Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (7) : 89    https://doi.org/10.1007/s11783-023-1689-x
REVIEW ARTICLE
Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water
Yuxin Lu1, Xiang Li1(), Cagnetta Giovanni2, Bo Wang1
1. Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
2. School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(7039 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Application of the MOF-composite membranes in adsorption was discussed.

● Recent application of MOFs-membranes for separation was summarized.

● Separation and degradation for emerging organic contaminants were described.

Presence of emerging organic contaminants (EOCs) in water is one of the major threats to water safety. In recent decades, an increasing number of studies have investigated new approaches for their effective removal. Among them, metal-organic frameworks (MOFs) have attracted increasing attention since their first development thanks to their tunable metal nodes and versatile, functional linkers. However, whether or not MOFs have a promising future for practical application in emerging contaminants-containing wastewater is debatable. This review summarizes recent studies about the removal of EOCs using MOFs-related material. The synthesis strategies of both MOF particles and composites, including thin-film nanocomposite and mixed matrix membranes, are critically reviewed, as well as various characterization technologies. The application of the MOF-based composite membranes in adsorption, separation (nanofiltration and ultrafiltration), and catalytic degradation are discussed. Overall, literature survey shows that MOFs-based composite could play a crucial role in eliminating EOCs in the future. In particular, modified membranes that realize separation and degradation might be the most promising materials for such application.

Keywords Emerging organic contaminants      Metal organic frameworks      Synthesis      Adsorption      Catalysis     
Corresponding Author(s): Xiang Li   
Issue Date: 16 February 2023
 Cite this article:   
Yuxin Lu,Xiang Li,Cagnetta Giovanni, et al. Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water[J]. Front. Environ. Sci. Eng., 2023, 17(7): 89.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1689-x
https://academic.hep.com.cn/fese/EN/Y2023/V17/I7/89
Fig.1  Emerging organic contaminants (EOCs) and commonly used approach to eliminate these chemicals.
Fig.2  A brief description of the development of MOFs membranes from 2005 to 2018. The images are reproduced with permission. Copyright 2005, American Chemical Society (Hermes et al., 2005). Copyright 2009, American Chemical Society (Bux et al., 2009). Copyright 2010, The Royal Society of Chemistry (Hu et al., 2011). Copyright 2015, American Chemical Society (Liu et al., 2015). Copyright 2017, Elsevier (Li et al., 2017b). Copyright 2018, American Chemical Society (Navarro et al., 2018). Copyright 2022, Nature (Meng et al., 2022).
MOFsTargetC/APropertyApplicationsRef.
MIL-101CrBPA/ATL/SDM/SMM/ CBZ/CFA/CPX/DCF/DMZ/MNZ/NPX/SCPC/AHydrophilic/ HydrophobicNanofiltration Hasan et al., 2013; Gao et al., 2018; Dai et al., 2020
MIL-53CrCBZ/CFAAHydrophilic/HydrophobicDegradationGao et al., 2018; Gao et al., 2019
MIL-53AlDMZ/TCS/BPAAHydrophilic/HydrophobicOrganic solvent nanofiltrationZhou et al., 2013; Dou et al., 2017; Jia et al., 2017; Peng et al., 2018; Gao et al., 2019; Paseta et al., 2019
MIL-68AlMB/TCAHydrophilicMicrofiltrationYu et al., 2018; Tan et al., 2019; Ren et al., 2021
MIL-53FeMB/RhB/DOC/SMT/TCC/AHydrophilicMicrofiltrationNaeimi and Faghihian, 2017;Cao et al., 2018; Chen et al., 2018; Xiong2018; Navarathna et al., 2020; Ren et al., 2021
MIL-53Fe-NH2BPA/CBZ/CTC/TCC/AHydrophilicHeterojuctionLi et al., 2019b
MIL-101FeRhB/MO/TC/CPX/BPAC/AHydrophilicNanofiltrationGong et al., 2018; He et al., 2019; Vinothkumar et al., 2022
MIL-88B-NH2Oil/SMZCHydrophilicSelf-cleaning membraneXie et al., 2020
HKUST-1MB/SCP/NFX/CPXAHydrophilicUltrafiltration/NanofiltrationAzhar et al., 2016; Liu et al., 2018; Wu et al., 2018; Rickhoff et al., 2019
UiO-66MB/CBZ/TCN/TC/CBL/KTP/IBU/SCP/SMZAHydrophilicReverse osmosisNanofiltrationAzhar et al., 2017; Chen et al., 2017; Lin et al., 2018; Lyu et al., 2019
UiO-66-NH2MB/TC/DCF/DMNPCHydrophilicNucleation filmsReverse osmosisLee et al., 2017; Cui et al., 2018; Gong et al., 2020
UIO-67MB/GF/GP/ASAAHydrophilicNanofibrous membraneTian et al., 2018; Li et al., 2019a
MOF-808BPA/TC/OilAHydrophilicOil/water separationChen et al., 2020b
ZIF-7MBAHydrophobicPervaporationWang et al., 2016
ZIF-8PGT/MB/MG/RhB/MO/NFX/OTC/HA/TCAHydrophobicMicrofiltrationRagab et al., 2016; Na et al., 2018; Hou et al., 2018; Zhou et al., 2019
Fe-TCPPMO/IG/BBRAHydrophilicNanofiltrationHussain & Peng, 2021
ZIF-67TBBPA/BPA/MO/ /MG/RhBC/AHydrophobicPervaporationKhan et al., 2018
PCN-222MO/MB/TCC/AHydrophilicDegradationLi et al., 2017a; Xia et al., 2021
PCN-224Oil/MB/RhBCHydrophilicHeterojuction/Oil water separationXue et al., 2021; Zhao et al., 2023
Tab.1  Applications of published MOFs-based materials for fabricating membranes
CompositeFabrication methodApplicationsRef.
PVDFPhase inversionUltrafiltrationRen et al., 2019
PESNonsolvent-induced phase separationInterfacial-polymerizationThin-film nanocomposite membranesUltrafiltrationJiang et al., 2015; Dai et al., 2019
MCEFiltration methodMicrofiltrationAmarajothi et al., 2018
PDMSDirect mixingMixed matrix membranesYin et al., 2017; Khan et al., 2018
PAInterfacial-polymerizationThin-film nanocomposite membranesGong et al., 2020
PAADirect mixingHydrophilicity MembraneZhang et al., 2020
g-C3N4Vacuum-assisted self-assemblyHeterostructure MembraneLi et al., 2019b; Wang et al., 2022
PVADepositionHybrid nanofiber matsLi et al., 2020a
PDAReverse filtrationUltrafiltration adsorption membranesFang et al., 2017; Dong et al., 2020; Li et al., 2020a
PANIn situ growthNano Fibrous membraneWang et al., 2018a; Xiang et al., 2022
GODirect mixingAdsorption and catalysisFerjani et al., 2018; Yang et al., 2018; Gao et al., 2021; Jin et al., 2022; Wang et al., 2022
α-aluminaSecondary growthReactive seeding methodSupportKasik et al., 2016
CAPhase inversionUltrafiltrationFerjani et al., 2018
Tab.2  Summary of composites integrated with MOF materials for fabricating membranes
Fig.3  (a, b) Selective adsorption PF EDCs by TFN membranes. (c) Photo-responsive Fe-TCPP-based TFN-NF membrane. (d) functionalized TFN-NF membranes incorporated with polydopamine (PDA) and Cu-MOF with the PDA-polyamide interaction. The images are reproduced with permission. Copyright 2019, American Chemical Society (Dai et al., 2019). Copyright 2020, American Chemical Society (Dai et al., 2020). Copyright 2022, Elsevier (Hussain and Peng, 2021). Copyright 2020, American Chemical Society (Parkerson et al., 2021).
Fig.4  Strategies for mixed-matrix membranes and self-cleaning membranes. (a) Two blending methods for preparing MMMs. (b) Detailed substrate-based method for preparing MMM. (c) Full synthesis steps and the structure of photo-Fenton self-cleaning membranes for ultrafiltration. (d) Full synthesis steps and the structure of self-cleaning TFN membranes. Copyright 2017, The Royal Society of Chemistry (Li et al., 2017c). Copyright 2021, American Chemical Society (Jiang et al., 2021). Copyright 2020, Elsevier (Xie et al., 2020). Copyright 2021, American Chemical Society (Zhao et al., 2021).
Fig.5  Schematic and applications of other composite compounds using in MOFs-based nanocomposite membranes. (a) synthesis of nanohybrid membrane with polymer and CNT. (b) preparation and application of nanofibrous membranes with PVA/PAA/SiO2 and MOFs. (c) construction process of g-C3N4/PDI with NH2-MIL-53(Fe). Copyright 2017, Elsevier (Liu et al., 2017). Copyright 2020, Springer (Huang et al., 2021). Copyright 2019, Elsevier (Li et al., 2019b).
Fig.6  Rejection mechanisms of NF membrane.
Fig.7  Mechanisms of the dual-layer UF membrane (Seq-ICM) with Fenton-like properties. The image is reproduced with permission. Copyright 2021, Elsevier (Ren et al., 2021).
Fig.8  Catalytic degradation of pollutants based on MOFs and MOFs-based membranes. (a) CdS/MIL-101 for antimicrobial and antifouling performance. (b) TiO2/MIL-125 for PFOA abatement. (c) Ligand metal charge transfer (LMCT) process based on Fe-TCPP for catalytic degradation. Copyright 2021, Elsevier (Ni et al., 2021). Copyright 2021, Elsevier (Kong et al., 2022). Copyright 2022, Elsevier (Li et al., 2022b).
Fig.9  Schematic diagrams of the specific application of spectroscopy. (a) FTIR spectrum of UiO-66-NH2 and its MOFs-based composite membrane; (b, c) XRD patterns of MIL-88B-NH2 and its MOFs-based composite membrane; (d) EDX of Cu-MOF; (e) N2 adsorption-desorption isotherms about Ce@UiO-66; (f) the TGA graph of UiO-66(Ce); (g) the XPS spectrum of UiO-66-NH2 and its MOFs-based composite membrane; (h) the UV-vis DRS spectra with related tests. The images are reproduced with permission. Copyright 2021, Elsevier (Zeng et al., 2021). Copyright 2021, Elsevier (Gao et al., 2021). Copyright 2021, Royal Society of Chemistry (Gholipoor and Hosseini, 2021). Copyright 2021, Elsevier (Karimi et al., 2021). Copyright 2020, Elsevier (Xie et al., 2020).
Fig.10  The morphology of MOFs, composites, and blended membrane. The SEM images of (a) UiO-67 and (b) UiO-67-400 (Ce), TEM images of (c) UiO-67 (Ce) and (d) UiO-67-400 (Ce). The SEM images of PVDF and MIL/PVDF, which contained (e) surface and (f) cross-section of the MIL/PVDF blended membrane; (g) surface and (h) cross-section of simple PVDF membrane; The AFM images: (i) and (j) are related to polymer; (k) and (l) are images of MIL with polymer, and (m) and (n) are about the HKUST with polymer. The images are reproduced with permission. Copyright 2021, Elsevier (Dong et al., 2021). Copyright 2019, Elsevier (Ren et al., 2019). Copyright 2021, Elsevier (Brahmi et al., 2021).
1 F Ahmadijokani , H Molavi , A Bahi , R Fernández , P Alaee , S Wu , S Wuttke , F Ko , M Arjmand . (2022). Metal-organic frameworks and electrospinning: a happy marriage for wastewater treatment. Advanced Functional Materials, 32(51): 2207723
https://doi.org/10.1002/adfm.202207723
2 M AhmedM O MavukkandyA GiwaM ElektorowiczE KatsouO KhelifiV NaddeoS W Hasan (2022). Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. npj Clean Water, 5(12): doi.org/10.1038/s41545–022-01545–022
3 M Al-ShaeliS J D SmithS JiangH WangK ZhangB P Ladewig (2021). Long-term stable metal organic framework (MOF) based mixed matrix membranes for ultrafiltration. Journal of Membrane Science, 635(1–2): 119339
4 D Amarajothi , Z Li , G Hermenegildo . (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47: 8134–8172
https://doi.org/10.1039/C8CS00256H
5 M Asgari , V V Karve , A Babapoor , F H Saboor , M Beydaghdari . (2022). Recent advances in MOF-based adsorbents for dye removal from the aquatic environment. Energies, 15(6): 2023
https://doi.org/10.3390/en15062023
6 M S Attia , A O Youssef , M N Abou-Omar , E H Mohamed , R Boukherroub , A Khan , T Altalhi , M A Amin . (2022). Emerging advances and current applications of NanoMOF-based membranes for water treatment. Chemosphere, 292: 133369
https://doi.org/10.1016/j.chemosphere.2021.133369
7 M R Azhar , H R Abid , V Periasamy , H Sun , M O Tade , S Wang . (2017). Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. Journal of Colloid and Interface Science, 500: 88–95
https://doi.org/10.1016/j.jcis.2017.04.001
8 M R Azhar , H R Abid , H Sun , V Periasamy , M O Tadé , S Wang . (2016). Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. Journal of Colloid and Interface Science, 478: 344–352
https://doi.org/10.1016/j.jcis.2016.06.032
9 S Bandehali , F Parvizian , H Ruan , A Moghadassi , J Shen , A Figoli , A S Adeleye , N Hilal , T Matsuura , E Drioli , S M Hosseini . (2021). A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. Journal of Industrial and Engineering Chemistry, 101: 78–125
https://doi.org/10.1016/j.jiec.2021.06.022
10 C Boo , Y Wang , I Zucker , Y Choo , C O Osuji , M Elimelech . (2018). High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery. Environmental Science & Technology, 52(13): 7279–7288
https://doi.org/10.1021/acs.est.8b01040
11 C Brahmi , M Benltifa , C Vaulot , L Michelin , F Dumur , F Millange , M Frigoli , A Airoudj , F Morlet-Savary , L Bousselmi , J Lalevée . (2021). New hybrid MOF/Polymer composites for the photodegradation of organic dyes. European Polymer Journal, 154: 110560
12 H Bux , F Liang , Y Li , J Cravillon , M Wiebcke , J Caro . (2009). Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 131(44): 16000–16001
https://doi.org/10.1021/ja907359t
13 J Cao , Y Su , Y Liu , J Guan , M He , R Zhang , Z Jiang . (2018). Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation. Journal of Membrane Science, 566: 268–277
https://doi.org/10.1016/j.memsci.2018.08.068
14 W Cao , Y Zhang , Z Shi , T Liu , X Song , L Zhang , P Keung Wong , Z Chen . (2021a). Boosting the adsorption and photocatalytic activity of carbon Fiber/MoS2-based weavable photocatalyst by decorating UiO-66-NH2 nanoparticles. Chemical Engineering Journal, 417: 128112
https://doi.org/10.1016/j.cej.2020.128112
15 Y Cao , X Chen , X Li , B Wang . (2021b). Tuning surface functionalization and pore structure of UiO-66 Metal–organic framework nanoparticles for organic pollutant elimination. ACS Applied Nano Materials, 4(5): 5486–5495
https://doi.org/10.1021/acsanm.1c00796
16 Y Cao , X Li , G Yu , B Wang . (2023). Regulating defective sites for pharmaceuticals selective removal: structure-dependent adsorption over continuously tunable pores. Journal of Hazardous Materials, 442: 130025
https://doi.org/10.1016/j.jhazmat.2022.130025
17 I D Carja , S R Tavares , O Shekhah , A Ozcan , R Semino , V S Kale , M Eddaoudi , G Maurin . (2021). Insights into the enhancement of MOF/Polymer adhesion in mixed-matrix membranes via polymer functionalization. ACS Applied Materials & Interfaces, 13(24): 29041–29047
https://doi.org/10.1021/acsami.1c03859
18 P V Chai , P Y Choy , W C Teoh , E Mahmoudi , W L Ang . (2021). Graphene oxide based mixed matrix membrane in the presence of eco-friendly natural additive gum Arabic. Journal of Environmental Chemical Engineering, 9(4): 105638
https://doi.org/10.1016/j.jece.2021.105638
19 P H Chang , C Y Chen , R Mukhopadhyay , W Chen , Y M Tzou , B Sarkar . (2022). Novel MOF-808 metal-organic framework as highly efficient adsorbent of perfluorooctane sulfonate in water. Journal of Colloid and Interface Science, 623: 627–636
https://doi.org/10.1016/j.jcis.2022.05.050
20 C Chen , D Chen , S Xie , H Quan , X Luo , L Guo . (2017). Adsorption behaviors of organic micropollutants on zirconium metal-organic framework UiO-66: analysis of surface interactions. ACS Applied Materials & Interfaces, 9(46): 41043–41054
https://doi.org/10.1021/acsami.7b13443
21 K Chen , P Li , H Zhang , H Sun , X Yang , D Yao , X Pang , X Han , Q Jason Niu . (2020a). Organic solvent nanofiltration membrane with improved permeability by in-situ growth of metal-organic frameworks interlayer on the surface of polyimide substrate. Separation and Purification Technology, 251: 117387
https://doi.org/10.1016/j.seppur.2020.117387
22 X Chen , D Chen , N Li , Q Xu , H Li , J He , J Lu . (2020b). Modified-MOF-808-loaded polyacrylonitrile membrane for highly efficient, simultaneous emulsion separation and heavy metal ion removal. ACS Applied Materials & Interfaces, 12(35): 39227–39235
https://doi.org/10.1021/acsami.0c10290
23 R Dai , H Guo , C Y Tang , M Chen , J Li , Z Wang . (2019). Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds. Environmental Science & Technology, 53(23): 13776–13783
https://doi.org/10.1021/acs.est.9b05343
24 R Dai , H Han , Y Zhu , X Wang , Z Wang . (2022). Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds. Frontiers of Environmental Science & Engineering, 16(4): 40
25 R Dai , X Wang , C Y Tang , Z Wang . (2020). Dually charged MOF-based thin-film nanocomposite nanofiltration membrane for enhanced removal of charged pharmaceutically active compounds. Environmental Science & Technology, 54(12): 7619–7628
https://doi.org/10.1021/acs.est.0c00832
26 X Dong , M Cui , R Huang , R Su , W Qi , Z He . (2020). Polydopamine-assisted surface coating of MIL-53 and dodecanethiol on a melamine sponge for oil-water separation. Langmuir, 36(5): 1212–1220
https://doi.org/10.1021/acs.langmuir.9b02987
27 X Dong , Y Lin , G Ren , Y Ma , L Zhao . (2021). Catalytic degradation of methylene blue by fenton-like oxidation of Ce-doped MOF. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 608: 125578
https://doi.org/10.1016/j.colsurfa.2020.125578
28 R Dou , J Zhang , Y Chen , S Feng . (2017). High efficiency removal of triclosan by structure-directing agent modified mesoporous MIL-53(Al). Environmental Science and Pollution Research International, 24(9): 8778–8789
https://doi.org/10.1007/s11356-017-8583-7
29 C Du , Z Zhang , G Yu , H Wu , H Chen , L Zhou , Y Zhang , Y Su , S Tan , L Yang , J Song , S Wang . (2021). A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere, 272(12): 129501
https://doi.org/10.1016/j.chemosphere.2020.129501
30 J Duan , Y Li , Y Pan , N Behera , W Jin . (2019). Metal-organic framework nanosheets: an emerging family of multifunctional 2D materials. Coordination Chemistry Reviews, 395: 25–45
https://doi.org/10.1016/j.ccr.2019.05.018
31 W A El-Mehalmey , Y Safwat , M Bassyouni , M H Alkordi . (2020). Strong interplay between polymer surface charge and MOF cage chemistry in mixed-matrix membrane for water treatment applications. ACS Applied Materials & Interfaces, 12(24): 27625–27631
https://doi.org/10.1021/acsami.0c06399
32 S Ermakov . (2021). Novel mixed matrix membranes based on polymer of intrinsic microporosity PIM-1 modified with metal-organic frameworks for removal of heavy metal ions and food dyes by nanofiltration. Membranes, 12(1): 14
https://doi.org/10.3390/membranes12010014
33 G Fan , J Zhan , J Luo , J Lin , F Qu , B Du , Y You , Z Yan . (2021). Fabrication of heterostructured Ag/AgCl@g-C3N4@UIO-66-NH2 nanocomposite for efficient photocatalytic inactivation of microcystis aeruginosa under visible light. Journal of Hazadous Materials, 404: 124062
https://doi.org/10.1016/j.jhazmat.2020.124062
34 X Fang , J Li , X Li , S Pan , X Zhang , X Sun , J Shen , W Han , L Wang . (2017). Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chemical Engineering Journal, 314: 38–49
https://doi.org/10.1016/j.cej.2016.12.125
35 E Ferjani , R H Lajimi , A Deratani , M S Roudesli . (2018). Bulk and surface modification of cellulose diacetate based RO/NF membranes by polymethylhydrosiloxane preparation and characterization. Desalination, 146(146): 325–330
36 R Freund , O Zaremba , G Arnauts , R Ameloot , G Skorupskii , M Dinca , A Bavykina , J Gascon , A Ejsmont , J Goscianska , M Kalmutzki , U Lachelt , E Ploetz , C S Diercks , S Wuttke . (2021). The current status of MOF and COF applications. Angewandte Chemie International Edition, 60(45): 23975–24001
https://doi.org/10.1002/anie.202106259
37 H Furukawa , K E Cordova , M O’Keeffe , O M Yaghi . (2013). ChemInform abstract: the chemistry and applications of metal-organic frameworks. Science, 341(6149): 1230444
https://doi.org/10.1126/science.1230444
38 J Gao , W Chen , H Shi , Z Li , L Jing , C Hou , J Wang , Y Wang . (2022). Co3O4@Fe3O4/Cellulose Blend membranes for efficient degradation of perfluorooctanoic acid in the visible light-driven photo-fenton system. Surfaces and Interfaces, 34: 102302
https://doi.org/10.1016/j.surfin.2022.102302
39 Y Gao , R Kang , J Xia , G Yu , S Deng . (2019). Understanding the adsorption of sulfonamide antibiotics on MIL-53s: metal dependence of breathing effect and adsorptive performance in aqueous solution. Journal of Colloid and Interface Science, 535: 159–168
https://doi.org/10.1016/j.jcis.2018.09.090
40 Y Gao , K Liu , R Kang , J Xia , G Yu , S Deng . (2018). A Comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: kinetics, isotherms and mechanisms. Journal of Hazardous Materials, 359: 248–257
https://doi.org/10.1016/j.jhazmat.2018.07.054
41 Y Gao , J Lu , J Xia , G Yu . (2020). In situ synthesis of defect-engineered MOFs as a photoregenerable catalytic adsorbent: understanding the effect of LML, adsorption behavior, and photoreaction process. ACS Applied Materials & Interfaces, 12(11): 12706–12716
https://doi.org/10.1021/acsami.9b21122
42 Y Gao , S Yan , Y He , Y Fan , L Zhang , J Ma , R Hou , L Chen , J Chen . (2021). A photo-Fenton self-cleaning membrane based on NH2-MIL-88B(Fe) and graphene oxide to improve dye removal Performance. Journal of Membrane Science, 626: 119192
https://doi.org/10.1016/j.memsci.2021.119192
43 O Gholipoor , S A Hosseini . (2021). Phenol removal from wastewater by CWPO process over the Cu-MOF nanocatalyst: process modeling by response surface methodology (RSM) and kinetic and isothermal studies. New Journal of Chemistry, 45(5): 2536–2549
https://doi.org/10.1039/D0NJ04128A
44 S A Gokulakrishnan , G Arthanareeswaran , Z Laszlo , G Vereb , S Kertesz , J Kweon . (2021). Recent development of photocatalytic nanomaterials in mixed matrix membrane for emerging pollutants and fouling control, membrane cleaning process. Chemosphere, 281: 130891
https://doi.org/10.1016/j.chemosphere.2021.130891
45 Y Gong , S Gao , Y Tian , Y Zhu , W Fang , Z Wang , J Jin . (2020). Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination. Journal of Membrane Science, 600: 117874
https://doi.org/10.1016/j.memsci.2020.117874
46 Y Gong , B Yang , H Zhang , X Zhao . (2018). A g-C3N4/MIL-101(Fe) heterostructure composite for highly efficient BPA degradation with persulfate under visible light irradiation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(46): 23703–23711
https://doi.org/10.1039/C8TA07915C
47 D GuY LiuH ZhuY GanB ZhangW YangJ Hao (2022). Magnetic porphyrin-based metal organic gel for rapid RhB removal and enhanced antibacterial activity by heterogeneous photo-Fenton reaction under visible light. Chemosphere, 303(Pt 2): 135114
48 B Han , D Zhang , Z Shao , L Kong , S Lv . (2013). Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes. Desalination, 311: 80–89
https://doi.org/10.1016/j.desal.2012.11.002
49 Z Hasan , E J Choi , S H Jhung . (2013). Adsorption of naproxen and clofibric acid over a metal-organic framework MIL-101 functionalized with acidic and basic groups. Chemical Engineering Journal, 219: 537–544
https://doi.org/10.1016/j.cej.2013.01.002
50 M Hayama , K I Yamamoto , F Kohori , T Uesaka , Y Ueno , H Sugaya , I Itagaki , K Sakai . (2004). Nanoscopic behavior of polyvinylpyrrolidone particles on polysulfone/polyvinylpyrrolidone film. Biomaterials, 25(6): 1019–1028
https://doi.org/10.1016/S0142-9612(03)00629-X
51 L He , Y Dong , Y Zheng , Q Jia , S Shan , Y Zhang . (2019). A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. Journal of Hazadous Materials, 361: 85–94
https://doi.org/10.1016/j.jhazmat.2018.08.079
52 S Hermes , F Schröder , R Chelmowski , C Wöll , R A Fischer . (2005). Selective nucleation and growth of metal−organic open framework thin films on patterned COOH/CF3- terminated self-assembled monolayers on Au(111). Journal of the American Chemical Society, 127(40): 13744–13745
https://doi.org/10.1021/ja053523l
53 P Hou , G Xing , D Han , H Wang , C Yu , Y Li . (2018). Preparation of zeolite imidazolate framework/graphene hybrid aerogels and their application as highly efficient adsorbent. Journal of Solid State Chemistry, 265: 184–192
https://doi.org/10.1016/j.jssc.2018.05.034
54 P Hu , Z Zhao , X Sun , Y Muhammad , J Li , S Chen , C Pang , T Liao , Z Zhao . (2019). Construction of crystal defect sites in N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy for highly selective adsorption of cationic dyes. Chemical Engineering Journal, 356: 329–340
https://doi.org/10.1016/j.cej.2018.09.060
55 T Hu , L Tang , H Feng , J Zhang , X Li , Y Zuo , Z Lu , W Tang . (2022). Metal-organic frameworks (MOFs) and their derivatives as emerging catalysts for electro-Fenton process in water purification. Coordination Chemistry Reviews, 451: 214277
https://doi.org/10.1016/j.ccr.2021.214277
56 Y Hu , X Dong , J Nan , W Jin , X Ren , N Xu , Y M Lee . (2011). Metal-organic framework membranes fabricated via reactive seeding. Chemical Communications (Cambridge), 47(2): 737–739
https://doi.org/10.1039/C0CC03927F
57 J Huang , D Huang , F Zeng , L Ma , Z Wang . (2021). Photocatalytic MOF fibrous membranes for cyclic adsorption and degradation of dyes. Journal of Materials Science, 56(4): 3127–3139
https://doi.org/10.1007/s10853-020-05473-x
58 S Hussain , X Peng . (2021). Ultra-fast photothermal-responsive Fe-TCPP-based thin-film nanocomposite membranes for ON/OFF switchable nanofiltration. Separation and Purification Technology, 278: 119528
https://doi.org/10.1016/j.seppur.2021.119528
59 J H Jhaveri , Z V P Murthy . (2016). A comprehensive review on anti-fouling nanocomposite membranes for pressure Driven membrane separation processes. Desalination, 379: 137–154
https://doi.org/10.1016/j.desal.2015.11.009
60 W Ji , X Wang , T Ding , S Chakir , Y Xu , X Huang , H Wang . (2023). Electrospinning preparation of nylon-6@UiO-66-NH2 fiber membrane for selective adsorption enhanced photocatalysis reduction of Cr(VI) in water. Chemical Engineering Journal, 451: 138973
https://doi.org/10.1016/j.cej.2022.138973
61 Z Jia , M Jiang , G Wu . (2017). Amino-MIL-53(Al) sandwich-structure membranes for adsorption of p-nitrophenol from aqueous solutions. Chemical Engineering Journal, 307: 283–290
https://doi.org/10.1016/j.cej.2016.08.090
62 Y Jiang , J Sun , X Yang , J Shen , Y Fu , Y Fan , J Xu , L Wang . (2021). Cd-MOF@PVDF mixed-matrix membrane with good catalytic activity and recyclability for the production of benzimidazole and amino acid derivatives. Inorganic Chemistry, 60(3): 2087–2096
https://doi.org/10.1021/acs.inorgchem.1c00084
63 Z R Jiang , H Wang , Y Hu , J Lu , H L Jiang . (2015). Polar group and defect engineering in a metal–organic framework: synergistic promotion of carbon dioxide sorption and conversion. ChemSusChem, 8(5): 878–885
https://doi.org/10.1002/cssc.201403230
64 J Jin , J P Kim , S Wan , K H Kim , Y Choi , P Li , J Kang , Z Ma , J H Lee , O Kwon , D W Kim , J H Park . (2022). Hierarchical oore enhanced adsorption and photocatalytic performance of graphene oxide/Ti-based metal-organic framework hybrid for toluene removal. Applied Catalysis B: Environmental, 317: 121751
https://doi.org/10.1016/j.apcatb.2022.121751
65 B M Jun , Y A J Al-Hamadani , A Son , C M Park , M Jang , A Jang , N C Kim , Y Yoon . (2020). Applications of metal-organic framework based membranes in water purification: A review. Separation and Purification Technology, 247: 116947
https://doi.org/10.1016/j.seppur.2020.116947
66 E B Jurchevsky , A G Pervov . (2020). Potentialities of membrane water treatment for removing organic pollutants from natural water. Thermal Engineering, 67(7): 484–491
https://doi.org/10.1134/S0040601520070095
67 M Karimi , H Mohebali , S Sadeghi , V Safarifard , A Mahjoub , A Heydari . (2021). Additive-free aerobic C-H oxidation through a defect-engineered Ce-MOF catalytic system. Microporous and Mesoporous Materials, 322: 111054
https://doi.org/10.1016/j.micromeso.2021.111054
68 A Kasik , J James , Y S Lin . (2016). Synthesis of ZIF-68 membrane on a ZnO modified α-Alumina support by a modified reactive seeding method. Industrial & Engineering Chemistry Research, 55(10): 2831–2839
https://doi.org/10.1021/acs.iecr.6b00236
69 A Khan , M Ali , A Ilyas , P Naik , I F J Vankelecom , M A Gilani , M R Bilad , Z Sajjad , A L Khan . (2018). ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation. Separation and Purification Technology, 206: 50–58
https://doi.org/10.1016/j.seppur.2018.05.055
70 Z Kong , L Lu , C Zhu , J Xu , Q Fang , R Liu , Y Shen . (2022). Enhanced adsorption and photocatalytic removal of PFOA from water by functionalized MOF with in-situ-growth TiO2: regulation of electron density and bandgap. Separation and Purification Technology, 297: 121449
https://doi.org/10.1016/j.seppur.2022.121449
71 A Lee , J W Elam , S B Darling . (2016). Membrane materials for water purification: design, development, and application. Environmental Science. Water Research & Technology, 2(1): 17–42
https://doi.org/10.1039/C5EW00159E
72 D T Lee , J Zhao , C J Oldham , G W Peterson , G N Parsons . (2017). UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Applied Materials & Interfaces, 9(51): 44847–44855
https://doi.org/10.1021/acsami.7b15397
73 S Lee , S Ahn , H Lee , J Kim . (2022). Layer-by-layer coating of MIL-100(Fe) on a cotton fabric for purification of water-soluble dyes by the combined effect of adsorption and photocatalytic degradation. RSC Advances, 12(27): 17505–17513
https://doi.org/10.1039/D2RA02773A
74 A Li , M Zhou , P Luo , J Shang , P Wang , L Lyu . (2020a). Deposition of MOFs on polydopamine-modified electrospun polyvinyl alcohol/silica nanofibers mats for chloramphenicol adsorption in water. Nano, 15(4): 2050046
https://doi.org/10.1142/S1793292020500460
75 H Li , X Cao , C Zhang , Q Yu , Z Zhao , X Niu , X Sun , Y Liu , L Ma , Z Li . (2017a). Enhanced adsorptive removal of anionic and cationic dyes from single or mixed dye solutions using MOF PCN-222. RSC Advances, 7(27): 16273–16281
https://doi.org/10.1039/C7RA01647F
76 H Li , L Zhu , J Zhang , T Guo , X Li , W Xing , Q Xue . (2019a). High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks. Applied Surface Science, 476: 61–69
https://doi.org/10.1016/j.apsusc.2019.01.064
77 J Li , H Wang , X Yuan , J Zhang , J W Chew . (2020b). Metal-organic framework membranes for wastewater treatment and water regeneration. Coordination Chemistry Reviews, 404: 213116
https://doi.org/10.1016/j.ccr.2019.213116
78 R Li , Z Chen , M Cai , J Huang , P Chen , G Liu , W Lv . (2018). Improvement of sulfamethazine photodegradation by Fe(III) assisted MIL-53(Fe)/percarbonate system. Applied Surface Science, 457: 726–734
https://doi.org/10.1016/j.apsusc.2018.06.294
79 Q Li , L Cheng , J Shen , J Shi , G Chen , J Zhao , J Duan , G Liu , W Jin . (2017b). Improved ethanol recovery through mixed-matrix membrane with hydrophobic MAF-6 as filler. Separation and Purification Technology, 178: 105–112
https://doi.org/10.1016/j.seppur.2017.01.024
80 T Li , Z Zhang , L Liu , M Gao , Z Han . (2021). A stable metal-organic framework nanofibrous membrane as photocatalyst for simultaneous removal of methyl orange and formaldehyde from aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 617: 126359
https://doi.org/10.1016/j.colsurfa.2021.126359
81 W Li , Y Li , X Wen , Y Teng , J Wang , T Yang , X Li , L Li , C Wang . (2022a). Flexible Zr-MOF anchored polymer nanofiber membrane for efficient removal of creatinine in uremic toxins. Journal of Membrane Science, 648: 120369
https://doi.org/10.1016/j.memsci.2022.120369
82 W Q Li , Y X Wang , J Q Chen , N N Hou , Y M Li , X C Liu , R R Ding , G N Zhou , Q Li , X G Zhou , Y Mu . (2022b). Boosting photo-Fenton process enabled by ligand-to-cluster charge transfer excitations in iron-based metal organic framework. Applied Catalysis B: Environmental, 302: 120882
https://doi.org/10.1016/j.apcatb.2021.120882
83 X Li , X Li , B Wang . (2022c). H2O2 activation by two-dimensional metal-organic frameworks with different metal nodes for micropollutants degradation: metal dependence of boosting reactive oxygen species generation. Journal of Hazardous Materials, 440: 129757
https://doi.org/10.1016/j.jhazmat.2022.129757
84 X Li , Y Liu , J Wang , J Gascon , J Li , B Van der Bruggen . (2017c). Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews, 46(23): 7124–7144
https://doi.org/10.1039/C7CS00575J
85 X Li , Y Yao , B Wang . (2022d). Incorporating Fe–O cluster in multivariate (MTV) metal–organic frameworks for promoting visible-light photo-Fenton degradation of micropollutants from water. Chemical Engineering Journal, 446: 137446
https://doi.org/10.1016/j.cej.2022.137446
86 Y Li , Y Fang , Z Cao , N Li , D Chen , Q Xu , J Lu . (2019b). Construction of g-C3N4/PDI@MOF heterojunctions for the highly efficient visible light-driven degradation of pharmaceutical and phenolic micropollutants. Applied Catalysis B: Environmental, 250: 150–162
https://doi.org/10.1016/j.apcatb.2019.03.024
87 Y Li , X Li , B Wang . (2022e). Controlling metal clusters in breathing metal–organic framework nanostructures for boosting visible-light-induced ·OH radical formation. ACS Applied Nano Materials, 5(2): 2510–2521
https://doi.org/10.1021/acsanm.1c04183
88 Q Liang , S Cui , J Jin , C Liu , S Xu , C Yao , Z Li . (2018). Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity. Applied Surface Science, 456: 899–907
https://doi.org/10.1016/j.apsusc.2018.06.173
89 S Lin , Y Zhao , Y S Yun . (2018). Highly effective removal of nonsteroidal anti-inflammatory pharmaceuticals from water by Zr(IV)-based metal–organic framework: adsorption performance and mechanisms. ACS Applied Materials & Interfaces, 10(33): 28076–28085
https://doi.org/10.1021/acsami.8b08596
90 Y Lin , H C Wu , T Yasui , T Yoshioka , H Matsuyama . (2019). Development of an HKUST-1 nanofiller-templated poly(ether sulfone) mixed matrix membrane for a highly efficient ultrafiltration process. ACS Applied Materials & Interfaces, 11(20): 18782–18796
https://doi.org/10.1021/acsami.9b04961
91 X Liu , N K Demir , Z Wu , K Li . (2015). Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on Alumina hollow fibers for desalination. Journal of the American Chemical Society, 137(22): 6999–7002
https://doi.org/10.1021/jacs.5b02276
92 X Liu , X Wang , F Kapteijn . (2020). Water and metal-organic frameworks: from interaction toward utilization. Chemical Reviews, 120(16): 8303–8377
https://doi.org/10.1021/acs.chemrev.9b00746
93 Y Liu , Y Su , J Cao , J Guan , R Zhang , M He , L Fan , Q Zhang , Z Jiang . (2017). Antifouling, high-flux oil/water separation carbon nanotube membranes by polymer-mediated surface charging and hydrophilization. Journal of Membrane Science, 542: 254–263
https://doi.org/10.1016/j.memsci.2017.08.018
94 Y Liu , W Tu , M Chen , L Ma , B Yang , Q Liang , Y Chen . (2018). A mussel-induced method to fabricate reduced graphene oxide/halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation. Chemical Engineering Journal, 336: 263–277
https://doi.org/10.1016/j.cej.2017.12.043
95 J Long , Y Wang , H L Jiang , X Qiang . (2017). Metal-organic frameworks as platforms for catalytic applications. Advanced Materials, 30(37): 1703663
96 W Lu , C Duan , Y Zhang , K Gao , L Dai , M Shen , W Wang , J Wang , Y Ni . (2021). Cellulose-based electrospun nanofiber membrane with core-sheath structure and robust photocatalytic activity for simultaneous and efficient oil emulsions separation, dye degradation and Cr(VI) reduction. Carbohydrate Polymers, 258: 117676
https://doi.org/10.1016/j.carbpol.2021.117676
97 W Lustig , S Mukherjee , N Rudd , A Desai , J Li , S Ghosh . (2017). Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 46(11): 3242–3285
https://doi.org/10.1039/C6CS00930A
98 Q Lyu , X Deng , S Hu , L C Lin , W S W Ho . (2019). Exploring the potential of defective UiO-66 as reverse osmosis membranes for desalination. Journal of Physical Chemistry C, 123(26): 16118–16126
https://doi.org/10.1021/acs.jpcc.9b01765
99 C Meng , B Ding , S Zhang , L Cui , K K Ostrikov , Z Huang , B Yang , J H Kim , Z Zhang . (2022). Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels. Nature Communications, 13(1): 4010
https://doi.org/10.1038/s41467-022-31807-1
100 J Meng , X Liu , C Niu , Q Pang , J Li , F Liu , Z Liu , L Mai . (2020). Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 49(10): 3142–3186
https://doi.org/10.1039/C9CS00806C
101 X Mi , X Li . (2022). Construction of a stable porous composite with tunable graphene oxide in Ce-based-MOFs for enhanced solar-photocatalytic degradation of sulfamethoxazole in water. Separation and Purification Technology, 301: 122006
https://doi.org/10.1016/j.seppur.2022.122006
102 M Mon , R Bruno , J Ferrando-Soria , D Armentano , E Pardo . (2018). Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(12): 4912–4947
https://doi.org/10.1039/C8TA00264A
103 M Mon , F Lloret , J Ferrando-Soria , C Martí-Gastaldo , D Armentano , E Pardo . (2016). Selective and efficient removal of mercury from aqueous media with the highly flexible arms of a bioMOF. Angewandte Chemie International Edition, 55(37): 11167–11172
https://doi.org/10.1002/anie.201606015
104 L Na , Z Long , J Xiaoying , O Gary , C Zuliang . (2018). Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. Journal of Hazardous Materials, 366: 563–572
105 S Naeimi , H Faghihian . (2017). Application of novel metal organic framework, MIL-53(Fe) and its magnetic hybrid: for removal of pharmaceutical pollutant, doxycycline from aqueous solutions. Environmental Toxicology and Pharmacology, 53(jul): 121–132
https://doi.org/10.1016/j.etap.2017.05.007
106 C M Navarathna , N B Dewage , A G Karunanayake , E L Farmer , F Perez , E B Hassan , T E Mlsna , C U Pittman . (2020). Rhodamine B adsorptive removal and photocatalytic degradation on MIL-53-Fe MOF/magnetic magnetite/biochar composites. Journal of Inorganic and Organometallic Polymers and Materials, 30(1): 214–229
https://doi.org/10.1007/s10904-019-01322-w
107 M Navarro , J Benito , L Paseta , I Gascon , J Coronas , C Tellez . (2018). Thin-film nanocomposite membrane with the minimum amount of MOF by the Langmuir-Schaefer technique for nanofiltration. ACS Applied Materials & Interfaces, 10(1): 1278–1287
https://doi.org/10.1021/acsami.7b17477
108 L Ni , Y Zhu , J Ma , Y Wang . (2021). Novel strategy for membrane biofouling control in MBR with CdS/MIL-101 modified PVDF membrane by in situ visible light irradiation. Water Research, 188: 116554
https://doi.org/10.1016/j.watres.2020.116554
109 Z J Parkerson , T Le , P Das , S N Mahmoodi , M R Esfahani . (2021). Cu-MOF-polydopamine-incorporated functionalized nanofiltration membranes for water treatment: effect of surficial adhesive modification techniques. ACS ES&T Water, 1(2): 430–439
https://doi.org/10.1021/acsestwater.0c00173
110 L Paseta , M Navarro , J Coronas , C Téllez . (2019). Greener processes in the preparation of thin film nanocomposite membranes with diverse metal-organic frameworks for organic solvent nanofiltration. Journal of Industrial and Engineering Chemistry, 77: 344–354
https://doi.org/10.1016/j.jiec.2019.04.057
111 Y Peng , Y Zhang , H Huang , C Zhong . (2018). Flexibility induced high-performance MOF-based adsorbent for nitroimidazole antibiotics capture. Chemical Engineering Journal, 333: 678–685
https://doi.org/10.1016/j.cej.2017.09.138
112 J Qiu , X Zhang , Y Feng , X Zhang , H Wang , J Yao . (2018). Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 231: 317–342
https://doi.org/10.1016/j.apcatb.2018.03.039
113 W QuH WenX QuY GuoL HuW LiuS TianC HeD (2022) Shu. Enhanced Fenton-like catalysis for pollutants removal via MOF-derived CoxFe(3–x)O4 membrane: oxygen vacancy-mediated mechanism. Chemosphere, 303(Pt 3): 135301
114 D Ragab , H G Gomaa , R Sabouni , M Salem , M Ren , J Zhu . (2016). Micropollutants removal from water using microfiltration membrane modified with ZIF-8 metal organic frameworks (MOFs). Chemical Engineering Journal, 300: 273–279
https://doi.org/10.1016/j.cej.2016.04.033
115 J Ren , M Ledwaba , N M Musyoka , H W Langmi , M Mathe , S Liao , W Pang . (2017). Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests. Coordination Chemistry Reviews, 349: 169–197
https://doi.org/10.1016/j.ccr.2017.08.017
116 Y Ren , T Li , W Zhang , S Wang , M Shi , C Shan , W Zhang , X Guan , L Lv , M Hua , B Pan . (2019). MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue. Journal of Hazardous Materials, 365: 312–321
https://doi.org/10.1016/j.jhazmat.2018.11.013
117 Y Ren , S Wang , J Zhang , J Lu , C Shan , Y Zhang , D D Dionysiou , L Lv , B Pan , W Zhang . (2021). Enhancing the performance of Fenton-like oxidation by a dual-layer membrane: a sequential interception-oxidation process. Journal of Hazardous Materials, 402: 123766
https://doi.org/10.1016/j.jhazmat.2020.123766
118 T A Rickhoff , E Sullivan , L K Werth , D S Kissel , J J Keleher . (2019). A biomimetic cellulose-based composite material that incorporates the antimicrobial metal-organic framework HKUST-1. Journal of Applied Polymer Science, 136(3): 46978
https://doi.org/10.1002/app.46978
119 S Rojas , P Horcajada . (2020). Metal-organic frameworks for the removal of emerging organic contaminants in water. Chemical Reviews, 120(16): 8378–8415
https://doi.org/10.1021/acs.chemrev.9b00797
120 F L Rosario-Ortiz , E C Wert , S A Snyder . (2010). Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater. Water Research, 44(5): 1440–1448
https://doi.org/10.1016/j.watres.2009.10.031
121 X Song , B Gan , S Qi , H Guo , C Y Tang , Y Zhou , C Gao . (2020). Intrinsic nanoscale structure of thin film composite polyamide membranes: connectivity, defects, and structure-property correlation. Environmental Science & Technology, 54(6): 3559–3569
https://doi.org/10.1021/acs.est.9b05892
122 S Sorribas , P Gorgojo , C Tellez , J Coronas , A G Livingston . (2013). High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. Journal of the American Chemical Society, 135(40): 15201–15208
https://doi.org/10.1021/ja407665w
123 Y Tan , Z Sun , H Meng , Y Han , J Wu , J Xu , Y Xu , X Zhang . (2019). A new MOFs/polymer hybrid membrane: MIL-68(Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue. Separation and Purification Technology, 215: 217–226
https://doi.org/10.1016/j.seppur.2019.01.008
124 C Tian , J Zhao , X Ou , J Wan , Y Cai , Z Lin , Z Dang , B Xing . (2018). Enhanced adsorption of p-arsanilic acid from water by amine-modified UiO-67 as examined using extended X-ray absorption fine structure, X-ray photoelectron spectroscopy, and density functional theory calculations. Environmental Science & Technology, 52(6): 3466–3475
https://doi.org/10.1021/acs.est.7b05761
125 N H Tran , M Reinhard , K Y Gin . (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions: a review. Water Research, 133: 182–207
https://doi.org/10.1016/j.watres.2017.12.029
126 C A Trickett , K J Gagnon , S Lee , F Gándara , H B Bürgi , O M Yaghi . (2015). Definitive molecular level characterization of defects in UiO-66 crystals. Angewandte Chemie International Edition, 54(38): 11162–11167
https://doi.org/10.1002/anie.201505461
127 P Vandezande , L M Gevers , I J Vankelecom . (2008). Solvent resistant nanofiltration: separating on a molecular level. Chemical Society Reviews, 37(2): 365–405
https://doi.org/10.1039/B610848M
128 K Vinothkumar , M Shivanna Jyothi , C Lavanya , M Sakar , S Valiyaveettil , R G Balakrishna . (2022). Strongly co-ordinated MOF-PSF matrix for selective adsorption, separation and photodegradation of dyes. Chemical Engineering Journal, 428: 132561
https://doi.org/10.1016/j.cej.2021.132561
129 C Wang , T Zheng , R Luo , C Liu , M Zhang , J Li , X Sun , J Shen , W Han , L Wang . (2018a). In situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(VI) removal. ACS Applied Materials & Interfaces, 10(28): 24164–24171
https://doi.org/10.1021/acsami.8b07826
130 H Wang , J Zhan , W Yao , B Wang , S Deng , J Huang , G Yu , Y Wang . (2018b). Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process. Water Research, 130: 127–138
https://doi.org/10.1016/j.watres.2017.11.054
131 H Wang , S Zhao , Y Liu , R Yao , X Wang , Y Cao , D Ma , M Zou , A Cao , X Feng , B Wang . (2019). Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nature Communications, 10(1): 4204
https://doi.org/10.1038/s41467-019-12114-8
132 X Wang , J Chen , M Fang , T Wang , L Yu , J Li . (2016). ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution. Separation and Purification Technology, 163: 39–47
https://doi.org/10.1016/j.seppur.2016.02.040
133 Z Wang , M He , H Jiang , H He , J Qi , J Ma . (2022). Photocatalytic MOF membranes with two-dimensional heterostructure for the enhanced removal of agricultural pollutants in water. Chemical Engineering Journal, 435: 133870
https://doi.org/10.1016/j.cej.2021.133870
134 L Wojnárovits , E Takacs . (2019). Rate constants of sulfate radical anion reactions with organic molecules: a review. Chemosphere, 220: 1014–1032
https://doi.org/10.1016/j.chemosphere.2018.12.156
135 G Wu , J Ma , S Li , J Guan , B Jiang , L Wang , J Li , X Wang , L Chen . (2018). Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. Journal of Colloid and Interface Science, 528: 360–371
https://doi.org/10.1016/j.jcis.2018.05.105
136 Z Xia , B Shi , W Zhu , C Lü . (2021). Temperature-responsive polymer-tethered Zr-porphyrin MOFs encapsulated carbon dot nanohybrids with boosted visible-light photodegradation for organic contaminants in water. Chemical Engineering Journal, 426: 131794
https://doi.org/10.1016/j.cej.2021.131794
137 X Xiang , D Chen , N Li , Q Xu , H Li , J He , J Lu . (2022). Mil-53(Fe)-loaded polyacrylonitrile membrane with superamphiphilicity and double hydrophobicity for effective emulsion separation and photocatalytic dye degradation. Separation and Purification Technology, 282: 111910
https://doi.org/10.1016/j.seppur.2021.119910
138 S Xiao , X Huo , S Fan , K Zhao , S Yu , X Tan . (2021). Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance. Chinese Journal of Chemical Engineering, 29: 110–120
https://doi.org/10.1016/j.cjche.2020.05.030
139 A Xie , J Cui , J Yang , Y Chen , J Lang , C Li , Y Yan , J Dai . (2020). Photo-Fenton self-cleaning PVDF/NH2-MIL-88B(Fe) membranes towards highly-efficient oil/water emulsion separation. Journal of Membrane Science, 595: 117499
https://doi.org/10.1016/j.memsci.2019.117499
140 J Xie , Z Liao , M Zhang , L Ni , J Qi , C Wang , X Sun , L Wang , S Wang , J Li . (2021). Sequential ultrafiltration-catalysis membrane for excellent removal of multiple pollutants in water. Environmental Science & Technology, 55(4): 2652–2661
https://doi.org/10.1021/acs.est.0c07418
141 W Xiong , G Zeng , Z Yang , Y Zhou , C Zhang , M Cheng , Y Liu , L Hu , J Wan , C Zhou . et al.. (2018). Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent. Science of the Total Environment, 627: 235–244
https://doi.org/10.1016/j.scitotenv.2018.01.249
142 L H Xu , S H Li , H Mao , Y Li , A S Zhang , S Wang , W M Liu , J Lv , T Wang , W W Cai . et al.. (2022). Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation. Science, 378(6617): 308–313
https://doi.org/10.1126/science.abo5680
143 J Xue , M Xu , J Gao , Y Zong , M Wang , S Ma . (2021). Multifunctional porphyrinic Zr-MOF composite membrane for high-performance oil-in-water separation and organic dye adsorption/photocatalysis. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 628: 127288
https://doi.org/10.1016/j.colsurfa.2021.127288
144 O M Yaghi , G Li , H Li . (1995). Selective binding and removal of guests in a microporous metal–organic framework. Nature, 378(6558): 703–706
145 Q Yang , Q Xu , H L Jiang . (2017). Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 46(15): 4774–4808
https://doi.org/10.1039/C6CS00724D
146 S Yang , Q Zou , T Wang , L Zhang . (2018). Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane. Journal of Membrane Science, 569: 48–59
147 Y Yang , P Fu , X Li , Z M Su , N Xu , X Wang . (2020). Co-based MOF for efficient degradation of RB in aqueous solutions by peroxymonosulfate activation. Inorganic Chemistry Communications, 122: 108282
https://doi.org/10.1016/j.inoche.2020.108282
148 Z Yang , H Guo , Z K Yao , Y Mei , C Y Tang . (2019). Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes. Environmental Science & Technology, 53(9): 5301–5308
https://doi.org/10.1021/acs.est.9b00473
149 Z Yang , J Qian , C Shan , H Li , Y Yin , B Pan . (2021). Toward selective oxidation of contaminants in aqueous systems. Environmental Science & Technology, 55(21): 14494–14514
https://doi.org/10.1021/acs.est.1c05862
150 Y Yao , C Wang , J Na , M S A Hossain , X Yan , H Zhang , M A Amin , J Qi , Y Yamauchi , J Li . (2021). Macroscopic MOF architectures: effective strategies for practical application in water treatment. Small, 2021: 2104387
151 Z Ye , R Oriol , C Yang , I Sirés , X Y Li . (2022). A novel NH2-MIL-88B(Fe)-modified ceramic membrane for the integration of electro-Fenton and filtration processes: a case study on naproxen degradation. Chemical Engineering Journal, 433: 133457
https://doi.org/10.1016/j.cej.2021.133547
152 H Yin , C Y Lau , M Rozowski , C Howard , Y Xu , T Lai , M E Dose , R P Lively , M L Lind . (2017). Free-standing ZIF-71/PDMS nanocomposite membranes for the recovery of ethanol and 1-butanol from water through pervaporation. Journal of Membrane Science, 529: 286–292
https://doi.org/10.1016/j.memsci.2017.02.006
153 D Yu , M Wu , Q Hu , L Wang , C Lv , L Zhang . (2019). Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant: Efficiency and mechanism. Journal of Hazardous Materials, 367: 456–464
https://doi.org/10.1016/j.jhazmat.2018.12.108
154 L Yu , W Cao , S Wu , C Yang , J Cheng . (2018). Removal of tetracycline from aqueous solution by MOF/graphite oxide pellets: preparation, characteristic, adsorption performance and mechanism. Ecotoxicology and Environmental Safety, 164: 289–296
https://doi.org/10.1016/j.ecoenv.2018.07.110
155 H Zeng , Z Yu , L Shao , X Li , M Zhu , Y Liu , X Feng , X Zhu . (2021). A novel strategy for enhancing the performance of membranes for dyes separation: Embedding PAA@UiO-66-NH2 between graphene oxide sheets. Chemical Engineering Journal, 403: 126281
https://doi.org/10.1016/j.cej.2020.126281
156 B Zhang , C Shan , Z Hao , J Liu , B Wu , B Pan . (2019a). Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: molecular composition correlated with spectral indexes and acute toxicity. Water Research, 157: 472–482
https://doi.org/10.1016/j.watres.2019.04.002
157 H Zhang , S Chen , H Zhang , X Fan , C Gao , H Yu , X Quan . (2019b). Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants. Frontiers of Environmental Science & Engineering, 13(2): 18
158 H Z Zhang , J Y Sun , Z L Zhang , Z L Xu . (2021a). Hybridly charged NF membranes with MOF incorporated for removing low-concentration surfactants. Separation and Purification Technology, 258: 118069
https://doi.org/10.1016/j.seppur.2020.118069
159 J Zhang , Z Xu , W Mai , C Min , B Zhou , M Shan , Y Li , C Yang , Z Wang , X Qian . (2013). Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 1(9): 3101
https://doi.org/10.1039/c2ta01415g
160 R Zhang , J Cao , Y Liu , J Guan , M He , Z Jiang . (2020). Metal-organic framework-intercalated graphene oxide membranes for highly efficient oil/water separation. Industrial & Engineering Chemistry Research, 59(38): 16762–16771
https://doi.org/10.1021/acs.iecr.0c02721
161 Y Zhang , M Xiong , A Sun , Z Shi , B Zhu , D K Macharia , F Li , Z Chen , J Liu , L Zhang . (2021b). MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants. Journal of Cleaner Production, 290: 125782
https://doi.org/10.1016/j.jclepro.2021.125782
162 J Zhao , C Lyu , R Zhang , Y Han , Y Wu , X Wu . (2023). Self-cleaning and regenerable nano zero-valent iron modified PCN-224 heterojunction for photo-enhanced radioactive waste reduction. Journal of Hazardous Materials, 442: 130018
https://doi.org/10.1016/j.jhazmat.2022.130018
163 P Zhao , J Wang , X Han , J Liu , Y Zhang , B Van der Bruggen . (2021). Zr-porphyrin metal–organic framework-based photocatalytic self-cleaning membranes for efficient dye removal. Industrial & Engineering Chemistry Research, 60(4): 1850–1858
https://doi.org/10.1021/acs.iecr.0c05583
164 H C J Zhou , S Kitagawa . (2014). Metal-organic frameworks (MOFs). Chemical Society Reviews, 43(16): 5415–5418
https://doi.org/10.1039/C4CS90059F
165 L Zhou , N Li , G Owens , Z Chen . (2019). Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chemical Engineering Journal, 362: 628–637
https://doi.org/10.1016/j.cej.2019.01.068
166 M Zhou , Y N Wu , J Qiao , J Zhang , A Mcdonald , G Li , F Li . (2013). The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al). Journal of Colloid and Interface Science, 405(9): 157–163
https://doi.org/10.1016/j.jcis.2013.05.024
167 Z Zhu , L Wang , Y Xu , Q Li , J Jiang , X Wang . (2017). Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection. Journal of Colloid and Interface Science, 504: 429–439
https://doi.org/10.1016/j.jcis.2017.05.068
[1] Manshu Zhao, Xinhua Wang, Shuguang Wang, Mingming Gao. Cr-containing wastewater treatment based on Cr self-catalysis: a critical review[J]. Front. Environ. Sci. Eng., 2024, 18(1): 1-.
[2] Chen Zhou, Ermias Gebrekrstos Tesfamariam, Youneng Tang, Ang Li. Contributions of adsorption, bioreduction and desorption to uranium immobilization by extracellular polymeric substances[J]. Front. Environ. Sci. Eng., 2023, 17(9): 107-.
[3] Zhou Zhang, Kai Huo, Tingxuan Yan, Xuwen Liu, Maocong Hu, Zhenhua Yao, Xuguang Liu, Tao Ye. Mechanistic insights into the selective photocatalytic degradation of dyes over TiO2/ZSM-11[J]. Front. Environ. Sci. Eng., 2023, 17(8): 101-.
[4] Huan Xi, Fanlu Min, Zhanhu Yao, Jianfeng Zhang. Facile fabrication of dolomite-doped biochar/bentonite for effective removal of phosphate from complex wastewaters[J]. Front. Environ. Sci. Eng., 2023, 17(6): 71-.
[5] Haiguang Zhang, Lei Du, Jiajian Xing, Gaoliang Wei, Xie Quan. Electro-conductive crosslinked polyaniline/carbon nanotube nanofiltration membrane for electro-enhanced removal of bisphenol A[J]. Front. Environ. Sci. Eng., 2023, 17(5): 59-.
[6] Weiyi Liu, Ting Pan, Hang Liu, Mengyun Jiang, Tingting Zhang. Adsorption behavior of imidacloprid pesticide on polar microplastics under environmental conditions: critical role of photo-aging[J]. Front. Environ. Sci. Eng., 2023, 17(4): 41-.
[7] Aihua Zhang, Shihao Fang, Huan Xi, Jianke Huang, Yongfu Li, Guangyuan Ma, Jianfeng Zhang. Highly efficient and selective removal of phosphate from wastewater of sea cucumber aquaculture for microalgae culture using a new adsorption-membrane separation-coordinated strategy[J]. Front. Environ. Sci. Eng., 2023, 17(10): 120-.
[8] Zhengyang Huo, Young Jun Kim, Yuying Chen, Tianyang Song, Yang Yang, Qingbin Yuan, Sang Woo Kim. Hybrid energy harvesting systems for self-powered sustainable water purification by harnessing ambient energy[J]. Front. Environ. Sci. Eng., 2023, 17(10): 118-.
[9] Xianjun Tan, Zhenying Jiang, Yuxiong Huang. Photo-induced surface frustrated Lewis pairs for promoted photocatalytic decomposition of perfluorooctanoic acid[J]. Front. Environ. Sci. Eng., 2023, 17(1): 3-.
[10] Mei Shi, Xiao Wang, Mengying Shao, Lun Lu, Habib Ullah, Hao Zheng, Fengmin Li. Resource utilization of typical biomass wastes as biochars in removing plasticizer diethyl phthalate from water: characterization and adsorption mechanisms[J]. Front. Environ. Sci. Eng., 2023, 17(1): 5-.
[11] Jie Wu, Jian Lu, Jun Wu. Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(8): 104-.
[12] Ning Wang, Jiangtao Feng, Wei Yan, Luohong Zhang, Yonghong Liu, Ruihua Mu. Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO2 hydrate: Adsorption behaviors, sites and mechanisms[J]. Front. Environ. Sci. Eng., 2022, 16(8): 105-.
[13] Yanlin Li, Bo Wang, Lei Zhu, Yixing Yuan, Lujun Chen, Jun Ma. Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides[J]. Front. Environ. Sci. Eng., 2022, 16(6): 68-.
[14] Feng Chen, Shihao Guo, Yihao Wang, Lulu Ma, Bing Li, Zhimin Song, Lei Huang, Wen Zhang. Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon adsorbent derived from loofah sponge[J]. Front. Environ. Sci. Eng., 2022, 16(5): 57-.
[15] Xuemei Hu, Shijie You, Fang Li, Yanbiao Liu. Recent advances in antimony removal using carbon-based nanomaterials: A review[J]. Front. Environ. Sci. Eng., 2022, 16(4): 48-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed