: 32195586
11 J Chang, P Ciais, T Gasser, P Smith, M Herrero, P Havlík, M Obersteiner, B Guenet, D S Goll, W Li, V Naipal, S Peng, C Qiu, H Tian, N Viovy, C Yue, D Zhu. (2021). Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 12(1): 118
https://doi.org/10.1038/s41467-020-20406-7 pmid: 33402687
12 N Chartres, L A Bero, S L Norris. (2019). A review of methods used for hazard identification and risk assessment of environmental hazards. Environment International, 123: 231–239
https://doi.org/10.1016/j.envint.2018.11.060 pmid: 30537638
13 C Chen, Z Jiang, N Li, H Wang, P Wang, Z Zhang, C Zhang, F Ma, Y Huang, X Lu, J Wei, J Qi, W Q Chen. (2022). Advancing UN Comtrade for physical trade flow analysis: review of data quality issues and solutions. Resources, Conservation and Recycling, 186: 106526
https://doi.org/10.1016/j.resconrec.2022.106526
14 J Chen, C Zhou, S Wang, S Li. (2018). Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally. Applied Energy, 230: 94–105
https://doi.org/10.1016/j.apenergy.2018.08.089
15 J M Chen. (2021). Carbon neutrality: toward a sustainable future. The Innovation, 2(3): 100127
https://doi.org/10.1016/j.xinn.2021.100127 pmid: 34557769
16 L Chen, S Liang, M Liu, Y Yi, Z Mi, Y Zhang, Y Li, J Qi, J Meng, X Tang, H Zhang, Y Tong, W Zhang, X Wang, J Shu, Z Yang. (2019). Trans-provincial health impacts of atmospheric mercury emissions in China. Nature Communications, 10(1): 1484
https://doi.org/10.1038/s41467-019-09080-6 pmid: 30940811
17 L Chen, H H Wang, J F Liu, Y D Tong, L B Ou, W Zhang, D Hu, C Chen, X J Wang. (2014). Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions. Atmospheric Chemistry and Physics, 14(18): 10163–10176
https://doi.org/10.5194/acp-14-10163-2014
18 S Chowdhury, A Pozzer, A Haines, K Klingmüller, T Münzel, P Paasonen, A Sharma, C Venkataraman, J Lelieveld. (2022). Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols. Environment International, 159: 107020
https://doi.org/10.1016/j.envint.2021.107020 pmid: 34894485
19 M G Clayden, K A Kidd, B Wyn, J L Kirk, D Muir, N J O’Driscoll. (2013). Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environmental Science & Technology, 47(21): 12047–12053
https://doi.org/10.1021/es4022975 pmid: 24099312
20 A J Cohen, M Brauer, R Burnett, H R Anderson, J Frostad, K Estep, K Balakrishnan, B Brunekreef, L Dandona, R Dandona. et al.. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, 389(10082): 1907–1918
https://doi.org/10.1016/S0140-6736(17)30505-6 pmid: 28408086
21 P D’Odorico, K F Davis, L Rosa, J A Carr, D Chiarelli, J Dell’angelo, J Gephart, G K Macdonald, D A Seekell, S Suweis, M C Rulli. (2018). The global food-energy-water nexus. Reviews of Geophysics, 56(3): 456–531
https://doi.org/10.1029/2017RG000591
22 F Deng, Z Lv, L Qi, X Wang, M Shi, H Liu. (2020). A big data approach to improving the vehicle emission inventory in China. Nature Communications, 11(1): 2801
https://doi.org/10.1038/s41467-020-16579-w pmid: 32493934
23 D Ding, J Xing, S Wang, K Liu, J Hao. (2019a). Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM2.5 and PM2.5-related mortality in China, 2013–2017. Environmental Health Perspectives, 127(6): 067009
https://doi.org/10.1289/EHP4157 pmid: 31232608
24 K J Ding, T Gunda, G M Hornberger. (2019b). Prominent influence of socioeconomic and governance factors on the food-energy-water nexus in sub-Saharan Africa. Earth’s Future, 7(9): 1071–1087
https://doi.org/10.1029/2019EF001184
25 F Dong, B L Yu, Y L Pan. (2019). Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction: evidence from China. Journal of Cleaner Production, 223: 759–771
https://doi.org/10.1016/j.jclepro.2019.03.152
26 H Dong, H Dai, L Dong, T Fujita, Y Geng, Z Klimont, T Inoue, S Bunya, M Fujii, T Masui. (2015). Pursuing air pollutant co-benefits of CO2 mitigation in China: a provincial leveled analysis. Applied Energy, 144: 165–174
https://doi.org/10.1016/j.apenergy.2015.02.020
27 J Du, X Zhang, T Huang, M Li, Z Ga, H Ge, Z Wang, H Gao, J Ma. (2021). Trade-driven black carbon climate forcing and environmental equality under China’s west-east energy transmission. Journal of Cleaner Production, 313: 127896
https://doi.org/10.1016/j.jclepro.2021.127896
28 Y Du, Y Ge, Y Ren, X Fan, K Pan, L Lin, X Wu, Y Min, L A Meyerson, M Heino, S X Chang, X Liu, F Mao, G Yang, C Peng, Z Qu, J Chang, R K Didham. (2018). A global strategy to mitigate the environmental impact of China’s ruminant consumption boom. Nature Communications, 9(1): 4133
https://doi.org/10.1038/s41467-018-06381-0 pmid: 30297840
29 C Duan, B Chen. (2020). Driving factors of water-energy nexus in China. Applied Energy, 257: 113984
https://doi.org/10.1016/j.apenergy.2019.113984
30 A Endo, I Tsurita, K Burnett, P M Orencio. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11: 20–30
https://doi.org/10.1016/j.ejrh.2015.11.010
31 Eurostat. (2001). Economy-wide material-flow accounts and derived indicators: a methodological guide. European Commission, Luxembourg
32 T Avelino A F, S Dall'erba. (2020). What factors drive the changes in water withdrawals in the U.S. Agriculture and food manufacturing industries between 1995 and 2010? Environmental Science & Technology, 54(17): 10421–10434
pmid: 32786598
33 G Fan, Z Liu, X Liu, Y Shi, D Wu, J Guo, S Zhang, X Yang, Y Zhang. (2022). Energy management strategies and multi-objective optimization of a near-zero energy community energy supply system combined with hybrid energy storage. Sustainable Cities and Society, 83: 103970
https://doi.org/10.1016/j.scs.2022.103970
34 Z Feng, A De Marco, A Anav, M Gualtieri, P Sicard, H Tian, F Fornasier, F Tao, A Guo, E Paoletti. (2019). Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environment International, 131: 104966
https://doi.org/10.1016/j.envint.2019.104966 pmid: 31284106
35 P J Ferraro, J N Sanchirico, M D Smith. (2019). Causal inference in coupled human and natural systems. Proceedings of the National Academy of Sciences of the United States of America, 116(12): 5311–5318
https://doi.org/10.1073/pnas.1805563115 pmid: 30126992
36 D Font Vivanco, B Sprecher, E Hertwich. (2017). Scarcity-weighted global land and metal footprints. Ecological Indicators, 83: 323–327
https://doi.org/10.1016/j.ecolind.2017.08.004
37 C L E Franzke, M Czupryna. (2020). Probabilistic assessment and projections of US weather and climate risks and economic damages. Climatic Change, 158(3–4): 503–515
https://doi.org/10.1007/s10584-019-02558-8
38 Nerini F Fuso, J Tomei, L S To, I Bisaga, P Parikh, M Black, A Borrion, C Spataru, Broto V Castán, G Anandarajah, B Milligan, Y Mulugetta. (2018). Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nature Energy, 3(1): 10–15
https://doi.org/10.1038/s41560-017-0036-5
39 J Gao, K Wang, Y Wang, S Liu, C Zhu, J Hao, H Liu, S Hua, H Tian. (2018). Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environmental Pollution, 233: 714–724
https://doi.org/10.1016/j.envpol.2017.10.123 pmid: 29126093
40 G Geng, Y Zheng, Q Zhang, T Xue, H Zhao, D Tong, B Zheng, M Li, F Liu, C Hong, K He, S J Davis. (2021). Drivers of PM2.5 air pollution deaths in China 2002–2017. Nature Geoscience, 14(9): 645–650
https://doi.org/10.1038/s41561-021-00792-3
41 T E Graedel. (2019). Material flow analysis from origin to evolution. Environmental Science & Technology, 53(21): 12188–12196
https://doi.org/10.1021/acs.est.9b03413 pmid: 31549816
42 D Guan, Z Liu, Y Geng, S Lindner, K Hubacek. (2012). The gigatonne gap in China’s carbon dioxide inventories. Nature Climate Change, 2(9): 672–675
https://doi.org/10.1038/nclimate1560
43 S Guan, M Han, X Wu, C Guan, B Zhang. (2019). Exploring energy-water-land nexus in national supply chains: China 2012. Energy, 185: 1225–1234
https://doi.org/10.1016/j.energy.2019.07.130
44 W J Guan, X Y Zheng, K F Chung, N S Zhong. (2016). Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet, 388(10054): 1939–1951
https://doi.org/10.1016/S0140-6736(16)31597-5 pmid: 27751401
45 F Guang, Y He, L Wen, B Sharp. (2019). Energy intensity and its differences across China’s regions: combining econometric and decomposition analysis. Energy, 180: 989–1000
https://doi.org/10.1016/j.energy.2019.05.150
46 Y Guo, P He, T D Searchinger, Y Chen, M Springmann, M Zhou, X Zhang, L Zhang, D L Mauzerall. (2022). Environmental and human health trade-offs in potential Chinese dietary shifts. One Earth, 5(3): 268–282
https://doi.org/10.1016/j.oneear.2022.02.002
47 C He, Z Liu, J Wu, X Pan, Z Fang, J Li, B A Bryan. (2021). Future global urban water scarcity and potential solutions. Nature Communications, 12(1): 4667
https://doi.org/10.1038/s41467-021-25026-3 pmid: 34344898
48 He Y, Weng Q (2018). High Spatial Resolution Remote Sensing: Data, Analysis, and Applications. Boston: CRC Press
49 E Hemmativaghef. (2020). Exposure to lead, mercury, styrene, and toluene and hearing impairment: evaluation of dose-response relationships, regulations, and controls. Journal of Occupational and Environmental Hygiene, 17(11–12): 574–597
https://doi.org/10.1080/15459624.2020.1842428 pmid: 33275083
50 J Hill, A Goodkind, C Tessum, S Thakrar, D Tilman, S Polasky, T Smith, N Hunt, K Mullins, M Clark, J Marshall. (2019). Air-quality-related health damages of maize. Nature Sustainability, 2(5): 397–403
https://doi.org/10.1038/s41893-019-0261-y
51 C Hong, Q Zhang, K He, D Guan, M Li, F Liu, B Zheng. (2017). Variations of China’s emission estimates: response to uncertainties in energy statistics. Atmospheric Chemistry and Physics, 17(2): 1227–1239
https://doi.org/10.5194/acp-17-1227-2017
52 C Hong, Q Zhang, Y Zhang, S J Davis, D Tong, Y Zheng, Z Liu, D Guan, K He, H J Schellnhuber. (2019). Impacts of climate change on future air quality and human health in China. Proceedings of the National Academy of Sciences of the United States of America, 116(35): 17193–17200
https://doi.org/10.1073/pnas.1812881116 pmid: 31405979
53 C Hong, H Zhao, Y Qin, J A Burney, J Pongratz, K Hartung, Y Liu, F C Moore, R B Jackson, Q Zhang, S J Davis. (2022). Land-use emissions embodied in international trade. Science, 376(6593): 597–603
https://doi.org/10.1126/science.abj1572 pmid: 35511968
54 M A J Huijbregts, Z J N Steinmann, P M F Elshout, G Stam, F Verones, M Vieira, M Zijp, A Hollander, R Zelm. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2): 138–147
https://doi.org/10.1007/s11367-016-1246-y
55 H P Huntington, J I Schmidt, P A Loring, E Whitney, S Aggarwal, A G Byrd, S Dev, A D Dotson, D Huang, B Johnson. et al.. (2021). Applying the food–energy–water nexus concept at the local scale. Nature Sustainability, 4(8): 672–679
https://doi.org/10.1038/s41893-021-00719-1
56 J Jia, Z Gong, Z Gu, C Chen, D Xie. (2018). Multi-perspective comparisons and mitigation implications of SO2 and NOx discharges from the industrial sector of China: a decomposition analysis. Environmental Science and Pollution Research International, 25(10): 9600–9614
https://doi.org/10.1007/s11356-018-1306-x pmid: 29359250
57 X Jia, D O’Connor, D Hou, Y Jin, G Li, C Zheng, Y S Ok, D C W Tsang, J Luo. (2019). Groundwater depletion and contamination: spatial distribution of groundwater resources sustainability in China. Science of the Total Environment, 672: 551–562
https://doi.org/10.1016/j.scitotenv.2019.03.457 pmid: 30965267
58 Y Jiang, J Xing, S Wang, X Chang, S Liu, A Shi, B Liu, K Sahu Shovan. (2021). Understand the local and regional contributions on air pollution from the view of human health impacts. Frontiers of Environmental Science & Engineering, 15(5): 88
https://doi.org/10.1007/s11783-020-1382-2
59 A Jordan, H M Patch, C M Grozinger, V Khanna. (2021). Economic dependence and vulnerability of United States agricultural sector on insect-mediated pollination service. Environmental Science & Technology, 55(4): 2243–2253
https://doi.org/10.1021/acs.est.0c04786 pmid: 33496588
60 J Kovanda, T Hak. (2008). Changes in materials use in transition economies. Journal of Industrial Ecology, 12(5–6): 721–738
https://doi.org/10.1111/j.1530-9290.2008.00088.x
61 S Y Kwon, N E Selin, A Giang, V J Karplus, D Zhang. (2018). Present and future mercury concentrations in Chinese rice: insights from modeling. Global Biogeochemical Cycles, 32(3): 437–462
https://doi.org/10.1002/2017GB005824
62 P J Landrigan, R Fuller, N J R Acosta, O Adeyi, R Arnold, N N Basu, A B Baldé, R Bertollini, S Bose-O’Reilly, J I Boufford. et al.. (2018). The Lancet Commission on pollution and health. Lancet, 391(10119): 462–512
https://doi.org/10.1016/S0140-6736(17)32345-0 pmid: 29056410
63 R A Lavoie, T D Jardine, M M Chumchal, K A Kidd, L M Campbell. (2013). Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environmental Science & Technology, 47(23): 13385–13394
https://doi.org/10.1021/es403103t pmid: 24151937
64 L C Lee, Y Wang, J Zuo. (2021). The nexus of water-energy-food in China’s tourism industry. Resources, Conservation, and Recycling, 164: 105157
https://doi.org/10.1016/j.resconrec.2020.105157 pmid: 32952298
65 J Lelieveld, J S Evans, M Fnais, D Giannadaki, A Pozzer. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569): 367–371
https://doi.org/10.1038/nature15371 pmid: 26381985
66 M Lenzen, D Moran, K Kanemoto, B Foran, L Lobefaro, A Geschke. (2012). International trade drives biodiversity threats in developing nations. Nature, 486(7401): 109–112
https://doi.org/10.1038/nature11145 pmid: 22678290
67 M Lenzen, J Murray. (2010). Conceptualising environmental responsibility. Ecological Economics, 70(2): 261–270
https://doi.org/10.1016/j.ecolecon.2010.04.005
68 B Li, T Gasser, P Ciais, S Piao, S Tao, Y Balkanski, D Hauglustaine, J P Boisier, Z Chen, M Huang. et al.. (2016a). The contribution of China’s emissions to global climate forcing. Nature, 531(7594): 357–361
https://doi.org/10.1038/nature17165 pmid: 26983540
69 H Li, Y Zhao, L Zheng, S Wang, J Kang, Y Liu, H Li, L Shi, Y Shan. (2021a). Dynamic characteristics and drivers of the regional household energy-carbon-water nexus in China. Environmental Science and Pollution Research International, 28(39): 55220–55232
https://doi.org/10.1007/s11356-021-13924-4 pmid: 34128163
70 H Li, Y Geng , R Shinwari, W Yangjie, H Rjoub (2021b). Does renewable energy electricity and economic complexity index help to achieve carbon neutrality target of top exporting countries? Journal of Environmental Management, 299: 113386
71 J Li, S Zhou, W Wei, J Qi, Y Li, B Chen, N Zhang, D Guan, H Qian, X Wu, J Miao, L Chen, K Feng, S Liang. (2020a). China’s retrofitting measures in coal-fired power plants bring significant mercury-related health benefits. One Earth, 3(6): 777–787
https://doi.org/10.1016/j.oneear.2020.11.012
72 J Li, H Zhou, J Meng, Q Yang, B Chen, Y Zhang. (2018). Carbon emissions and their drivers for a typical urban economy from multiple perspectives: a case analysis for Beijing city. Applied Energy, 226: 1076–1086
https://doi.org/10.1016/j.apenergy.2018.06.004
73 L Li, X Wang, J Miao, A Abulimiti, X Jing, N Ren. (2022a). Carbon neutrality of wastewater treatment: a systematic concept beyond the plant boundary. Environmental Science and Ecotechnology, 11: 100180
https://doi.org/10.1016/j.ese.2022.100180
74 Y Li, L Chen, S Liang, J Qi, H Zhou, C Feng, X Yang, X Wu, Z Mi, Z Yang. (2020b). Spatially explicit global hotspots driving China’s mercury related health impacts. Environmental Science & Technology, 54(22): 14547–14557
https://doi.org/10.1021/acs.est.0c04658 pmid: 33112142
75 Y Li, L Chen, S Liang, H Zhou, Y R Liu, H Zhong, Z Yang. (2022b). Looping mercury cycle in global environmental-economic system modeling. Environmental Science & Technology, 56(5): 2861–2879
https://doi.org/10.1021/acs.est.1c03936 pmid: 35129955
76 Y Li, J Meng, J Liu, Y Xu, D Guan, W Tao, Y Huang, S Tao. (2016b). Interprovincial reliance for improving air quality in China: a case study on black carbon aerosol. Environmental Science & Technology, 50(7): 4118–4126
https://doi.org/10.1021/acs.est.5b05989 pmid: 26950657
77 S Liang, W Chang, H Zhou, J Qi, Y Li, C Feng, S Wang. (2021a). Global economic structure transition boosts atmospheric mercury emissions in China. Earth's Future, 9(6): e2021EF002076
https://doi.org/10.1029/2021EF002076
78 S Liang, Z Liu, D Crawford-Brown, Y Wang, M Xu. (2014). Decoupling analysis and socioeconomic drivers of environmental pressure in China. Environmental Science & Technology, 48(2): 1103–1113
https://doi.org/10.1021/es4042429 pmid: 24354299
79 S Liang, S Qu, M Xu. (2016a). Betweenness-based method to identify critical transmission sectors for supply chain environmental pressure mitigation. Environmental Science & Technology, 50(3): 1330–1337
https://doi.org/10.1021/acs.est.5b04855 pmid: 26727352
80 S Liang, S Qu, Q Zhao, X Zhang, G T Daigger, J P Newell, S A Miller, J X Johnson, N G Love, L Zhang. et al.. (2019). Quantifying the urban food-energy-water nexus: the case of the Detroit metropolitan area. Environmental Science & Technology, 53(2): 779–788
https://doi.org/10.1021/acs.est.8b06240 pmid: 30540460
81 S Liang, S Qu, Z Zhu, D Guan, M Xu. (2017). Income-based greenhouse gas emissions of nations. Environmental Science & Technology, 51(1): 346–355
https://doi.org/10.1021/acs.est.6b02510 pmid: 27936320
82 S Liang, H Wang, S Qu, T Feng, D Guan, H Fang, M Xu. (2016b). Socioeconomic drivers of greenhouse gas emissions in the United States. Environmental Science & Technology, 50(14): 7535–7545
https://doi.org/10.1021/acs.est.6b00872 pmid: 27276120
83 S Liang, Y Wang, S Cinnirella, N Pirrone. (2015). Atmospheric mercury footprints of nations. Environmental Science & Technology, 49(6): 3566–3574
https://doi.org/10.1021/es503977y pmid: 25723898
84 S Liang, M Xu, Z Liu, S Suh, T Zhang. (2013a). Socioeconomic drivers of mercury emissions in China from 1992 to 2007. Environmental Science & Technology, 47(7): 3234–3240
https://doi.org/10.1021/es303728d pmid: 23473539
85 S Liang, M Xu, S Suh, R R Tan. (2013b). Unintended environmental consequences and co-benefits of economic restructuring. Environmental Science & Technology, 47(22): 12894–12902
https://doi.org/10.1021/es402458u pmid: 24117387
86 Y Liang, Y Li, S Liang, C Feng, L Xu, J Qi, X Yang, Y Wang, C Zhang, K Li, H Li, Z Yang. (2020). Quantifying direct and indirect spatial food-energy-water (few) nexus in China. Environmental Science & Technology, 54(16): 9791–9803
https://doi.org/10.1021/acs.est.9b06548 pmid: 32677825
87 Y Liang, S Liang, K Li, J Qi, C Feng, L Xu, Z Yang. (2021b). Socioeconomic determinants for the changing food-related scarce water uses in Chinese regions. Journal of Cleaner Production, 316: 128190
https://doi.org/10.1016/j.jclepro.2021.128190
88 S Liao, Y Wu, S W Wong, L Shen. (2020). Provincial perspective analysis on the coordination between urbanization growth and resource environment carrying capacity (RECC) in China. Science of the Total Environment, 730: 138964
https://doi.org/10.1016/j.scitotenv.2020.138964 pmid: 32402965
89 C Lin, J Qi, S Liang, C Feng, T O Wiedmann, Y Liao, X Yang, Y Li, Z Mi, Z Yang. (2020). Saving less in China facilitates global CO2 mitigation. Nature Communications, 11(1): 1358
https://doi.org/10.1038/s41467-020-15175-2 pmid: 32170147
90 J Lin, M Du, L Chen, K Feng, Y Liu, R V Martin, J Wang, R Ni, Y Zhao, H Kong, H Weng, M Liu, A Donkelaar, Q Liu, K Hubacek. (2019). Carbon and health implications of trade restrictions. Nature Communications, 10(1): 4947
https://doi.org/10.1038/s41467-019-12890-3 pmid: 31666528
91 J Lin, D Tong, S Davis, R Ni, X Tan, D Pan, H Zhao, Z Lu, D Streets, T Feng. et al.. (2016). Global climate forcing of aerosols embodied in international trade. Nature Geoscience, 9(10): 790–794
https://doi.org/10.1038/ngeo2798
92 J Liu, T Dietz, S R Carpenter, M Alberti, C Folke, E Moran, A N Pell, P Deadman, T Kratz, J Lubchenco. et al.. (2007). Complexity of coupled human and natural systems. Science, 317(5844): 1513–1516
https://doi.org/10.1126/science.1144004 pmid: 17872436
93 J Liu, V Hull, H C J Godfray, D Tilman, P Gleick, H Hoff, C Pahl-Wostl, Z Xu, M G Chung, J Sun, S Li. (2018). Nexus approaches to global sustainable development. Nature Sustainability, 1(9): 466–476
https://doi.org/10.1038/s41893-018-0135-8
94 J Liu, H Mooney, V Hull, S J Davis, J Gaskell, T Hertel, J Lubchenco, K C Seto, P Gleick, C Kremen, S Li. (2015). Systems integration for global sustainability. Science, 347(6225): 1258832
https://doi.org/10.1126/science.1258832 pmid: 25722418
95 J Liu, H Yin, X Tang, T Zhu, Q Zhang, Z Liu, X Tang, H Yi. (2021a). Transition in air pollution, disease burden and health cost in China: a comparative study of long-term and short-term exposure. Environmental Pollution, 277: 116770
https://doi.org/10.1016/j.envpol.2021.116770 pmid: 33640815
96 M Liu, Q Zhang, C Yu, L Yuan, Y He, W Xiao, H Zhang, J Guo, W Zhang, Y Li. et al.. (2021b). Observation-based mercury export from rivers to coastal oceans in East Asia. Environmental Science & Technology, 55(20): 14269–14280
https://doi.org/10.1021/acs.est.1c03755 pmid: 34618428
97 X Liu, Y Huang, X Xu, X Li, P Ciais, P Lin, K Gong, A D Ziegler, A Chen, P Gong. et al.. (2020). High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 3(7): 564–570
https://doi.org/10.1038/s41893-020-0521-x
98 R Ma, K Li, Y Guo, B Zhang, X Zhao, S Linder, C Guan, G Chen, Y Gan, J Meng. (2021). Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nature Communications, 12(1): 6308
https://doi.org/10.1038/s41467-021-25854-3
99 T Ma, S Sun, G Fu, J W Hall, Y Ni, L He, J Yi, N Zhao, Y Du, T Pei, W Cheng, C Song, C Fang, C Zhou. (2020). Pollution exacerbates China’s water scarcity and its regional inequality. Nature Communications, 11(1): 650
https://doi.org/10.1038/s41467-020-14532-5 pmid: 32005847
100 C Magazzino, M Mele, N Schneider. (2021). A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions. Renewable Energy, 167: 99–115
https://doi.org/10.1016/j.renene.2020.11.050
101 A Marques, I S Martins, T Kastner, C Plutzar, M C Theurl, N Eisenmenger, M A J Huijbregts, R Wood, K Stadler, M Bruckner. et al.. (2019). Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology & Evolution, 3(4): 628–637
https://doi.org/10.1038/s41559-019-0824-3 pmid: 30833755
102 A Marques, J Rodrigues, M Lenzen, T Domingos. (2012). Income-based environmental responsibility. Ecological Economics, 84: 57–65
https://doi.org/10.1016/j.ecolecon.2012.09.010
103 P Massányi, M Massányi, R Madeddu, R Stawarz, N Lukáč. (2020). Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics, 8(4): 94
https://doi.org/10.3390/toxics8040094 pmid: 33137881
104 Z Mi, Y Zhang, D Guan, Y Shan, Z Liu, R Cong, X Yuan, Y Wei. (2016). Consumption-based emission accounting for Chinese cities. Applied Energy, 184: 1073–1081
https://doi.org/10.1016/j.apenergy.2016.06.094
105 Miller R E, Blair P D (2009). Input-output Analysis: Foundations and Extensions. Cambridge: Cambridge University Press
106 F C Moore, K Lacasse, K J Mach, Y A Shin, L J Gross, B Beckage. (2022). Determinants of emissions pathways in the coupled climate-social system. Nature, 603(7899): 103–111
https://doi.org/10.1038/s41586-022-04423-8 pmid: 35173331
107 R H Moss, J A Edmonds, K A Hibbard, M R Manning, S K Rose, Vuuren D P van, T R Carter, S Emori, M Kainuma, T Kram. et al.. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747–756
https://doi.org/10.1038/nature08823 pmid: 20148028
108 V Moutinho, A C Moreira, P M Silva. (2015). The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis. Renewable & Sustainable Energy Reviews, 50: 1485–1499
https://doi.org/10.1016/j.rser.2015.05.072
109 K Nansai, S Tohno, S Chatani, K Kanemoto, M Kurogi, Y Fujii, S Kagawa, Y Kondo, F Nagashima, W Takayanagi, M Lenzen. (2020). Affluent countries inflict inequitable mortality and economic loss on Asia via PM2.5 emissions. Environment International, 134: 105238
https://doi.org/10.1016/j.envint.2019.105238 pmid: 31704567
110 K S Nielsen, K A Nicholas, F Creutzig, T Dietz, P C Stern. (2021). The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions. Nature Energy, 6(11): 1011–1016
https://doi.org/10.1038/s41560-021-00900-y
111 C C O'Hara, M Frazier, B S Halpern. (2021). At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science, 372(6537): 84–87
https://doi.org/10.1126/science.abe6731 pmid: 33795456
112 Y Oswald, A Owen, J K Steinberger. (2020). Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nature Energy, 5(3): 231–239
https://doi.org/10.1038/s41560-020-0579-8
113 A Owen, K Scott, J Barrett. (2018). Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus. Applied Energy, 210: 632–642
https://doi.org/10.1016/j.apenergy.2017.09.069
114 A V Pastor, A Palazzo, P Havlik, H Biemans, Y Wada, M Obersteiner, P Kabat, F Ludwig. (2019). The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2(6): 499–507
https://doi.org/10.1038/s41893-019-0287-1
115 L Peng, F Liu, M Zhou, M Li, Q Zhang, D L Mauzerall. (2021a). Alternative-energy-vehicles deployment delivers climate, air quality, and health co-benefits when coupled with decarbonizing power generation in China. One Earth, 4(8): 1127–1140
https://doi.org/10.1016/j.oneear.2021.07.007
116 W Peng, G Iyer, V Bosetti, V Chaturvedi, J Edmonds, A A Fawcett, S Hallegatte, D G Victor, D van Vuuren, J Weyant. (2021b). Climate policy models need to get real about people - Here’s how. Nature, 594(7862): 174–176
https://doi.org/10.1038/d41586-021-01500-2 pmid: 34103720
117 W Peng, F Wagner, M V Ramana, H Zhai, M J Small, C Dalin, X Zhang, D L Mauzerall. (2018). Managing China’s coal power plants to address multiple environmental objectives. Nature Sustainability, 1(11): 693–701
https://doi.org/10.1038/s41893-018-0174-1
118 G P Peters. (2008). From production-based to consumption-based national emission inventories. Ecological Economics, 65(1): 13–23
https://doi.org/10.1016/j.ecolecon.2007.10.014
119 S Piao, C Yue, J Ding, Z Guo. (2022). Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Science China Earth Sciences, 65(6): 1178–1186
https://doi.org/10.1007/s11430-022-9926-6
120 C Pichery, M Bellanger, D Zmirou-Navier, N Fréry, S Cordier, A Roue-Legall, P Hartemann, P Grandjean. (2012). Economic evaluation of health consequences of prenatal methylmercury exposure in France. Environmental Health, 11(1): 53
https://doi.org/10.1186/1476-069X-11-53 pmid: 22883022
121 J Qi, Y Wang, S Liang, Y Li, Y Li, C Feng, L Xu, S Wang, L Chen, D Wang, Z Yang. (2019). Primary suppliers driving atmospheric mercury emissions through global supply chains. One Earth, 1(2): 254–266
https://doi.org/10.1016/j.oneear.2019.10.005
122 H Qian, S Xu, J Cao, F Ren, W Wei, J Meng, L Wu. (2021). Air pollution reduction and climate co-benefits in China’s industries. Nature Sustainability, 4(5): 417–425
https://doi.org/10.1038/s41893-020-00669-0
123 S Qu, S Liang, M Konar, Z Zhu, A S F Chiu, X Jia, M Xu. (2018). Virtual water scarcity risk to the global trade system. Environmental Science & Technology, 52(2): 673–683
https://doi.org/10.1021/acs.est.7b04309 pmid: 29231718
124 V Ramanathan, Y Xu, A Versaci. (2022). Modelling human–natural systems interactions with implications for twenty-first-century warming. Nature Sustainability, 5(3): 263–271
https://doi.org/10.1038/s41893-021-00826-z
125 N D Rao, G Kiesewetter, J Min, S Pachauri, F Wagner. (2021). Household contributions to and impacts from air pollution in India. Nature Sustainability, 4(10): 859–867
https://doi.org/10.1038/s41893-021-00744-0
126 J Rodrigues, T Domingos. (2008). Consumer and producer environmental responsibility: comparing two approaches. Ecological Economics, 66(2–3): 533–546
https://doi.org/10.1016/j.ecolecon.2007.12.010
127 B H Samset, J S Fuglestvedt, M T Lund. (2020). Delayed emergence of a global temperature response after emission mitigation. Nature Communications, 11(1): 3261
https://doi.org/10.1038/s41467-020-17001-1 pmid: 32636367
128 E A G Schuur, A D Mcguire, C Schadel, G Grosse, J W Harden, D J Hayes, G Hugelius, C D Koven, P Kuhry, D M Lawrence, S M Natali, D Olefeldt, V E Romanovsky, K Schaefer, M R Turetsky, C C Treat, J E Vonk. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546): 171–179
https://doi.org/10.1038/nature14338
129 S M Shah, G Y Liu, Q Yang, X Q Wang, M Casazza, F Agostinho, G V Lombardi, B F Giannetti. (2019). Emergy-based valuation of agriculture ecosystem services and dis-services. Journal of Cleaner Production, 239: 118019
https://doi.org/10.1016/j.jclepro.2019.118019
130 Y Shan, D Guan, H Zheng, J Ou, Y Li, J Meng, Z Mi, Z Liu, Q Zhang. (2018). China CO2 emission accounts 1997-2015. Scientific Data, 5(1): 170201
https://doi.org/10.1038/sdata.2017.201 pmid: 29337312
131 W Shao, F Li, X Cao, Z Tang, Y Bai, S Yang. (2020). Reducing export-driven CO2 and PM emissions in China’s provinces: a structural decomposition and coordinated effects analysis. Journal of Cleaner Production, 274: 123101
https://doi.org/10.1016/j.jclepro.2020.123101
132 G Shi, X Lu, Y Deng, J Urpelainen, L C Liu, Z Zhang, W Wei, H Wang. (2020). Air pollutant emissions induced by population migration in China. Environmental Science & Technology, 54(10): 6308–6318
https://doi.org/10.1021/acs.est.0c00726 pmid: 32216336
133 B Singh, A H Strømman, E G Hertwich. (2012). Scenarios for the environmental impact of fossil fuel power: co-benefits and trade-offs of carbon capture and storage. Energy, 45(1): 762–770
https://doi.org/10.1016/j.energy.2012.07.014
134 K W Steininger, C Lininger, L H Meyer, P Munoz, T Schinko. (2016). Multiple carbon accounting to support just and effective climate policies. Nature Climate Change, 6(1): 35–41
https://doi.org/10.1038/nclimate2867
135 C W Tessum, J S Apte, A L Goodkind, N Z Muller, K A Mullins, D A Paolella, S Polasky, N P Springer, S K Thakrar, J D Marshall, J D Hill. (2019). Inequity in consumption of goods and services adds to racial-ethnic disparities in air pollution exposure. Proceedings of the National Academy of Sciences of the United States of America, 116(13): 6001–6006
https://doi.org/10.1073/pnas.1818859116 pmid: 30858319
136 E Trutnevyte, L F Hirt, N Bauer, A Cherp, A Hawkes, O Y Edelenbosch, S Pedde, D P Van Vuuren. (2019). Societal transformations in models for energy and climate policy: the ambitious next step. One Earth, 1(4): 423–433
https://doi.org/10.1016/j.oneear.2019.12.002
137 F Wang, J D Harindintwali, Z Yuan, M Wang, F Wang, S Li, Z Yin, L Huang, Y Fu, L Li. et al.. (2021a). Technologies and perspectives for achieving carbon neutrality. The Innovation, 2(4): 100180
https://doi.org/10.1016/j.xinn.2021.100180 pmid: 34877561
138 H Wang, B W Ang, B Su. (2017). A multi-region structural decomposition analysis of global CO2 emission intensity. Ecological Economics, 142: 163–176
https://doi.org/10.1016/j.ecolecon.2017.06.023
139 H Wang, G Wang, J Qi, H Schandl, Y Li, C Feng, X Yang, Y Wang, X Wang, S Liang. (2020). Scarcity-weighted fossil fuel footprint of China at the provincial level. Applied Energy, 258: 114081
https://doi.org/10.1016/j.apenergy.2019.114081
140 P Wang, S Zhao, T Dai, K Peng, Q Zhang, J Li, W Q Chen. (2022). Regional disparities in steel production and restrictions to progress on global decarbonization: a cross-national analysis. Renewable & Sustainable Energy Reviews, 161: 112367
https://doi.org/10.1016/j.rser.2022.112367
141 R Wang, J Zimmerman. (2016). Hybrid analysis of blue water consumption and water scarcity implications at the global, national, and basin levels in an increasingly globalized world. Environmental Science & Technology, 50(10): 5143–5153
https://doi.org/10.1021/acs.est.6b00571 pmid: 27101068
142 S Wang, B Fu, W Zhao, Y Liu, F Wei. (2018). Structure, function, and dynamic mechanisms of coupled human–natural systems. Current Opinion in Environmental Sustainability, 33: 87–91
https://doi.org/10.1016/j.cosust.2018.05.002
143 S Wang, J Song, G Li, Y Wu, L Zhang, Q Wan, D G Streets, C K Chin, J Hao. (2010). Estimating mercury emissions from a zinc smelter in relation to China’s mercury control policies. Environmental Pollution, 158(10): 3347–3353
https://doi.org/10.1016/j.envpol.2010.07.032 pmid: 20716469
144 Z Wang, L Lian, J Li, J He, H Ma, L Chen, X Mao, H Gao, J Ma, T Huang. (2021b). The atmospheric lead emission, deposition, and environmental inequality driven by interprovincial trade in China. Science of the Total Environment, 797: 149113
https://doi.org/10.1016/j.scitotenv.2021.149113 pmid: 34303976
145 L Wei, C Li, J Wang, X Wang, Z Wang, C Cui, S Peng, Y Liu, S Yu, L Wang, Z Shi. (2020). Rising middle and rich classes drove China’s carbon emissions. Resources, Conservation and Recycling, 159: 104839
https://doi.org/10.1016/j.resconrec.2020.104839
146 Y Wei, K Chen, J Kang, W Chen, X Wang, X Zhang. (2022). Policy and management of carbon peaking and carbon neutrality: a literature review. Engineering, 14(7): 52–63
https://doi.org/10.1016/j.eng.2021.12.018
147 P C West, J S Gerber, P M Engstrom, N D Mueller, K A Brauman, K M Carlson, E S Cassidy, M Johnston, G K MacDonald, D K Ray, S Siebert. (2014). Leverage points for improving global food security and the environment. Science, 345(6194): 325–328
https://doi.org/10.1126/science.1246067 pmid: 25035492
148 T Wiedmann, M Lenzen. (2018). Environmental and social footprints of international trade. Nature Geoscience, 11(5): 314–321
https://doi.org/10.1038/s41561-018-0113-9
149 H C Wilting, A M Schipper, M Bakkenes, J R Meijer, M A Huijbregts. (2017). Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environmental Science & Technology, 51(6): 3298–3306
https://doi.org/10.1021/acs.est.6b05296 pmid: 28072521
150 M J Wolf, D C Esty, H Kim, M L Bell, S Brigham, Q Nortonsmith, S Zaharieva, Z A Wendling, A de Sherbinin, J W Emerson. (2022). New insights for tracking global and local trends in exposure to air pollutants. Environmental Science & Technology, 56(7): 3984–3996
https://doi.org/10.1021/acs.est.1c08080 pmid: 35255208
151 Q Wu, S Wang, K Liu, G Li, J Hao. (2018). Emission-limit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the implementation of the minamata convention. Environmental Science & Technology, 52(19): 11087–11093
https://doi.org/10.1021/acs.est.8b02250 pmid: 30193461
152 T Wu, B Qin, J D Brookes, W Yan, X Ji, J Feng (2019). Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective. Science of the Total Environment, 650(Pt 1): 1554–1565
153 Y Wu, S Wang, D G Streets, J Hao, M Chan, J Jiang. (2006). Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science & Technology, 40(17): 5312–5318
https://doi.org/10.1021/es060406x pmid: 16999104
154 J Xue, X Ji, L Zhao, Y Yang, Y Xie, D Li, C Wang, W Sun. (2019). Cooperative econometric model for regional air pollution control with the additional goal of promoting employment. Journal of Cleaner Production, 237: 117814
https://doi.org/10.1016/j.jclepro.2019.117814
155 Yang H, Huang X J, Hu J L, Thompson J R, Flower R J (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111
156 X Yang, F Teng. (2018). Air quality benefit of China’s mitigation target to peak its emission by 2030. Climate Policy, 18(1): 99–110
https://doi.org/10.1080/14693062.2016.1244762
157 Y Yang, S Qu, B Cai, S Liang, Z Wang, J Wang, M Xu. (2020). Mapping global carbon footprint in China. Nature Communications, 11(1): 2237
https://doi.org/10.1038/s41467-020-15883-9 pmid: 32382018
158 C Zhang, L Zhong, J Wang. (2018a). Decoupling between water use and thermoelectric power generation growth in China. Nature Energy, 3(9): 792–799
https://doi.org/10.1038/s41560-018-0236-7
159 L Zhang, S Wang, Y Meng, J Hao. (2012). Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China. Environmental Science & Technology, 46(11): 6385–6392
https://doi.org/10.1021/es300286n pmid: 22533359
160 Q Zhang, X Jiang, D Tong, S J Davis, H Zhao, G Geng, T Feng, B Zheng, Z Lu, D G Streets. et al.. (2017). Transboundary health impacts of transported global air pollution and international trade. Nature, 543(7647): 705–709
https://doi.org/10.1038/nature21712 pmid: 28358094
161 Q Zhang, Y X Zheng, D Tong, M Shao, S X Wang, Y H Zhang, X D Xu, J N Wang, H He, W Q Liu. et al.. (2019a). Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463–24469
https://doi.org/10.1073/pnas.1907956116
162 R Zhang, T Hanaoka. (2022a). Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality. Nature Communications, 13(1): 3629
https://doi.org/10.1038/s41467-022-31354-9 pmid: 35750686
163 S Zhang, W Chen. (2022b). Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nature Communications, 13(1): 87
https://doi.org/10.1038/s41467-021-27671-0 pmid: 35013253
164 S Zhang, Y Tian, H Guo, R Liu, N He, Z Li, W Zhao. (2022c). Study on the occurrence of typical heavy metals in drinking water and corrosion scales in a large community in northern China. Chemosphere, 290: 133145
https://doi.org/10.1016/j.chemosphere.2021.133145 pmid: 34921856
165 Y Zhang, D J Jacob, H M Horowitz, L Chen, H M Amos, D P Krabbenhoft, F Slemr, V L St Louis, E M Sunderland. (2016). Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proceedings of the National Academy of Sciences of the United States of America, 113(3): 526–531
https://doi.org/10.1073/pnas.1516312113 pmid: 26729866
166 Y Zhang, Z Song, S Huang, P Zhang, Y Peng, P Wu, J Gu, S Dutkiewicz, H Zhang, S Wu. et al.. (2021). Global health effects of future atmospheric mercury emissions. Nature Communications, 12(1): 3035
https://doi.org/10.1038/s41467-021-23391-7 pmid: 34031414
167 Z Zhang, Y Hao, Z N Lu. (2018b). Does environmental pollution affect labor supply? An empirical analysis based on 112 cities in China. Journal of Cleaner Production, 190: 378–387
https://doi.org/10.1016/j.jclepro.2018.04.093
168 Z Zhang, C Shao, Y Guan, C Xue. (2019b). Socioeconomic factors and regional differences of PM2.5 health risks in China. Journal of Environmental Management, 251: 109564
https://doi.org/10.1016/j.jenvman.2019.109564 pmid: 31557670
169 C Zhao, B Chen. (2014). Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environmental Science & Technology, 48(21): 12723–12731
https://doi.org/10.1021/es503513z pmid: 25289879
170 H Zhao, J F Chang, P Havlik, M Van Dijk, H Valin, C Janssens, L Ma, Z H Bai, M Herrero, P Smith, M Obersteiner. (2021). China’s future food demand and its implications for trade and environment. Nature Sustainability, 4(12): 1042–1051
https://doi.org/10.1038/s41893-021-00784-6
171 R Zhao, Y Liu, M Tian, M Ding, L Cao, Z Zhang, X Chuai, L Xiao, L Yao. (2018). Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy, 72: 480–492
https://doi.org/10.1016/j.landusepol.2017.12.029
172 W Zhen, Q Qin, Y Kuang, N Huang. (2017). Investigating low-carbon crop production in Guangdong Province, China (1993–2013): a decoupling and decomposition analysis. Journal of Cleaner Production, 146: 63–70
https://doi.org/10.1016/j.jclepro.2016.05.022
173 H Zheng, Y Long, R Wood, D Moran, Z Zhang, J Meng, S Feng, E Hertwich, D Guan. (2022). Ageing society in developed countries challenges carbon mitigation. Nature Climate Change, 12(3): 241–248
https://doi.org/10.1038/s41558-022-01302-y
174 Q Zhong, H Li, S Liang, X Jetashree, J Wu, S Qi. (2022). Changes of production and consumption structures in coastal regions lead to mercury emission control in China. Journal of Industrial Ecology, 1–11
https://doi.org/10.1111/jiec.13314
175 X Zhu, R Lane, T T Werner. (2017). Modelling in-use stocks and spatial distributions of household electronic devices and their contained metals based on household survey data. Resources, Conservation and Recycling, 120: 27–37
https://doi.org/10.1016/j.resconrec.2017.01.002
[1] Jian Li, Zhen Wang, Bao Jiang. Managing economic and social profit of cooperative models in three-echelon reverse supply chain for waste electrical and electronic equipment[J]. Front. Environ. Sci. Eng., 2017, 11(5): 12-.
[2] Pingjian YANG,Feifei DONG,Yong LIU,Rui ZOU,Xing CHEN,Huaicheng GUO. A refined risk explicit interval linear programming approach for optimal watershed load reduction with objective-constraint uncertainty tradeoff analysis[J]. Front. Environ. Sci. Eng., 2016, 10(1): 129-140.
[3] Feng WANG,Beibei LIU,Bing ZHANG,Jun BI. Fuel type preference of taxi driver and its implications for air emissions[J]. Front. Environ. Sci. Eng., 2015, 9(4): 702-711.
[4] Zhaoyang LIU, Xianqiang MAO, Wei TANG, Tao HU, Peng SONG. An assessment of China-Japan-Korea Free Trade Agreement’s economic and environmental impacts on China[J]. Front Envir Sci Eng, 2012, 6(6): 849-859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed