Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (3) : 37    https://doi.org/10.1007/s11783-023-1637-9
RESEARCH ARTICLE
Low-temperature caproate production, microbial diversity, and metabolic pathway in xylose anaerobic fermentation
Qingting Wang, Kun Dai, Jie Tang, Sidi Hong, Sijie Zheng, Ting Sun, Raymond Jianxiong Zeng(), Fang Zhang()
Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
 Download: PDF(19459 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Converting xylose to caproate under a low temperature of 20 °C by MCF was verified.

● Final concentration of caproate from xylose in a batch reactor reached 1.6 g/L.

● Changing the substrate to ethanol did not notably increase the caproate production.

● Four genera, including Bifidobacterium , were revealed as caproate producers.

● The FAB pathway and incomplete RBO pathway were revealed via metagenomic analysis.

Mixed culture fermentation (MCF) is challenged by the unqualified activity of enriched bacteria and unwanted methane dissolution under low temperatures. In this work, caproate production from xylose was investigated by MCF at a low temperature (20 °C). The results showed that a 9 d long hydraulic retention time (HRT) in a continuously stirred tank reactor was necessary for caproate production (~0.3 g/L, equal to 0.6 g COD/L) from xylose (10 g/L). The caproate concentration in the batch mode was further increased to 1.6 g/L. However, changing the substrate to ethanol did not promote caproate production, resulting in ~1.0 g/L after 45 d of operation. Four genera, Bifidobacterium, Caproiciproducens, Actinomyces, and Clostridium_sensu_stricto_12, were identified as the enriched caproate-producing bacteria. The enzymes in the fatty acid biosynthesis (FAB) pathway for caproate production were identified via metagenomic analysis. The enzymes for the conversion of (Cn+2)-2,3-Dehydroxyacyl-CoA to (Cn+2)-Acyl-CoA (i.e., EC 1.3.1.8 and EC 1.3.1.38) in the reverse β-oxidation (RBO) pathway were not identified. These results could extend the understanding of low-temperature caproate production.

Keywords Xylose fermentation      Caproate      Low temperature      Bifidobacterium      FAB pathway      RBO pathway     
Corresponding Author(s): Raymond Jianxiong Zeng,Fang Zhang   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 17 October 2022
 Cite this article:   
Qingting Wang,Kun Dai,Jie Tang, et al. Low-temperature caproate production, microbial diversity, and metabolic pathway in xylose anaerobic fermentation[J]. Front. Environ. Sci. Eng., 2023, 17(3): 37.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1637-9
https://academic.hep.com.cn/fese/EN/Y2023/V17/I3/37
Experiments Running mode pH and HRT Substrate
Stage 1 (Days 1–95) CSTR 5.5, 5.0, and 4.5 under HRT of 4.5 d Xylose 10 g/L
Stage 2 (Days 95–130) CSTR 5.0 and HRT of 9 d Xylose 10 g/L
Stage 3 (45 d) Batch-1 5.0 Xylose 19 g/L
Stage 4 (45 d) Batch-2 5.0 Ethanol 5 g/L
Tab.1  Experimental conditions of xylose fermentation for caproate production
Fig.1  Metabolites production from xylose in a mesophilic CSTR reactor under acidic pH and short HRT. (a) HRT and pH values, (b) biomass and xylose concentrations, (c) gaseous metabolites, and (d) liquid metabolites.
Fig.2  Caproate and other metabolites production under HRT of 9 d. (a) HRT and pH, (b) biomass and xylose concentrations, (c) gaseous metabolites, and (d) liquid metabolites.
Fig.3  Caproate and other metabolites production in batch reactors. (a) Gaseous and (b) liquid metabolites of xylose in Stage 3, (c) gaseous and (d) liquid metabolites of ethanol addition in Stage 4. Note: in (b) means the addition of xylose.
Sample name Sequence number Mean length (bp) OTU number ACE Chao1 Coverage Shannon
LC01 49262 415.9 958 963.6 960.7 0.999 5.50
LC02 50742 410.1 44 46.8 45.3 0.999 1.13
LC03 61057 407.7 74 123.4 112.0 0.999 1.64
LC04 60320 411.2 57 62.0 59.8 0.999 1.30
LC05 66111 410.7 111 118.9 115.6 0.999 2.16
LC06 43464 414.1 97 100.1 98.6 0.999 1.90
LC07 59238 414.2 140 151.6 152.4 0.999 2.88
Tab.2  Sequencing indices of enriched bacteria for caproate production
Fig.4  Rarefaction curves based on Shannon index (a) and observed OTU number (b) and the composition of bacterial phyla (c).
Fig.5  Top 15 enriched genera in low-temperature xylose fermentation.
Fig.6  Metabolic pathway for caproate production using the substrates of xylose and ethanol. Note: a blue frame marked the identified enzyme.
1 G Alessandri, D van Sinderen, M Ventura. (2021). The genus bifidobacterium: from genomics to functionality of an important component of the mammalian gut microbiota running title: Bifidobacterial adaptation to and interaction with the host. Computational and Structural Biotechnology Journal, 19: 1472–1487
https://doi.org/10.1016/j.csbj.2021.03.006 pmid: 33777340
2 Z D Alvarado-Cuevas, A M López-Hidalgo, L G Ordoñez, E Oceguera-Contreras, J T Ornelas-Salas, León-Rodríguez A De. (2015). Biohydrogen production using psychrophilic bacteria isolated from Antarctica. International Journal of Hydrogen Energy, 40(24): 7586–7592
https://doi.org/10.1016/j.ijhydene.2014.10.063
3 C L Alvarez-Guzmán, E Oceguera-Contreras, J T Ornelas-Salas, V E Balderas-Hernández, León-Rodríguez A De. (2016). Biohydrogen production by the psychrophilic G088 strain using single carbohydrates as substrate. International Journal of Hydrogen Energy, 41(19): 8092–8100
https://doi.org/10.1016/j.ijhydene.2015.11.189
4 D J Beale, A V Karpe, J D McLeod, S V Gondalia, T H Muster, M Z Othman, E A Palombo, D Joshi. (2016). An ‘omics’ approach towards the characterisation of laboratory scale anaerobic digesters treating municipal sewage sludge. Water Research, 88: 346–357
https://doi.org/10.1016/j.watres.2015.10.029 pmid: 26512813
5 S Crognale, C M Braguglia, A Gallipoli, A Gianico, S Rossetti, D Montecchio. (2021). Direct conversion of food waste extract into caproate: metagenomics assessment of chain elongation process. Microorganisms, 9(2): 327
https://doi.org/10.3390/microorganisms9020327 pmid: 33562834
6 K Dai, J L Wen, Y L Wang, Z G Wu, P J Zhao, H H Zhang, J J Wang, R J Zeng, F Zhang. (2019). Impacts of medium composition and applied current on recovery of volatile fatty acids during coupling of electrodialysis with an anaerobic digester. Journal of Cleaner Production, 207: 483–489
https://doi.org/10.1016/j.jclepro.2018.10.019
7 K Dai, W Zhang, R J Zeng, F Zhang. (2020). Production of chemicals in thermophilic mixed culture fermentation: mechanism and strategy. Critical Reviews in Environmental Science and Technology, 50(1): 1–30
https://doi.org/10.1080/10643389.2019.1616487
8 C Dang, Z Wu, M Zhang, X Li, Y Sun, R A Wu, Y Zheng, Y Xia. (2022). Microorganisms as bio-filters to mitigate greenhouse gas emissions from high-altitude permafrost revealed by nanopore-based metagenomics. iMeta, 1(2): 24
https://doi.org/10.1002/imt2.24
9 P Dessì, A M Lakaniemi, P N L Lens. (2017). Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C. Water Research, 115: 120–129
https://doi.org/10.1016/j.watres.2017.02.063 pmid: 28273442
10 Z Q Geng, D K Qian, Z Y Hu, S Wang, Y Yan, M C M van Loosdrecht, R J Zeng, F Zhang. (2021). Identification of extracellular key enzyme and intracellular metabolic pathway in alginate-degrading consortia via an integrated metaproteomic/metagenomic analysis. Environmental Science & Technology, 55(24): 16636–16645
https://doi.org/10.1021/acs.est.1c05289 pmid: 34860015
11 T I M Grootscholten, K J J Steinbusch, H V M Hamelers, C J N Buisman. (2013). Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. Bioresource Technology, 135: 440–445
https://doi.org/10.1016/j.biortech.2012.10.165 pmid: 23228455
12 J He, Z Shi, T Luo, S Zhang, Y Liu, G Luo. (2021). Phenol promoted caproate production via two-stage batch anaerobic fermentation of organic substance with ethanol as electron donor for chain elongation. Water Research, 204: 117601
https://doi.org/10.1016/j.watres.2021.117601 pmid: 34481286
13 G Herrmann, E Jayamani, G Mai, W Buckel. (2008). Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. Journal of Bacteriology, 190(3): 784–791
https://doi.org/10.1128/JB.01422-07 pmid: 18039764
14 B S Jeon, B C Kim, Y Um, B I Sang. (2010). Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1. Applied Microbiology and Biotechnology, 88(5): 1161–1167
https://doi.org/10.1007/s00253-010-2827-5 pmid: 20721546
15 P G Kougias, I Angelidaki. (2018). Biogas and its opportunities: a review. Frontiers of Environmental Science & Engineering, 12(3): 14
https://doi.org/10.1007/s11783-018-1037-8
16 J Lambrecht, N Cichocki, F Schattenberg, S Kleinsteuber, H Harms, S Müller, H Sträuber. (2019). Key sub-community dynamics of medium-chain carboxylate production. Microbial Cell Factories, 18(1): 92
https://doi.org/10.1186/s12934-019-1143-8 pmid: 31138218
17 L Leng, M K Nobu, T Narihiro, P Yang, G Y Amy Tan, P H Lee. (2019). Shaping microbial consortia in coupling glycerol fermentation and carboxylate chain elongation for Co-production of 1,3-propanediol and caproate: Pathways and mechanisms. Water Research, 148: 281–291
https://doi.org/10.1016/j.watres.2018.10.063 pmid: 30390509
18 Y Liu, P He, L Shao, H Zhang, F Lü. (2017). Significant enhancement by biochar of caproate production via chain elongation. Water Research, 119: 150–159
https://doi.org/10.1016/j.watres.2017.04.050 pmid: 28456078
19 J Luo, S Fang, W Huang, F Wang, L Zhang, F Fang, J Cao, Y Wu, D Wang. (2022). New insights into different surfactants’ impacts on sludge fermentation: focusing on the particular metabolic processes and microbial genetic traits. Frontiers of Environmental Science & Engineering, 16(8): 106
https://doi.org/10.1007/s11783-022-1527-6
20 P Mahato, R Rajagopal, B Goyette, S Adhikary. (2022). Low-temperature anaerobic digestion of chicken manure at high organic and nitrogen loads-strategies for controlling short chain fatty acids. Bioresource Technology, 351: 127049
https://doi.org/10.1016/j.biortech.2022.127049 pmid: 35331887
21 R M McKeown, D Hughes, G Collins, T Mahony, V O’Flaherty. (2012). Low-temperature anaerobic digestion for wastewater treatment. Current Opinion in Biotechnology, 23(3): 444–451
https://doi.org/10.1016/j.copbio.2011.11.025 pmid: 22176749
22 B Min, Ó B Román, I Angelidaki. (2008). Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnology Letters, 30(7): 1213–1218
https://doi.org/10.1007/s10529-008-9687-4 pmid: 18327537
23 C O Nzeteu, A C Trego, F Abram, V O’Flaherty. (2018). Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnology for Biofuels, 11(1): 108
https://doi.org/10.1186/s13068-018-1101-4 pmid: 29651303
24 K Piwowarek, E Lipińska, E Hać-Szymańczuk, M Kieliszek, I Ścibisz. (2018). Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied Microbiology and Biotechnology, 102(2): 515–538
https://doi.org/10.1007/s00253-017-8616-7 pmid: 29167919
25 D K Qian, Z Q Geng, T Sun, K Dai, W Zhang, R Jianxiong Zeng, F Zhang. (2020). Caproate production from xylose by mesophilic mixed culture fermentation. Bioresource Technology, 308: 123318
https://doi.org/10.1016/j.biortech.2020.123318 pmid: 32278998
26 E Quispe-Cardenas, S Rogers. (2021). Microbial adaptation and response to high ammonia concentrations and precipitates during anaerobic digestion under psychrophilic and mesophilic conditions. Water Research, 204: 117596
https://doi.org/10.1016/j.watres.2021.117596 pmid: 34530226
27 Y Ren, G Yu, C Shi, L Liu, Q Guo, C Han, D Zhang, L Zhang, B Liu, H Gao. et al.. (2022). Majorbio cloud: a one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta, 1(2): e12
https://doi.org/10.1002/imt2.12
28 M Roghair, T Hoogstad, D P B T B Strik, C M Plugge, P H A Timmers, R A Weusthuis, M E Bruins, C J N Buisman. (2018). Controlling ethanol use in chain elongation by CO2 loading rate. Environmental Science & Technology, 52(3): 1496–1505
https://doi.org/10.1021/acs.est.7b04904 pmid: 29304274
29 N M C Saady, D I Massé. (2015). High rate psychrophilic anaerobic digestion of high solids (35 %) dairy manure in sequence batch reactor. Bioresource Technology, 186(0): 74–80
https://doi.org/10.1016/j.biortech.2015.03.038 pmid: 25804501
30 S Saha, B Basak, J H Hwang, E S Salama, P K Chatterjee, B H Jeon. (2020). Microbial symbiosis: a network towards biomethanation. Trends in Microbiology, 28(12): 968–984
https://doi.org/10.1016/j.tim.2020.03.012 pmid: 33171105
31 S Shrestha, S Xue, D Kitt, H Song, C Truyers, M Muermans, I Smets, L Raskin. (2022). Anaerobic dynamic membrane bioreactor development to facilitate organic waste conversion to medium-chain carboxylic acids and their downstream recovery. ACS ES&T Engineering, 2(2): 169–180
32 J Tang, K Dai, Q T Wang, S J Zheng, S D Hong, R Jianxiong Zeng, F Zhang. (2022). Caproate production from xylose via the fatty acid biosynthesis pathway by genus Caproiciproducens dominated mixed culture fermentation. Bioresource Technology, 351: 126978
https://doi.org/10.1016/j.biortech.2022.126978 pmid: 35276377
33 M F Temudo, G Muyzer, R Kleerebezem, M C M van Loosdrecht. (2008). Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Applied Microbiology and Biotechnology, 80(6): 1121–1130
https://doi.org/10.1007/s00253-008-1669-x pmid: 18800185
34 J Wang, Y Yin. (2022). Biological production of medium-chain carboxylates through chain elongation: an overview. Biotechnology Advances, 55: 107882
https://doi.org/10.1016/j.biotechadv.2021.107882 pmid: 34871718
35 Y Wang, W Wei, S L Wu, B J Ni. (2020). Zerovalent iron effectively enhances medium-chain fatty acids production from waste activated sludge through improving sludge biodegradability and electron transfer efficiency. Environmental Science & Technology, 54(17): 10904–10915
https://doi.org/10.1021/acs.est.0c03029 pmid: 32867479
36 P J Weimer, M Nerdahl, D J Brandl. (2015). Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri. Bioresource Technology, 175(0): 97–101
https://doi.org/10.1016/j.biortech.2014.10.054 pmid: 25459809
37 Q Wu, X Bao, W Guo, B Wang, Y Li, H Luo, H Wang, N Ren. (2019). Medium chain carboxylic acids production from waste biomass: Current advances and perspectives. Biotechnology Advances, 37(5): 599–615
https://doi.org/10.1016/j.biotechadv.2019.03.003 pmid: 30849433
38 Y Wu, H Ma, M Zheng, K Wang. (2015). Lactic acid production from acidogenic fermentation of fruit and vegetable wastes. Bioresource Technology, 191: 53–58
https://doi.org/10.1016/j.biortech.2015.04.100 pmid: 25983222
39 X Xu, Y Sun, Y Sun, Y Li. (2022). Bioaugmentation improves batch psychrophilic anaerobic co-digestion of cattle manure and corn straw. Bioresource Technology, 343: 126118
https://doi.org/10.1016/j.biortech.2021.126118 pmid: 34653629
40 F Zhang, W Zhang, D K Qian, K Dai, M C M van Loosdrecht, R J Zeng. (2019a). Synergetic alginate conversion by a microbial consortium of hydrolytic bacteria and methanogens. Water Research, 163: 114892
https://doi.org/10.1016/j.watres.2019.114892 pmid: 31351355
41 W Zhang, F Zhang, Y X Li, Y Jiang, R J Zeng. (2019b). No difference in inhibition among free acids of acetate, propionate and butyrate on hydrogenotrophic methanogen of Methanobacterium formicicum. Bioresource Technology, 294: 122237
https://doi.org/10.1016/j.biortech.2019.122237 pmid: 31683454
42 X Zhang, J Gu, S Meng, Y Liu (2022a). Dissolved methane in anaerobic effluent: emission or recovery? Frontiers of Environmental Science & Engineering, 16(4): 54
https://doi.org/10.1007/s11783-022-1537-4
43 Z Zhang, B J Ni, L Zhang, Z Liu, W Fu, X Dai, J Sun. (2022b). Medium-chain fatty acids production from carbohydrates-rich wastewater through two-stage yeast biofilm processes without external electron donor addition: Biofilm development and pH impact. Science of the Total Environment, 828: 154428
https://doi.org/10.1016/j.scitotenv.2022.154428 pmid: 35276160
[1] FSE-22081-OF-WQT_suppl_1 Download
[1] Bin Cui, Chongjun Zhang, Liang Fu, Dandan Zhou, Mingxin Huo. Current status of municipal wastewater treatment plants in North-east China: implications for reforming and upgrading[J]. Front. Environ. Sci. Eng., 2023, 17(6): 73-.
[2] Dan Xiao, Zhaofeng Lyu, Shiheng Chen, Yang Huo, Wei Fan, Mingxin Huo. Tracking Cryptosporidium in urban wastewater treatment plants in a cold region: Occurrence, species and infectivity[J]. Front. Environ. Sci. Eng., 2022, 16(9): 112-.
[3] Yingwu Wang, Ping Ning, Ruheng Zhao, Kai Li, Chi Wang, Xin Sun, Xin Song, Qiang Lin. A Cu-modified active carbon fiber significantly promoted H2S and PH3 simultaneous removal at a low reaction temperature[J]. Front. Environ. Sci. Eng., 2021, 15(6): 132-.
[4] Rencheng Zhu, Jingnan Hu, Liqiang He, Lei Zu, Xiaofeng Bao, Yitu Lai, Sheng Su. Effects of ambient temperature on regulated gaseous and particulate emissions from gasoline-, E10- and M15-fueled vehicles[J]. Front. Environ. Sci. Eng., 2021, 15(1): 14-.
[5] Quanming Liang, Jian Li, Hong He, Wenjun Liang, Tiejun Zhang, Xing Fan. Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts[J]. Front. Environ. Sci. Eng., 2017, 11(4): 4-.
[6] Weiman Li, Haidi Liu, Yunfa Chen. Promotion of transition metal oxides on the NH3-SCR performance of ZrO2-CeO2 catalyst[J]. Front. Environ. Sci. Eng., 2017, 11(2): 6-.
[7] Tiejun Zhang, Jian Li, Hong He, Qianqian Song, Quanming Liang. NO oxidation over Co-La catalysts and NOx reduction in compact SCR[J]. Front. Environ. Sci. Eng., 2017, 11(2): 4-.
[8] Di CUI,Ang LI,Tian QIU,Rui CAI,Changlong PANG,Jihua WANG,Jixian YANG,Fang MA,Nanqi REN. Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature[J]. Front. Environ. Sci. Eng., 2014, 8(6): 937-944.
[9] Caiting LI, Qun LI, Pei LU, Huafei CUI, Guangming ZENG. Characterization and performance of V2O5/CeO2 for NH3-SCR of NO at low temperatures[J]. Front Envir Sci Eng, 2012, 6(2): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed