|
|
Reducing environmental impacts through socioeconomic transitions: critical review and prospects |
Sai Liang( ), Qiumeng Zhong |
Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China |
|
|
Abstract ● Reducing environmental impacts through socioeconomic structural transitions. ● Simulation of looping the dynamic material cycle should be concerned. ● Transboundary effects of socioeconomic transitions need to be analyzed. ● Facilitating interregional cooperation and synergetic control mechanisms. Rapid socioeconomic development has caused numerous environmental impacts. Human production and consumption activities are the underlying drivers of resource uses, environmental emissions, and associated environmental impacts (e.g., ecosystem quality and human health). Reducing environmental impacts requires an understanding of the complex interactions between socioeconomic system and environmental system. Existing studies have explored the relationships among human society, economic system, and environmental system. However, it is unclear about the research progress in the effects of socioeconomic activities on environmental impacts and the potential directions of future research. This critical review finds that existing studies have identified critical regions, sectors, and transmission pathways for resource uses, environmental emissions, and environmental impacts from supply chain perspectives. Moreover, scholars have characterized the impacts of socioeconomic transitions on resource uses and environmental emissions. However, existing studies overlook the dynamic nature of the interconnections among human society, economic system, and environmental system. In addition, the effects of socioeconomic structural transitions on environmental impacts remain unknown. This review proposes four prospects and possible solutions that will contribute to a better understanding of the complex interactions among human society, economic system, and environmental system. They can help identify more effective solutions to reduce environmental impacts through socioeconomic transitions.
|
Keywords
Environmental pressures
Environmental impacts
Nexus
Supply chains
Trade
Coupled systems
|
Corresponding Author(s):
Sai Liang
|
Issue Date: 17 October 2022
|
|
1 |
Ackerman F, Decanio S J, Howarth R B, Sheeran K (2009). Limitations of integrated assessment models of climate change. Climatic Change, 95(3–4): 297–315
|
2 |
V Acuña, F Bregoli, C Font, D Barceló, L Corominas, A Ginebreda, M Petrovic, I Rodríguez-Roda, S Sabater, R Marcé. (2020). Management actions to mitigate the occurrence of pharmaceuticals in river networks in a global change context. Environment International, 143: 105993
https://doi.org/10.1016/j.envint.2020.105993
pmid: 32738769
|
3 |
T R Albrecht, A Crootof, C A Scott. (2018). The water-energy-food nexus: a systematic review of methods for nexus assessment. Environmental Research Letters, 13(4): 043002
https://doi.org/10.1088/1748-9326/aaa9c6
|
4 |
E B Barbier, J P Hochard. (2018). Land degradation and poverty. Nature Sustainability, 1(11): 623–631
https://doi.org/10.1038/s41893-018-0155-4
|
5 |
B Beckage, L J Gross, K Lacasse, E Carr, S S Metcalf, J M Winter, P D Howe, N Fefferman, T Franck, A Zia, A Kinzig, F M Hoffman. (2018). Linking models of human behaviour and climate alters projected climate change. Nature Climate Change, 8(1): 79–84
https://doi.org/10.1038/s41558-017-0031-7
|
6 |
R Bleischwitz, C Spataru, S D Vandeveer, M Obersteiner, E Van Der Voet, C Johnson, P Andrews-Speed, T Boersma, H Hoff, D P Van Vuuren. (2018). Resource nexus perspectives towards the United Nations sustainable development goals. Nature Sustainability, 1(12): 737–743
https://doi.org/10.1038/s41893-018-0173-2
|
7 |
X Bo, M Jia, X Xue, L Tang, Z Mi, S Wang, W Cui, X Chang, J Ruan, G Dong, B Zhou, S J Davis. (2021). Effect of strengthened standards on Chinese ironmaking and steelmaking emissions. Nature Sustainability, 4(9): 811–820
https://doi.org/10.1038/s41893-021-00736-0
|
8 |
M Brauer, M Amann, R T Burnett, A Cohen, F Dentener, M Ezzati, S B Henderson, M Krzyzanowski, R V Martin, R Van Dingenen, A van Donkelaar, G D Thurston. (2012). Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environmental Science & Technology, 46(2): 652–660
https://doi.org/10.1021/es2025752
pmid: 22148428
|
9 |
B A Bryan, R K Runting, T Capon, M P Perring, S C Cunningham, M E Kragt, M Nolan, E A Law, A R Renwick, S Eber, R Christian, K A Wilson. (2016). Designer policy for carbon and biodiversity co-benefits under global change. Nature Climate Change, 6(3): 301–305
https://doi.org/10.1038/nclimate2874
|
10 |
B Cai, K Hubacek, K Feng, W Zhang, F Wang, Y Liu. (2020). Tension of agricultural land and water use in China’s trade: tele-connections, hidden drivers and potential solutions. Environmental Science & Technology, 54(9): 5365–5375
https://doi.org/10.1021/acs.est.0c00256
pmid: 32195586
|
11 |
J Chang, P Ciais, T Gasser, P Smith, M Herrero, P Havlík, M Obersteiner, B Guenet, D S Goll, W Li, V Naipal, S Peng, C Qiu, H Tian, N Viovy, C Yue, D Zhu. (2021). Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 12(1): 118
https://doi.org/10.1038/s41467-020-20406-7
pmid: 33402687
|
12 |
N Chartres, L A Bero, S L Norris. (2019). A review of methods used for hazard identification and risk assessment of environmental hazards. Environment International, 123: 231–239
https://doi.org/10.1016/j.envint.2018.11.060
pmid: 30537638
|
13 |
C Chen, Z Jiang, N Li, H Wang, P Wang, Z Zhang, C Zhang, F Ma, Y Huang, X Lu, J Wei, J Qi, W Q Chen. (2022). Advancing UN Comtrade for physical trade flow analysis: review of data quality issues and solutions. Resources, Conservation and Recycling, 186: 106526
https://doi.org/10.1016/j.resconrec.2022.106526
|
14 |
J Chen, C Zhou, S Wang, S Li. (2018). Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally. Applied Energy, 230: 94–105
https://doi.org/10.1016/j.apenergy.2018.08.089
|
15 |
J M Chen. (2021). Carbon neutrality: toward a sustainable future. The Innovation, 2(3): 100127
https://doi.org/10.1016/j.xinn.2021.100127
pmid: 34557769
|
16 |
L Chen, S Liang, M Liu, Y Yi, Z Mi, Y Zhang, Y Li, J Qi, J Meng, X Tang, H Zhang, Y Tong, W Zhang, X Wang, J Shu, Z Yang. (2019). Trans-provincial health impacts of atmospheric mercury emissions in China. Nature Communications, 10(1): 1484
https://doi.org/10.1038/s41467-019-09080-6
pmid: 30940811
|
17 |
L Chen, H H Wang, J F Liu, Y D Tong, L B Ou, W Zhang, D Hu, C Chen, X J Wang. (2014). Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions. Atmospheric Chemistry and Physics, 14(18): 10163–10176
https://doi.org/10.5194/acp-14-10163-2014
|
18 |
S Chowdhury, A Pozzer, A Haines, K Klingmüller, T Münzel, P Paasonen, A Sharma, C Venkataraman, J Lelieveld. (2022). Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols. Environment International, 159: 107020
https://doi.org/10.1016/j.envint.2021.107020
pmid: 34894485
|
19 |
M G Clayden, K A Kidd, B Wyn, J L Kirk, D Muir, N J O’Driscoll. (2013). Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environmental Science & Technology, 47(21): 12047–12053
https://doi.org/10.1021/es4022975
pmid: 24099312
|
20 |
A J Cohen, M Brauer, R Burnett, H R Anderson, J Frostad, K Estep, K Balakrishnan, B Brunekreef, L Dandona, R Dandona. et al.. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, 389(10082): 1907–1918
https://doi.org/10.1016/S0140-6736(17)30505-6
pmid: 28408086
|
21 |
P D’Odorico, K F Davis, L Rosa, J A Carr, D Chiarelli, J Dell’angelo, J Gephart, G K Macdonald, D A Seekell, S Suweis, M C Rulli. (2018). The global food-energy-water nexus. Reviews of Geophysics, 56(3): 456–531
https://doi.org/10.1029/2017RG000591
|
22 |
F Deng, Z Lv, L Qi, X Wang, M Shi, H Liu. (2020). A big data approach to improving the vehicle emission inventory in China. Nature Communications, 11(1): 2801
https://doi.org/10.1038/s41467-020-16579-w
pmid: 32493934
|
23 |
D Ding, J Xing, S Wang, K Liu, J Hao. (2019a). Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM2.5 and PM2.5-related mortality in China, 2013–2017. Environmental Health Perspectives, 127(6): 067009
https://doi.org/10.1289/EHP4157
pmid: 31232608
|
24 |
K J Ding, T Gunda, G M Hornberger. (2019b). Prominent influence of socioeconomic and governance factors on the food-energy-water nexus in sub-Saharan Africa. Earth’s Future, 7(9): 1071–1087
https://doi.org/10.1029/2019EF001184
|
25 |
F Dong, B L Yu, Y L Pan. (2019). Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction: evidence from China. Journal of Cleaner Production, 223: 759–771
https://doi.org/10.1016/j.jclepro.2019.03.152
|
26 |
H Dong, H Dai, L Dong, T Fujita, Y Geng, Z Klimont, T Inoue, S Bunya, M Fujii, T Masui. (2015). Pursuing air pollutant co-benefits of CO2 mitigation in China: a provincial leveled analysis. Applied Energy, 144: 165–174
https://doi.org/10.1016/j.apenergy.2015.02.020
|
27 |
J Du, X Zhang, T Huang, M Li, Z Ga, H Ge, Z Wang, H Gao, J Ma. (2021). Trade-driven black carbon climate forcing and environmental equality under China’s west-east energy transmission. Journal of Cleaner Production, 313: 127896
https://doi.org/10.1016/j.jclepro.2021.127896
|
28 |
Y Du, Y Ge, Y Ren, X Fan, K Pan, L Lin, X Wu, Y Min, L A Meyerson, M Heino, S X Chang, X Liu, F Mao, G Yang, C Peng, Z Qu, J Chang, R K Didham. (2018). A global strategy to mitigate the environmental impact of China’s ruminant consumption boom. Nature Communications, 9(1): 4133
https://doi.org/10.1038/s41467-018-06381-0
pmid: 30297840
|
29 |
C Duan, B Chen. (2020). Driving factors of water-energy nexus in China. Applied Energy, 257: 113984
https://doi.org/10.1016/j.apenergy.2019.113984
|
30 |
A Endo, I Tsurita, K Burnett, P M Orencio. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11: 20–30
https://doi.org/10.1016/j.ejrh.2015.11.010
|
31 |
Eurostat. (2001). Economy-wide material-flow accounts and derived indicators: a methodological guide. European Commission, Luxembourg
|
32 |
T Avelino A F, S Dall'erba. (2020). What factors drive the changes in water withdrawals in the U.S. Agriculture and food manufacturing industries between 1995 and 2010? Environmental Science & Technology, 54(17): 10421–10434
pmid: 32786598
|
33 |
G Fan, Z Liu, X Liu, Y Shi, D Wu, J Guo, S Zhang, X Yang, Y Zhang. (2022). Energy management strategies and multi-objective optimization of a near-zero energy community energy supply system combined with hybrid energy storage. Sustainable Cities and Society, 83: 103970
https://doi.org/10.1016/j.scs.2022.103970
|
34 |
Z Feng, A De Marco, A Anav, M Gualtieri, P Sicard, H Tian, F Fornasier, F Tao, A Guo, E Paoletti. (2019). Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environment International, 131: 104966
https://doi.org/10.1016/j.envint.2019.104966
pmid: 31284106
|
35 |
P J Ferraro, J N Sanchirico, M D Smith. (2019). Causal inference in coupled human and natural systems. Proceedings of the National Academy of Sciences of the United States of America, 116(12): 5311–5318
https://doi.org/10.1073/pnas.1805563115
pmid: 30126992
|
36 |
D Font Vivanco, B Sprecher, E Hertwich. (2017). Scarcity-weighted global land and metal footprints. Ecological Indicators, 83: 323–327
https://doi.org/10.1016/j.ecolind.2017.08.004
|
37 |
C L E Franzke, M Czupryna. (2020). Probabilistic assessment and projections of US weather and climate risks and economic damages. Climatic Change, 158(3–4): 503–515
https://doi.org/10.1007/s10584-019-02558-8
|
38 |
Nerini F Fuso, J Tomei, L S To, I Bisaga, P Parikh, M Black, A Borrion, C Spataru, Broto V Castán, G Anandarajah, B Milligan, Y Mulugetta. (2018). Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nature Energy, 3(1): 10–15
https://doi.org/10.1038/s41560-017-0036-5
|
39 |
J Gao, K Wang, Y Wang, S Liu, C Zhu, J Hao, H Liu, S Hua, H Tian. (2018). Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environmental Pollution, 233: 714–724
https://doi.org/10.1016/j.envpol.2017.10.123
pmid: 29126093
|
40 |
G Geng, Y Zheng, Q Zhang, T Xue, H Zhao, D Tong, B Zheng, M Li, F Liu, C Hong, K He, S J Davis. (2021). Drivers of PM2.5 air pollution deaths in China 2002–2017. Nature Geoscience, 14(9): 645–650
https://doi.org/10.1038/s41561-021-00792-3
|
41 |
T E Graedel. (2019). Material flow analysis from origin to evolution. Environmental Science & Technology, 53(21): 12188–12196
https://doi.org/10.1021/acs.est.9b03413
pmid: 31549816
|
42 |
D Guan, Z Liu, Y Geng, S Lindner, K Hubacek. (2012). The gigatonne gap in China’s carbon dioxide inventories. Nature Climate Change, 2(9): 672–675
https://doi.org/10.1038/nclimate1560
|
43 |
S Guan, M Han, X Wu, C Guan, B Zhang. (2019). Exploring energy-water-land nexus in national supply chains: China 2012. Energy, 185: 1225–1234
https://doi.org/10.1016/j.energy.2019.07.130
|
44 |
W J Guan, X Y Zheng, K F Chung, N S Zhong. (2016). Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet, 388(10054): 1939–1951
https://doi.org/10.1016/S0140-6736(16)31597-5
pmid: 27751401
|
45 |
F Guang, Y He, L Wen, B Sharp. (2019). Energy intensity and its differences across China’s regions: combining econometric and decomposition analysis. Energy, 180: 989–1000
https://doi.org/10.1016/j.energy.2019.05.150
|
46 |
Y Guo, P He, T D Searchinger, Y Chen, M Springmann, M Zhou, X Zhang, L Zhang, D L Mauzerall. (2022). Environmental and human health trade-offs in potential Chinese dietary shifts. One Earth, 5(3): 268–282
https://doi.org/10.1016/j.oneear.2022.02.002
|
47 |
C He, Z Liu, J Wu, X Pan, Z Fang, J Li, B A Bryan. (2021). Future global urban water scarcity and potential solutions. Nature Communications, 12(1): 4667
https://doi.org/10.1038/s41467-021-25026-3
pmid: 34344898
|
48 |
He Y, Weng Q (2018). High Spatial Resolution Remote Sensing: Data, Analysis, and Applications. Boston: CRC Press
|
49 |
E Hemmativaghef. (2020). Exposure to lead, mercury, styrene, and toluene and hearing impairment: evaluation of dose-response relationships, regulations, and controls. Journal of Occupational and Environmental Hygiene, 17(11–12): 574–597
https://doi.org/10.1080/15459624.2020.1842428
pmid: 33275083
|
50 |
J Hill, A Goodkind, C Tessum, S Thakrar, D Tilman, S Polasky, T Smith, N Hunt, K Mullins, M Clark, J Marshall. (2019). Air-quality-related health damages of maize. Nature Sustainability, 2(5): 397–403
https://doi.org/10.1038/s41893-019-0261-y
|
51 |
C Hong, Q Zhang, K He, D Guan, M Li, F Liu, B Zheng. (2017). Variations of China’s emission estimates: response to uncertainties in energy statistics. Atmospheric Chemistry and Physics, 17(2): 1227–1239
https://doi.org/10.5194/acp-17-1227-2017
|
52 |
C Hong, Q Zhang, Y Zhang, S J Davis, D Tong, Y Zheng, Z Liu, D Guan, K He, H J Schellnhuber. (2019). Impacts of climate change on future air quality and human health in China. Proceedings of the National Academy of Sciences of the United States of America, 116(35): 17193–17200
https://doi.org/10.1073/pnas.1812881116
pmid: 31405979
|
53 |
C Hong, H Zhao, Y Qin, J A Burney, J Pongratz, K Hartung, Y Liu, F C Moore, R B Jackson, Q Zhang, S J Davis. (2022). Land-use emissions embodied in international trade. Science, 376(6593): 597–603
https://doi.org/10.1126/science.abj1572
pmid: 35511968
|
54 |
M A J Huijbregts, Z J N Steinmann, P M F Elshout, G Stam, F Verones, M Vieira, M Zijp, A Hollander, R Zelm. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2): 138–147
https://doi.org/10.1007/s11367-016-1246-y
|
55 |
H P Huntington, J I Schmidt, P A Loring, E Whitney, S Aggarwal, A G Byrd, S Dev, A D Dotson, D Huang, B Johnson. et al.. (2021). Applying the food–energy–water nexus concept at the local scale. Nature Sustainability, 4(8): 672–679
https://doi.org/10.1038/s41893-021-00719-1
|
56 |
J Jia, Z Gong, Z Gu, C Chen, D Xie. (2018). Multi-perspective comparisons and mitigation implications of SO2 and NOx discharges from the industrial sector of China: a decomposition analysis. Environmental Science and Pollution Research International, 25(10): 9600–9614
https://doi.org/10.1007/s11356-018-1306-x
pmid: 29359250
|
57 |
X Jia, D O’Connor, D Hou, Y Jin, G Li, C Zheng, Y S Ok, D C W Tsang, J Luo. (2019). Groundwater depletion and contamination: spatial distribution of groundwater resources sustainability in China. Science of the Total Environment, 672: 551–562
https://doi.org/10.1016/j.scitotenv.2019.03.457
pmid: 30965267
|
58 |
Y Jiang, J Xing, S Wang, X Chang, S Liu, A Shi, B Liu, K Sahu Shovan. (2021). Understand the local and regional contributions on air pollution from the view of human health impacts. Frontiers of Environmental Science & Engineering, 15(5): 88
https://doi.org/10.1007/s11783-020-1382-2
|
59 |
A Jordan, H M Patch, C M Grozinger, V Khanna. (2021). Economic dependence and vulnerability of United States agricultural sector on insect-mediated pollination service. Environmental Science & Technology, 55(4): 2243–2253
https://doi.org/10.1021/acs.est.0c04786
pmid: 33496588
|
60 |
J Kovanda, T Hak. (2008). Changes in materials use in transition economies. Journal of Industrial Ecology, 12(5–6): 721–738
https://doi.org/10.1111/j.1530-9290.2008.00088.x
|
61 |
S Y Kwon, N E Selin, A Giang, V J Karplus, D Zhang. (2018). Present and future mercury concentrations in Chinese rice: insights from modeling. Global Biogeochemical Cycles, 32(3): 437–462
https://doi.org/10.1002/2017GB005824
|
62 |
P J Landrigan, R Fuller, N J R Acosta, O Adeyi, R Arnold, N N Basu, A B Baldé, R Bertollini, S Bose-O’Reilly, J I Boufford. et al.. (2018). The Lancet Commission on pollution and health. Lancet, 391(10119): 462–512
https://doi.org/10.1016/S0140-6736(17)32345-0
pmid: 29056410
|
63 |
R A Lavoie, T D Jardine, M M Chumchal, K A Kidd, L M Campbell. (2013). Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environmental Science & Technology, 47(23): 13385–13394
https://doi.org/10.1021/es403103t
pmid: 24151937
|
64 |
L C Lee, Y Wang, J Zuo. (2021). The nexus of water-energy-food in China’s tourism industry. Resources, Conservation, and Recycling, 164: 105157
https://doi.org/10.1016/j.resconrec.2020.105157
pmid: 32952298
|
65 |
J Lelieveld, J S Evans, M Fnais, D Giannadaki, A Pozzer. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569): 367–371
https://doi.org/10.1038/nature15371
pmid: 26381985
|
66 |
M Lenzen, D Moran, K Kanemoto, B Foran, L Lobefaro, A Geschke. (2012). International trade drives biodiversity threats in developing nations. Nature, 486(7401): 109–112
https://doi.org/10.1038/nature11145
pmid: 22678290
|
67 |
M Lenzen, J Murray. (2010). Conceptualising environmental responsibility. Ecological Economics, 70(2): 261–270
https://doi.org/10.1016/j.ecolecon.2010.04.005
|
68 |
B Li, T Gasser, P Ciais, S Piao, S Tao, Y Balkanski, D Hauglustaine, J P Boisier, Z Chen, M Huang. et al.. (2016a). The contribution of China’s emissions to global climate forcing. Nature, 531(7594): 357–361
https://doi.org/10.1038/nature17165
pmid: 26983540
|
69 |
H Li, Y Zhao, L Zheng, S Wang, J Kang, Y Liu, H Li, L Shi, Y Shan. (2021a). Dynamic characteristics and drivers of the regional household energy-carbon-water nexus in China. Environmental Science and Pollution Research International, 28(39): 55220–55232
https://doi.org/10.1007/s11356-021-13924-4
pmid: 34128163
|
70 |
H Li, Y Geng , R Shinwari, W Yangjie, H Rjoub (2021b). Does renewable energy electricity and economic complexity index help to achieve carbon neutrality target of top exporting countries? Journal of Environmental Management, 299: 113386
|
71 |
J Li, S Zhou, W Wei, J Qi, Y Li, B Chen, N Zhang, D Guan, H Qian, X Wu, J Miao, L Chen, K Feng, S Liang. (2020a). China’s retrofitting measures in coal-fired power plants bring significant mercury-related health benefits. One Earth, 3(6): 777–787
https://doi.org/10.1016/j.oneear.2020.11.012
|
72 |
J Li, H Zhou, J Meng, Q Yang, B Chen, Y Zhang. (2018). Carbon emissions and their drivers for a typical urban economy from multiple perspectives: a case analysis for Beijing city. Applied Energy, 226: 1076–1086
https://doi.org/10.1016/j.apenergy.2018.06.004
|
73 |
L Li, X Wang, J Miao, A Abulimiti, X Jing, N Ren. (2022a). Carbon neutrality of wastewater treatment: a systematic concept beyond the plant boundary. Environmental Science and Ecotechnology, 11: 100180
https://doi.org/10.1016/j.ese.2022.100180
|
74 |
Y Li, L Chen, S Liang, J Qi, H Zhou, C Feng, X Yang, X Wu, Z Mi, Z Yang. (2020b). Spatially explicit global hotspots driving China’s mercury related health impacts. Environmental Science & Technology, 54(22): 14547–14557
https://doi.org/10.1021/acs.est.0c04658
pmid: 33112142
|
75 |
Y Li, L Chen, S Liang, H Zhou, Y R Liu, H Zhong, Z Yang. (2022b). Looping mercury cycle in global environmental-economic system modeling. Environmental Science & Technology, 56(5): 2861–2879
https://doi.org/10.1021/acs.est.1c03936
pmid: 35129955
|
76 |
Y Li, J Meng, J Liu, Y Xu, D Guan, W Tao, Y Huang, S Tao. (2016b). Interprovincial reliance for improving air quality in China: a case study on black carbon aerosol. Environmental Science & Technology, 50(7): 4118–4126
https://doi.org/10.1021/acs.est.5b05989
pmid: 26950657
|
77 |
S Liang, W Chang, H Zhou, J Qi, Y Li, C Feng, S Wang. (2021a). Global economic structure transition boosts atmospheric mercury emissions in China. Earth's Future, 9(6): e2021EF002076
https://doi.org/10.1029/2021EF002076
|
78 |
S Liang, Z Liu, D Crawford-Brown, Y Wang, M Xu. (2014). Decoupling analysis and socioeconomic drivers of environmental pressure in China. Environmental Science & Technology, 48(2): 1103–1113
https://doi.org/10.1021/es4042429
pmid: 24354299
|
79 |
S Liang, S Qu, M Xu. (2016a). Betweenness-based method to identify critical transmission sectors for supply chain environmental pressure mitigation. Environmental Science & Technology, 50(3): 1330–1337
https://doi.org/10.1021/acs.est.5b04855
pmid: 26727352
|
80 |
S Liang, S Qu, Q Zhao, X Zhang, G T Daigger, J P Newell, S A Miller, J X Johnson, N G Love, L Zhang. et al.. (2019). Quantifying the urban food-energy-water nexus: the case of the Detroit metropolitan area. Environmental Science & Technology, 53(2): 779–788
https://doi.org/10.1021/acs.est.8b06240
pmid: 30540460
|
81 |
S Liang, S Qu, Z Zhu, D Guan, M Xu. (2017). Income-based greenhouse gas emissions of nations. Environmental Science & Technology, 51(1): 346–355
https://doi.org/10.1021/acs.est.6b02510
pmid: 27936320
|
82 |
S Liang, H Wang, S Qu, T Feng, D Guan, H Fang, M Xu. (2016b). Socioeconomic drivers of greenhouse gas emissions in the United States. Environmental Science & Technology, 50(14): 7535–7545
https://doi.org/10.1021/acs.est.6b00872
pmid: 27276120
|
83 |
S Liang, Y Wang, S Cinnirella, N Pirrone. (2015). Atmospheric mercury footprints of nations. Environmental Science & Technology, 49(6): 3566–3574
https://doi.org/10.1021/es503977y
pmid: 25723898
|
84 |
S Liang, M Xu, Z Liu, S Suh, T Zhang. (2013a). Socioeconomic drivers of mercury emissions in China from 1992 to 2007. Environmental Science & Technology, 47(7): 3234–3240
https://doi.org/10.1021/es303728d
pmid: 23473539
|
85 |
S Liang, M Xu, S Suh, R R Tan. (2013b). Unintended environmental consequences and co-benefits of economic restructuring. Environmental Science & Technology, 47(22): 12894–12902
https://doi.org/10.1021/es402458u
pmid: 24117387
|
86 |
Y Liang, Y Li, S Liang, C Feng, L Xu, J Qi, X Yang, Y Wang, C Zhang, K Li, H Li, Z Yang. (2020). Quantifying direct and indirect spatial food-energy-water (few) nexus in China. Environmental Science & Technology, 54(16): 9791–9803
https://doi.org/10.1021/acs.est.9b06548
pmid: 32677825
|
87 |
Y Liang, S Liang, K Li, J Qi, C Feng, L Xu, Z Yang. (2021b). Socioeconomic determinants for the changing food-related scarce water uses in Chinese regions. Journal of Cleaner Production, 316: 128190
https://doi.org/10.1016/j.jclepro.2021.128190
|
88 |
S Liao, Y Wu, S W Wong, L Shen. (2020). Provincial perspective analysis on the coordination between urbanization growth and resource environment carrying capacity (RECC) in China. Science of the Total Environment, 730: 138964
https://doi.org/10.1016/j.scitotenv.2020.138964
pmid: 32402965
|
89 |
C Lin, J Qi, S Liang, C Feng, T O Wiedmann, Y Liao, X Yang, Y Li, Z Mi, Z Yang. (2020). Saving less in China facilitates global CO2 mitigation. Nature Communications, 11(1): 1358
https://doi.org/10.1038/s41467-020-15175-2
pmid: 32170147
|
90 |
J Lin, M Du, L Chen, K Feng, Y Liu, R V Martin, J Wang, R Ni, Y Zhao, H Kong, H Weng, M Liu, A Donkelaar, Q Liu, K Hubacek. (2019). Carbon and health implications of trade restrictions. Nature Communications, 10(1): 4947
https://doi.org/10.1038/s41467-019-12890-3
pmid: 31666528
|
91 |
J Lin, D Tong, S Davis, R Ni, X Tan, D Pan, H Zhao, Z Lu, D Streets, T Feng. et al.. (2016). Global climate forcing of aerosols embodied in international trade. Nature Geoscience, 9(10): 790–794
https://doi.org/10.1038/ngeo2798
|
92 |
J Liu, T Dietz, S R Carpenter, M Alberti, C Folke, E Moran, A N Pell, P Deadman, T Kratz, J Lubchenco. et al.. (2007). Complexity of coupled human and natural systems. Science, 317(5844): 1513–1516
https://doi.org/10.1126/science.1144004
pmid: 17872436
|
93 |
J Liu, V Hull, H C J Godfray, D Tilman, P Gleick, H Hoff, C Pahl-Wostl, Z Xu, M G Chung, J Sun, S Li. (2018). Nexus approaches to global sustainable development. Nature Sustainability, 1(9): 466–476
https://doi.org/10.1038/s41893-018-0135-8
|
94 |
J Liu, H Mooney, V Hull, S J Davis, J Gaskell, T Hertel, J Lubchenco, K C Seto, P Gleick, C Kremen, S Li. (2015). Systems integration for global sustainability. Science, 347(6225): 1258832
https://doi.org/10.1126/science.1258832
pmid: 25722418
|
95 |
J Liu, H Yin, X Tang, T Zhu, Q Zhang, Z Liu, X Tang, H Yi. (2021a). Transition in air pollution, disease burden and health cost in China: a comparative study of long-term and short-term exposure. Environmental Pollution, 277: 116770
https://doi.org/10.1016/j.envpol.2021.116770
pmid: 33640815
|
96 |
M Liu, Q Zhang, C Yu, L Yuan, Y He, W Xiao, H Zhang, J Guo, W Zhang, Y Li. et al.. (2021b). Observation-based mercury export from rivers to coastal oceans in East Asia. Environmental Science & Technology, 55(20): 14269–14280
https://doi.org/10.1021/acs.est.1c03755
pmid: 34618428
|
97 |
X Liu, Y Huang, X Xu, X Li, P Ciais, P Lin, K Gong, A D Ziegler, A Chen, P Gong. et al.. (2020). High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 3(7): 564–570
https://doi.org/10.1038/s41893-020-0521-x
|
98 |
R Ma, K Li, Y Guo, B Zhang, X Zhao, S Linder, C Guan, G Chen, Y Gan, J Meng. (2021). Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nature Communications, 12(1): 6308
https://doi.org/10.1038/s41467-021-25854-3
|
99 |
T Ma, S Sun, G Fu, J W Hall, Y Ni, L He, J Yi, N Zhao, Y Du, T Pei, W Cheng, C Song, C Fang, C Zhou. (2020). Pollution exacerbates China’s water scarcity and its regional inequality. Nature Communications, 11(1): 650
https://doi.org/10.1038/s41467-020-14532-5
pmid: 32005847
|
100 |
C Magazzino, M Mele, N Schneider. (2021). A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions. Renewable Energy, 167: 99–115
https://doi.org/10.1016/j.renene.2020.11.050
|
101 |
A Marques, I S Martins, T Kastner, C Plutzar, M C Theurl, N Eisenmenger, M A J Huijbregts, R Wood, K Stadler, M Bruckner. et al.. (2019). Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology & Evolution, 3(4): 628–637
https://doi.org/10.1038/s41559-019-0824-3
pmid: 30833755
|
102 |
A Marques, J Rodrigues, M Lenzen, T Domingos. (2012). Income-based environmental responsibility. Ecological Economics, 84: 57–65
https://doi.org/10.1016/j.ecolecon.2012.09.010
|
103 |
P Massányi, M Massányi, R Madeddu, R Stawarz, N Lukáč. (2020). Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics, 8(4): 94
https://doi.org/10.3390/toxics8040094
pmid: 33137881
|
104 |
Z Mi, Y Zhang, D Guan, Y Shan, Z Liu, R Cong, X Yuan, Y Wei. (2016). Consumption-based emission accounting for Chinese cities. Applied Energy, 184: 1073–1081
https://doi.org/10.1016/j.apenergy.2016.06.094
|
105 |
Miller R E, Blair P D (2009). Input-output Analysis: Foundations and Extensions. Cambridge: Cambridge University Press
|
106 |
F C Moore, K Lacasse, K J Mach, Y A Shin, L J Gross, B Beckage. (2022). Determinants of emissions pathways in the coupled climate-social system. Nature, 603(7899): 103–111
https://doi.org/10.1038/s41586-022-04423-8
pmid: 35173331
|
107 |
R H Moss, J A Edmonds, K A Hibbard, M R Manning, S K Rose, Vuuren D P van, T R Carter, S Emori, M Kainuma, T Kram. et al.. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747–756
https://doi.org/10.1038/nature08823
pmid: 20148028
|
108 |
V Moutinho, A C Moreira, P M Silva. (2015). The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis. Renewable & Sustainable Energy Reviews, 50: 1485–1499
https://doi.org/10.1016/j.rser.2015.05.072
|
109 |
K Nansai, S Tohno, S Chatani, K Kanemoto, M Kurogi, Y Fujii, S Kagawa, Y Kondo, F Nagashima, W Takayanagi, M Lenzen. (2020). Affluent countries inflict inequitable mortality and economic loss on Asia via PM2.5 emissions. Environment International, 134: 105238
https://doi.org/10.1016/j.envint.2019.105238
pmid: 31704567
|
110 |
K S Nielsen, K A Nicholas, F Creutzig, T Dietz, P C Stern. (2021). The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions. Nature Energy, 6(11): 1011–1016
https://doi.org/10.1038/s41560-021-00900-y
|
111 |
C C O'Hara, M Frazier, B S Halpern. (2021). At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science, 372(6537): 84–87
https://doi.org/10.1126/science.abe6731
pmid: 33795456
|
112 |
Y Oswald, A Owen, J K Steinberger. (2020). Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nature Energy, 5(3): 231–239
https://doi.org/10.1038/s41560-020-0579-8
|
113 |
A Owen, K Scott, J Barrett. (2018). Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus. Applied Energy, 210: 632–642
https://doi.org/10.1016/j.apenergy.2017.09.069
|
114 |
A V Pastor, A Palazzo, P Havlik, H Biemans, Y Wada, M Obersteiner, P Kabat, F Ludwig. (2019). The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2(6): 499–507
https://doi.org/10.1038/s41893-019-0287-1
|
115 |
L Peng, F Liu, M Zhou, M Li, Q Zhang, D L Mauzerall. (2021a). Alternative-energy-vehicles deployment delivers climate, air quality, and health co-benefits when coupled with decarbonizing power generation in China. One Earth, 4(8): 1127–1140
https://doi.org/10.1016/j.oneear.2021.07.007
|
116 |
W Peng, G Iyer, V Bosetti, V Chaturvedi, J Edmonds, A A Fawcett, S Hallegatte, D G Victor, D van Vuuren, J Weyant. (2021b). Climate policy models need to get real about people - Here’s how. Nature, 594(7862): 174–176
https://doi.org/10.1038/d41586-021-01500-2
pmid: 34103720
|
117 |
W Peng, F Wagner, M V Ramana, H Zhai, M J Small, C Dalin, X Zhang, D L Mauzerall. (2018). Managing China’s coal power plants to address multiple environmental objectives. Nature Sustainability, 1(11): 693–701
https://doi.org/10.1038/s41893-018-0174-1
|
118 |
G P Peters. (2008). From production-based to consumption-based national emission inventories. Ecological Economics, 65(1): 13–23
https://doi.org/10.1016/j.ecolecon.2007.10.014
|
119 |
S Piao, C Yue, J Ding, Z Guo. (2022). Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Science China Earth Sciences, 65(6): 1178–1186
https://doi.org/10.1007/s11430-022-9926-6
|
120 |
C Pichery, M Bellanger, D Zmirou-Navier, N Fréry, S Cordier, A Roue-Legall, P Hartemann, P Grandjean. (2012). Economic evaluation of health consequences of prenatal methylmercury exposure in France. Environmental Health, 11(1): 53
https://doi.org/10.1186/1476-069X-11-53
pmid: 22883022
|
121 |
J Qi, Y Wang, S Liang, Y Li, Y Li, C Feng, L Xu, S Wang, L Chen, D Wang, Z Yang. (2019). Primary suppliers driving atmospheric mercury emissions through global supply chains. One Earth, 1(2): 254–266
https://doi.org/10.1016/j.oneear.2019.10.005
|
122 |
H Qian, S Xu, J Cao, F Ren, W Wei, J Meng, L Wu. (2021). Air pollution reduction and climate co-benefits in China’s industries. Nature Sustainability, 4(5): 417–425
https://doi.org/10.1038/s41893-020-00669-0
|
123 |
S Qu, S Liang, M Konar, Z Zhu, A S F Chiu, X Jia, M Xu. (2018). Virtual water scarcity risk to the global trade system. Environmental Science & Technology, 52(2): 673–683
https://doi.org/10.1021/acs.est.7b04309
pmid: 29231718
|
124 |
V Ramanathan, Y Xu, A Versaci. (2022). Modelling human–natural systems interactions with implications for twenty-first-century warming. Nature Sustainability, 5(3): 263–271
https://doi.org/10.1038/s41893-021-00826-z
|
125 |
N D Rao, G Kiesewetter, J Min, S Pachauri, F Wagner. (2021). Household contributions to and impacts from air pollution in India. Nature Sustainability, 4(10): 859–867
https://doi.org/10.1038/s41893-021-00744-0
|
126 |
J Rodrigues, T Domingos. (2008). Consumer and producer environmental responsibility: comparing two approaches. Ecological Economics, 66(2–3): 533–546
https://doi.org/10.1016/j.ecolecon.2007.12.010
|
127 |
B H Samset, J S Fuglestvedt, M T Lund. (2020). Delayed emergence of a global temperature response after emission mitigation. Nature Communications, 11(1): 3261
https://doi.org/10.1038/s41467-020-17001-1
pmid: 32636367
|
128 |
E A G Schuur, A D Mcguire, C Schadel, G Grosse, J W Harden, D J Hayes, G Hugelius, C D Koven, P Kuhry, D M Lawrence, S M Natali, D Olefeldt, V E Romanovsky, K Schaefer, M R Turetsky, C C Treat, J E Vonk. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546): 171–179
https://doi.org/10.1038/nature14338
|
129 |
S M Shah, G Y Liu, Q Yang, X Q Wang, M Casazza, F Agostinho, G V Lombardi, B F Giannetti. (2019). Emergy-based valuation of agriculture ecosystem services and dis-services. Journal of Cleaner Production, 239: 118019
https://doi.org/10.1016/j.jclepro.2019.118019
|
130 |
Y Shan, D Guan, H Zheng, J Ou, Y Li, J Meng, Z Mi, Z Liu, Q Zhang. (2018). China CO2 emission accounts 1997-2015. Scientific Data, 5(1): 170201
https://doi.org/10.1038/sdata.2017.201
pmid: 29337312
|
131 |
W Shao, F Li, X Cao, Z Tang, Y Bai, S Yang. (2020). Reducing export-driven CO2 and PM emissions in China’s provinces: a structural decomposition and coordinated effects analysis. Journal of Cleaner Production, 274: 123101
https://doi.org/10.1016/j.jclepro.2020.123101
|
132 |
G Shi, X Lu, Y Deng, J Urpelainen, L C Liu, Z Zhang, W Wei, H Wang. (2020). Air pollutant emissions induced by population migration in China. Environmental Science & Technology, 54(10): 6308–6318
https://doi.org/10.1021/acs.est.0c00726
pmid: 32216336
|
133 |
B Singh, A H Strømman, E G Hertwich. (2012). Scenarios for the environmental impact of fossil fuel power: co-benefits and trade-offs of carbon capture and storage. Energy, 45(1): 762–770
https://doi.org/10.1016/j.energy.2012.07.014
|
134 |
K W Steininger, C Lininger, L H Meyer, P Munoz, T Schinko. (2016). Multiple carbon accounting to support just and effective climate policies. Nature Climate Change, 6(1): 35–41
https://doi.org/10.1038/nclimate2867
|
135 |
C W Tessum, J S Apte, A L Goodkind, N Z Muller, K A Mullins, D A Paolella, S Polasky, N P Springer, S K Thakrar, J D Marshall, J D Hill. (2019). Inequity in consumption of goods and services adds to racial-ethnic disparities in air pollution exposure. Proceedings of the National Academy of Sciences of the United States of America, 116(13): 6001–6006
https://doi.org/10.1073/pnas.1818859116
pmid: 30858319
|
136 |
E Trutnevyte, L F Hirt, N Bauer, A Cherp, A Hawkes, O Y Edelenbosch, S Pedde, D P Van Vuuren. (2019). Societal transformations in models for energy and climate policy: the ambitious next step. One Earth, 1(4): 423–433
https://doi.org/10.1016/j.oneear.2019.12.002
|
137 |
F Wang, J D Harindintwali, Z Yuan, M Wang, F Wang, S Li, Z Yin, L Huang, Y Fu, L Li. et al.. (2021a). Technologies and perspectives for achieving carbon neutrality. The Innovation, 2(4): 100180
https://doi.org/10.1016/j.xinn.2021.100180
pmid: 34877561
|
138 |
H Wang, B W Ang, B Su. (2017). A multi-region structural decomposition analysis of global CO2 emission intensity. Ecological Economics, 142: 163–176
https://doi.org/10.1016/j.ecolecon.2017.06.023
|
139 |
H Wang, G Wang, J Qi, H Schandl, Y Li, C Feng, X Yang, Y Wang, X Wang, S Liang. (2020). Scarcity-weighted fossil fuel footprint of China at the provincial level. Applied Energy, 258: 114081
https://doi.org/10.1016/j.apenergy.2019.114081
|
140 |
P Wang, S Zhao, T Dai, K Peng, Q Zhang, J Li, W Q Chen. (2022). Regional disparities in steel production and restrictions to progress on global decarbonization: a cross-national analysis. Renewable & Sustainable Energy Reviews, 161: 112367
https://doi.org/10.1016/j.rser.2022.112367
|
141 |
R Wang, J Zimmerman. (2016). Hybrid analysis of blue water consumption and water scarcity implications at the global, national, and basin levels in an increasingly globalized world. Environmental Science & Technology, 50(10): 5143–5153
https://doi.org/10.1021/acs.est.6b00571
pmid: 27101068
|
142 |
S Wang, B Fu, W Zhao, Y Liu, F Wei. (2018). Structure, function, and dynamic mechanisms of coupled human–natural systems. Current Opinion in Environmental Sustainability, 33: 87–91
https://doi.org/10.1016/j.cosust.2018.05.002
|
143 |
S Wang, J Song, G Li, Y Wu, L Zhang, Q Wan, D G Streets, C K Chin, J Hao. (2010). Estimating mercury emissions from a zinc smelter in relation to China’s mercury control policies. Environmental Pollution, 158(10): 3347–3353
https://doi.org/10.1016/j.envpol.2010.07.032
pmid: 20716469
|
144 |
Z Wang, L Lian, J Li, J He, H Ma, L Chen, X Mao, H Gao, J Ma, T Huang. (2021b). The atmospheric lead emission, deposition, and environmental inequality driven by interprovincial trade in China. Science of the Total Environment, 797: 149113
https://doi.org/10.1016/j.scitotenv.2021.149113
pmid: 34303976
|
145 |
L Wei, C Li, J Wang, X Wang, Z Wang, C Cui, S Peng, Y Liu, S Yu, L Wang, Z Shi. (2020). Rising middle and rich classes drove China’s carbon emissions. Resources, Conservation and Recycling, 159: 104839
https://doi.org/10.1016/j.resconrec.2020.104839
|
146 |
Y Wei, K Chen, J Kang, W Chen, X Wang, X Zhang. (2022). Policy and management of carbon peaking and carbon neutrality: a literature review. Engineering, 14(7): 52–63
https://doi.org/10.1016/j.eng.2021.12.018
|
147 |
P C West, J S Gerber, P M Engstrom, N D Mueller, K A Brauman, K M Carlson, E S Cassidy, M Johnston, G K MacDonald, D K Ray, S Siebert. (2014). Leverage points for improving global food security and the environment. Science, 345(6194): 325–328
https://doi.org/10.1126/science.1246067
pmid: 25035492
|
148 |
T Wiedmann, M Lenzen. (2018). Environmental and social footprints of international trade. Nature Geoscience, 11(5): 314–321
https://doi.org/10.1038/s41561-018-0113-9
|
149 |
H C Wilting, A M Schipper, M Bakkenes, J R Meijer, M A Huijbregts. (2017). Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environmental Science & Technology, 51(6): 3298–3306
https://doi.org/10.1021/acs.est.6b05296
pmid: 28072521
|
150 |
M J Wolf, D C Esty, H Kim, M L Bell, S Brigham, Q Nortonsmith, S Zaharieva, Z A Wendling, A de Sherbinin, J W Emerson. (2022). New insights for tracking global and local trends in exposure to air pollutants. Environmental Science & Technology, 56(7): 3984–3996
https://doi.org/10.1021/acs.est.1c08080
pmid: 35255208
|
151 |
Q Wu, S Wang, K Liu, G Li, J Hao. (2018). Emission-limit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the implementation of the minamata convention. Environmental Science & Technology, 52(19): 11087–11093
https://doi.org/10.1021/acs.est.8b02250
pmid: 30193461
|
152 |
T Wu, B Qin, J D Brookes, W Yan, X Ji, J Feng (2019). Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective. Science of the Total Environment, 650(Pt 1): 1554–1565
|
153 |
Y Wu, S Wang, D G Streets, J Hao, M Chan, J Jiang. (2006). Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science & Technology, 40(17): 5312–5318
https://doi.org/10.1021/es060406x
pmid: 16999104
|
154 |
J Xue, X Ji, L Zhao, Y Yang, Y Xie, D Li, C Wang, W Sun. (2019). Cooperative econometric model for regional air pollution control with the additional goal of promoting employment. Journal of Cleaner Production, 237: 117814
https://doi.org/10.1016/j.jclepro.2019.117814
|
155 |
Yang H, Huang X J, Hu J L, Thompson J R, Flower R J (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111
|
156 |
X Yang, F Teng. (2018). Air quality benefit of China’s mitigation target to peak its emission by 2030. Climate Policy, 18(1): 99–110
https://doi.org/10.1080/14693062.2016.1244762
|
157 |
Y Yang, S Qu, B Cai, S Liang, Z Wang, J Wang, M Xu. (2020). Mapping global carbon footprint in China. Nature Communications, 11(1): 2237
https://doi.org/10.1038/s41467-020-15883-9
pmid: 32382018
|
158 |
C Zhang, L Zhong, J Wang. (2018a). Decoupling between water use and thermoelectric power generation growth in China. Nature Energy, 3(9): 792–799
https://doi.org/10.1038/s41560-018-0236-7
|
159 |
L Zhang, S Wang, Y Meng, J Hao. (2012). Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China. Environmental Science & Technology, 46(11): 6385–6392
https://doi.org/10.1021/es300286n
pmid: 22533359
|
160 |
Q Zhang, X Jiang, D Tong, S J Davis, H Zhao, G Geng, T Feng, B Zheng, Z Lu, D G Streets. et al.. (2017). Transboundary health impacts of transported global air pollution and international trade. Nature, 543(7647): 705–709
https://doi.org/10.1038/nature21712
pmid: 28358094
|
161 |
Q Zhang, Y X Zheng, D Tong, M Shao, S X Wang, Y H Zhang, X D Xu, J N Wang, H He, W Q Liu. et al.. (2019a). Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463–24469
https://doi.org/10.1073/pnas.1907956116
|
162 |
R Zhang, T Hanaoka. (2022a). Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality. Nature Communications, 13(1): 3629
https://doi.org/10.1038/s41467-022-31354-9
pmid: 35750686
|
163 |
S Zhang, W Chen. (2022b). Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nature Communications, 13(1): 87
https://doi.org/10.1038/s41467-021-27671-0
pmid: 35013253
|
164 |
S Zhang, Y Tian, H Guo, R Liu, N He, Z Li, W Zhao. (2022c). Study on the occurrence of typical heavy metals in drinking water and corrosion scales in a large community in northern China. Chemosphere, 290: 133145
https://doi.org/10.1016/j.chemosphere.2021.133145
pmid: 34921856
|
165 |
Y Zhang, D J Jacob, H M Horowitz, L Chen, H M Amos, D P Krabbenhoft, F Slemr, V L St Louis, E M Sunderland. (2016). Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proceedings of the National Academy of Sciences of the United States of America, 113(3): 526–531
https://doi.org/10.1073/pnas.1516312113
pmid: 26729866
|
166 |
Y Zhang, Z Song, S Huang, P Zhang, Y Peng, P Wu, J Gu, S Dutkiewicz, H Zhang, S Wu. et al.. (2021). Global health effects of future atmospheric mercury emissions. Nature Communications, 12(1): 3035
https://doi.org/10.1038/s41467-021-23391-7
pmid: 34031414
|
167 |
Z Zhang, Y Hao, Z N Lu. (2018b). Does environmental pollution affect labor supply? An empirical analysis based on 112 cities in China. Journal of Cleaner Production, 190: 378–387
https://doi.org/10.1016/j.jclepro.2018.04.093
|
168 |
Z Zhang, C Shao, Y Guan, C Xue. (2019b). Socioeconomic factors and regional differences of PM2.5 health risks in China. Journal of Environmental Management, 251: 109564
https://doi.org/10.1016/j.jenvman.2019.109564
pmid: 31557670
|
169 |
C Zhao, B Chen. (2014). Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environmental Science & Technology, 48(21): 12723–12731
https://doi.org/10.1021/es503513z
pmid: 25289879
|
170 |
H Zhao, J F Chang, P Havlik, M Van Dijk, H Valin, C Janssens, L Ma, Z H Bai, M Herrero, P Smith, M Obersteiner. (2021). China’s future food demand and its implications for trade and environment. Nature Sustainability, 4(12): 1042–1051
https://doi.org/10.1038/s41893-021-00784-6
|
171 |
R Zhao, Y Liu, M Tian, M Ding, L Cao, Z Zhang, X Chuai, L Xiao, L Yao. (2018). Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy, 72: 480–492
https://doi.org/10.1016/j.landusepol.2017.12.029
|
172 |
W Zhen, Q Qin, Y Kuang, N Huang. (2017). Investigating low-carbon crop production in Guangdong Province, China (1993–2013): a decoupling and decomposition analysis. Journal of Cleaner Production, 146: 63–70
https://doi.org/10.1016/j.jclepro.2016.05.022
|
173 |
H Zheng, Y Long, R Wood, D Moran, Z Zhang, J Meng, S Feng, E Hertwich, D Guan. (2022). Ageing society in developed countries challenges carbon mitigation. Nature Climate Change, 12(3): 241–248
https://doi.org/10.1038/s41558-022-01302-y
|
174 |
Q Zhong, H Li, S Liang, X Jetashree, J Wu, S Qi. (2022). Changes of production and consumption structures in coastal regions lead to mercury emission control in China. Journal of Industrial Ecology, 1–11
https://doi.org/10.1111/jiec.13314
|
175 |
X Zhu, R Lane, T T Werner. (2017). Modelling in-use stocks and spatial distributions of household electronic devices and their contained metals based on household survey data. Resources, Conservation and Recycling, 120: 27–37
https://doi.org/10.1016/j.resconrec.2017.01.002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|