|
|
Magnetic Co-doped 1D/2D structured γ-Fe2O3/MoS2 effectively activated peroxymonosulfate for efficient abatement of bisphenol A via both radical and non-radical pathways |
Junge Xu1, Dong Wang1, Die Hu2, Ziwei Zhang1, Junhong Chen1, Yingmu Wang1( ), Yifeng Zhang3( ) |
1. College of Civil Engineering, Fuzhou University, Fuzhou 350116, China 2. China Nuclear Power Engineering Co., Ltd., Shenzhen 518120, China 3. Department of Environmental & Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark |
|
|
Abstract ● Magnetic Co- γ -Fe2O3/MoS2 were prepared via facile hydrothermal methods. ● Doping γ -Fe2O3 with cobalt greatly increased PMS activation for BPA abatement. ● The compounding of MoS2 significantly enhanced the stability of the catalyst. ● Hybrid radical-nonradical pathways acted for effective degradation of BPA. ● The toxicity of intermediates was lower than BPA via T.E.S.T analysis. Iron-based catalysts have been widely used to treat refractory organic pollutants in wastewater. In this paper, magnetic Co-γ-Fe2O3 was synthesized by a facile tartaric acid-assisted hydrothermal method, and Co-γ-Fe2O3/MoS2 nanocomposite catalyst was obtained via in situ growth of MoS2 nanosheets on Co-γ-Fe2O3 nanoparticles. The nanocomposite catalysts were used to decompose bisphenol A (BPA) by activating peroxymonosulfate (PMS). It was shown that only 0.15 g/L catalyst and 0.5 mmol/L PMS degraded 10 mg/L of BPA (99.3% within 10 min) in the pH range of 3–9. PMS was activated due to redox cycling among the pairs Co(III)/Co(II), Fe(III)/Fe(II), and Mo(VI)/Mo(IV). Quenching experiments and electron paramagnetic resonance spectroscopy demonstrated that both radical and non-radical pathways were involved in BPA degradation, in which active radical sulfate radical and non-radical singlet oxygen were the main reactive oxygen species. Ten intermediates were identified by liquid chromatography-coupled mass spectrometry, and three possible BPA degradation pathways were proposed. The toxicity of several degradation intermediates was lower, and Co-γ-Fe2O3/MoS2 exhibited excellent reusability and could be magnetically recovered.
|
Keywords
Magnetic Co-γ-Fe2O3/MoS2
Hydrothermal method
Bisphenol A
Degradation pathways
Toxicity analysis
|
Corresponding Author(s):
Yingmu Wang,Yifeng Zhang
|
Issue Date: 11 December 2023
|
|
1 |
A Abareshi , N Salehi . (2022). The effect of Fe3O4 nanoparticles on structural, optical, and thermal properties MoS2 nanoflakes. Journal of Materials Science Materials in Electronics, 33(33): 25153–25162
https://doi.org/10.1007/s10854-022-09220-7
|
2 |
R Bai , W Yan , Y Xiao , S Wang , X Tian , J Li , X Xiao , X Lu , F Zhao . (2020). Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine. Chemical Engineering Journal, 397: 125501
https://doi.org/10.1016/j.cej.2020.125501
|
3 |
R Barik , B K Jena , M Mohapatra . (2017). Metal doped mesoporous FeOOH nanorods for high performance supercapacitors. RSC Advances, 7(77): 49083–49090
https://doi.org/10.1039/C7RA06731C
|
4 |
C Chen , T Ma , Y Shang , B Gao , B Jin , H Dan , Q Li , Q Yue , Y Li , Y Wang . et al.. (2019a). In-situ pyrolysis of enteromorpha as carbocatalyst for catalytic removal of organic contaminants: considering the intrinsic N/Fe in enteromorpha and non-radical reaction. Applied Catalysis B: Environmental, 250: 382–395
https://doi.org/10.1016/j.apcatb.2019.03.048
|
5 |
G Chen , X Zhang , Y Gao , G Zhu , Q Cheng , X Cheng . (2019b). Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants. Separation and Purification Technology, 213: 456–464
https://doi.org/10.1016/j.seppur.2018.12.049
|
6 |
L Chen , D Ding , C Liu , H Cai , Y Qu , S Yang , Y Gao , T Cai . (2018). Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: a comparative study and mechanistic consideration. Chemical Engineering Journal, 334: 273–284
https://doi.org/10.1016/j.cej.2017.10.040
|
7 |
H Dong , J Chen , L Feng , W Zhang , X Guan , T J Strathmann . (2019). Degradation of organic contaminants through activating bisulfite by cerium(IV): a sulfate radical-predominant oxidation process. Chemical Engineering Journal, 357: 328–336
https://doi.org/10.1016/j.cej.2018.09.024
|
8 |
X Duan , C Su , J Miao , Y Zhong , Z Shao , S Wang , H Sun . (2018). Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals. Applied Catalysis B: Environmental, 220: 626–634
https://doi.org/10.1016/j.apcatb.2017.08.088
|
9 |
Y Fan , Y Ji , G Zheng , J Lu , D Kong , X Yin , Q Zhou . (2017). Degradation of atrazine in heterogeneous Co3O4 activated peroxymonosulfate oxidation process: kinetics, mechanisms, and reaction pathways. Chemical Engineering Journal, 330: 831–839
https://doi.org/10.1016/j.cej.2017.08.020
|
10 |
D Flak , Q Chen , B S Mun , Z Liu , M Rękas , A Braun . (2018). In situ ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe2O3 and γ-Fe2O3 nanoparticles. Applied Surface Science, 455: 1019–1028
https://doi.org/10.1016/j.apsusc.2018.06.002
|
11 |
J Gao , J Song , J Ye , X Duan , D D Dionysiou , J S Yadav , M N Nadagouda , L Yang , S Luo . (2021). Comparative toxicity reduction potential of UV/sodium percarbonate and UV/hydrogen peroxide treatments for bisphenol A in water: an integrated analysis using chemical, computational, biological, and metabolomic approaches. Water Research, 190: 116755
https://doi.org/10.1016/j.watres.2020.116755
|
12 |
Y Ge , C Li , G I N Waterhouse , X Jiang , Z Zhang , L Yu . (2021). Polypyrrole/γ-Fe2O3/g-C3N4 nanocomposites for high-performance electromagnetic wave absorption. Synthetic Metals, 274: 116716
https://doi.org/10.1016/j.synthmet.2021.116716
|
13 |
Y Geng , D Chen , N Li , Q Xu , H Li , J He , J Lu . (2021). Z-scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Applied Catalysis B: Environmental, 280: 119409
https://doi.org/10.1016/j.apcatb.2020.119409
|
14 |
S Giannakis , K A Lin , F Ghanbari . (2021). A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chemical Engineering Journal, 406: 127083
https://doi.org/10.1016/j.cej.2020.127083
|
15 |
E Golestani , M Javanbakht , H Ghafarian-Zahmatkesh , H Beydaghi , M Ghaemi . (2018). Tartaric acid assisted carbonization of LiFePO4 synthesized through in situ hydrothermal process in aqueous glycerol solution. Electrochimica Acta, 259: 903–915
https://doi.org/10.1016/j.electacta.2017.10.123
|
16 |
P Guo , X Hu . (2022). Co, Fe co-doped g-C3N4 composites as peroxymonosulfate activators under visible light irradiation for levofloxacin degradation: characterization, performance and synergy mechanism. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 648: 129423
https://doi.org/10.1016/j.colsurfa.2022.129423
|
17 |
Y He , J Qian , P Wang , J Wu , B Lu , S Tang , P Gao . (2022a). Acceleration of levofloxacin degradation by combination of multiple free radicals via MoS2 anchored in manganese ferrite doped perovskite activated PMS under visible light. Chemical Engineering Journal, 431: 133933
https://doi.org/10.1016/j.cej.2021.133933
|
18 |
Y He , J Qian , B Xu , P Wang , B Lu , S Tang , P Gao . (2022b). Encapsulate SrCoO3 perovskite crystal within molybdenum disulfide layer as core-shell structure to enhance electron transfer for peroxymonosulfate activation. Separation and Purification Technology, 283: 120199
https://doi.org/10.1016/j.seppur.2021.120199
|
19 |
M Ikram , M I Khan , A Raza , M Imran , A Ul-Hamid , S Ali . (2020). Outstanding performance of silver-decorated MoS2 nanopetals used as nanocatalyst for synthetic dye degradation. Physica E, Low-Dimensional Systems and Nanostructures, 124: 114246
https://doi.org/10.1016/j.physe.2020.114246
|
20 |
J Jiang , X Wang , Y Liu , Y Ma , T Li , Y Lin , T Xie , S Dong . (2020). Photo-Fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N4 nanosheet with rich nitrogen defect: degradation mechanism, pathways, and products toxicity assessment. Applied Catalysis B: Environmental, 278: 119349
https://doi.org/10.1016/j.apcatb.2020.119349
|
21 |
B Kakavandi , S Alavi , F Ghanbari , M Ahmadi . (2022). Bisphenol A degradation by peroxymonosulfate photo-activation coupled with carbon-based cobalt ferrite nanocomposite: Performance, upgrading synergy and mechanistic pathway. Chemosphere, 287: 132024
https://doi.org/10.1016/j.chemosphere.2021.132024
|
22 |
J Li , J Li , L Chen , Y Lin , X Liu , X Gong , D Li . (2015). Characterization and magnetism of Co-modified γ-Fe2O3 core-shell nanoparticles by enhancement using NaOH. Journal of Magnetism and Magnetic Materials, 374: 157–163
https://doi.org/10.1016/j.jmmm.2014.08.033
|
23 |
M Li , Y Li , P Yu , H Zhao , L Xiang , N Feng , Q Li , K He , X Luo , Q Cai . et al.. (2022a). Exploring degradation mechanism of tetracycline via high-effective peroxymonosulfate catalysts of montmorillonite hybridized CoFe composites and safety assessment. Chemical Engineering Journal, 427: 130930
https://doi.org/10.1016/j.cej.2021.130930
|
24 |
Q Li , C Lv , X Xia , C Peng , Y Yang , F Guo , J Zhang . (2022b). Separation/degradation behavior and mechanism for cationic/anionic dyes by Ag-functionalized Fe3O4-PDA core-shell adsorbents. Frontiers of Environmental Science & Engineering, 16(11): 138
|
25 |
R Li , J Huang , M Cai , J Huang , Z Xie , Q Zhang , Y Liu , H Liu , W Lv , G Liu . (2020). Activation of peroxymonosulfate by Fe doped g-C3N4/graphene under visible light irradiation for Trimethoprim degradation. Journal of Hazardous Materials, 384: 121435
https://doi.org/10.1016/j.jhazmat.2019.121435
|
26 |
H Liu , S Luo , S Yan , Q Wang , D Hu , Y Wang , J Feng , T Yi . (2019). High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Composites. Part B, Engineering, 164: 576–582
https://doi.org/10.1016/j.compositesb.2019.01.084
|
27 |
L Liu , T Hu , K Dai , J Zhang , C Liang . (2021a). A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation. Chinese Journal of Catalysis, 42(1): 46–55
https://doi.org/10.1016/S1872-2067(20)63560-4
|
28 |
Liu M, Zhang L, Han L, Mei C, Xu C, Yuan R, Geng C (2023). Can heat-activated peroxymonosulfate be used as a pretreatment to mitigate fouling for membrane distillation: performance of individual organics? Water, 15(6): 1148
|
29 |
T Liu , C Wang , Y Han , C Bai , H Ren , Y Liu , X Han . (2022). Oxidative polymerization of bisphenol A (BPA) via H-abstraction by Bi2.15WO6 and persulfate: importance of the surface complexes. Chemical Engineering Journal, 435: 134816
https://doi.org/10.1016/j.cej.2022.134816
|
30 |
Z Liu , J Wan , Y Ma , Y Wang . (2021b). In situ synthesis of FeOCl@MoS2 on graphite felt as novel electro-fenton cathode for efficient degradation of antibiotic ciprofloxacin at mild pH. Chemosphere, 273: 129747
https://doi.org/10.1016/j.chemosphere.2021.129747
|
31 |
X Long , J Luo , Z Zhong , Y Zhu , C Zhang , J Wan , H Zhou , B Zhang , D Xia . (2023). Performance and mechanism of carbamazepine removal by FeS-S2O82− process: experimental investigation and DFT calculations. Frontiers of Environmental Science & Engineering, 17(9): 113
|
32 |
J Lu , Y Zhou , L Ling , Y Zhou . (2022). Enhanced activation of PMS by a novel Fenton-like composite Fe3O4/S-WO3 for rapid chloroxylenol degradation. Chemical Engineering Journal, 446: 137067
https://doi.org/10.1016/j.cej.2022.137067
|
33 |
Y Lu , Z Ding , J Zhang , C Fu , X Xia , Y Fang . (2019). Degradation of atrazine by UV/PMS in phosphate buffer. Polish Journal of Environmental Studies, 28(4): 2735–2744
https://doi.org/10.15244/pjoes/94213
|
34 |
A J R Luciano , L de Sousa Soletti , M E C Ferreira , L F Cusioli , M B de Andrade , R Bergamasco , N U Yamaguchi . (2020). Manganese ferrite dispersed over graphene sand composite for methylene blue photocatalytic degradation. Journal of Environmental Chemical Engineering, 8(5): 104191
https://doi.org/10.1016/j.jece.2020.104191
|
35 |
Q Ma , X Zhang , R Guo , H Zhang , Q Cheng , M Xie , X Cheng . (2019). Persulfate activation by magnetic γ-Fe2O3/Mn3O4 nanocomposites for degradation of organic pollutants. Separation and Purification Technology, 210: 335–342
https://doi.org/10.1016/j.seppur.2018.06.060
|
36 |
J Mao , X Quan , J Wang , C Gao , S Chen , H Yu , Y Zhang . (2018). Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants. Frontiers of Environmental Science & Engineering, 12(6): 10
https://doi.org/10.1007/s11783-018-1060-9
|
37 |
B Niu , L Wang , M Li , W Yao , K Zang , L Zhou , X Hu , Y Zheng . (2022). Lattice B-doping evolved ferromagnetic perovskite-like catalyst for enhancing persulfate-based degradation of norfloxacin. Journal of Hazardous Materials, 425: 127949
https://doi.org/10.1016/j.jhazmat.2021.127949
|
38 |
L Niu , G Zhang , G Xian , Z Ren , T Wei , Q Li , Y Zhang , Z Zou . (2021). Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: performance, activation mechanism and degradation pathway. Separation and Purification Technology, 259: 118156
https://doi.org/10.1016/j.seppur.2020.118156
|
39 |
X Pan , L Yan , R Qu , Z Wang . (2018). Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light. Chemosphere, 196: 95–104
https://doi.org/10.1016/j.chemosphere.2017.12.152
|
40 |
K Qi , Z Yuan , Y Hou , R Zhao , B Zhang . (2019). Facile synthesis and improved Li-storage performance of Fe-doped MoS2/reduced graphene oxide as anode materials. Applied Surface Science, 483: 688–695
https://doi.org/10.1016/j.apsusc.2019.04.021
|
41 |
W Ren , C Cheng , P Shao , X Luo , H Zhang , S Wang , X Duan . (2022). Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environmental Science & Technology, 56(1): 78–97
https://doi.org/10.1021/acs.est.1c05374
|
42 |
A S Sakthi Athithan , J Jeyasundari , Y B A Jacob . (2021). Biological synthesis, physico-chemical characterization of undoped and Co doped α-Fe2O3 nanoparticles using Tribulus terrestris leaf extract and its antidiabetic, antimicrobial applications. Advances in Natural Sciences. Nanoscience and Nanotechnology, 12(4): 045003
https://doi.org/10.1088/2043-6262/ac42c8
|
43 |
P Sarkar , S De , S Neogi . (2022a). Microwave assisted facile fabrication of dual Z-scheme g-C3N4 /ZnFe2O4/Bi2S3 photocatalyst for peroxymonosulphate mediated degradation of 2,4,6-trichlorophenol: the mechanistic insights. Applied Catalysis B: Environmental, 307: 121165
https://doi.org/10.1016/j.apcatb.2022.121165
|
44 |
P Sarkar , D Roy , B Bera , S De , S Neogi . (2022b). Efficient photocatalytic degradation of ciprofloxacin using novel dual Z-scheme gCN/CuFe2O4/MoS2 mediated peroxymonosulphate activation. Chemical Engineering Journal, 430: 132834
https://doi.org/10.1016/j.cej.2021.132834
|
45 |
B Sheng , F Yang , Y Wang , Z Wang , Q Li , Y Guo , X Lou , J Liu . (2019). Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS. Chemical Engineering Journal, 375: 121989
https://doi.org/10.1016/j.cej.2019.121989
|
46 |
M Su , H Li , Z Liu , H Peng , S Huang , Y Zhou , C Liao , G Song , D Chen . (2022). Highly-efficient and easy separation of γ-Fe2O3 selectively adsorbs U(VI) in waters. Environmental Research, 210: 112917
https://doi.org/10.1016/j.envres.2022.112917
|
47 |
Q Sun , B Xu , J Yang , T Qian , H Jiang . (2020a). Layered oxides supported Co–Fe bimetal catalyst for carbamazepine degradation via the catalytic activation of peroxymonosulfate. Chemical Engineering Journal, 400: 125899
https://doi.org/10.1016/j.cej.2020.125899
|
48 |
X Sun , D Xu , P Dai , X Liu , F Tan , Q Guo . (2020b). Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe–Co bimetal-doped MCM-41 as peroxymonosulfate activator. Chemical Engineering Journal, 402: 125881
https://doi.org/10.1016/j.cej.2020.125881
|
49 |
Z Sun , Y Zhu , Y Deng , F Liu , W Ruan , L Xie , I Beadham . (2022). Nature of surface active centers in activation of peroxydisulfate by CuO for degradation of BPA with non-radical pathway. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 643: 128731
https://doi.org/10.1016/j.colsurfa.2022.128731
|
50 |
F Wang , Y Lai , Q Fang , Z Li , P Ou , P Wu , Y Duan , Z Chen , S Li , Y Zhang . (2020). Facile fabricate of novel Co(OH)F@MXenes catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation: the reaction kinetics and mechanism. Applied Catalysis B: Environmental, 262: 118099
https://doi.org/10.1016/j.apcatb.2019.118099
|
51 |
J Wang , Y Xie , J Hou , X Zhou , J Chen , C Yao , Y Zhang , Y Li . (2022a). Biodegradation of bisphenol A by alginate immobilized phanerochaete chrysosporium beads: continuous cyclic treatment and degradation pathway analysis. Biochemical Engineering Journal, 177: 108212
https://doi.org/10.1016/j.bej.2021.108212
|
52 |
Y Wang , L Wu , Y Zhou , Y Zhang , S Sun , W Duo Wu , X Wang , Z Wu . (2022b). Ternary FeS/γ-Fe2O3@N/S-doped carbon nanohybrids dispersed in an ordered mesoporous silica for efficient peroxymonosulfate activation. Chemical Engineering Journal, 435: 135124
https://doi.org/10.1016/j.cej.2022.135124
|
53 |
Z Wang , B Yang , X Zhao , Y Chen , D Wei , L Zhang , X Su . (2022c). Facile synthesis of ultrathin γ-Fe2O3 magnetic nanosheets rich in oxygen vacancies and their photocatalytic activity for water oxidation. Applied Surface Science, 578: 151999
https://doi.org/10.1016/j.apsusc.2021.151999
|
54 |
S Wu , H Liu , C Yang , X Li , Y Lin , K Yin , J Sun , Q Teng , C Du , Y Zhong . (2020). High-performance porous carbon catalysts doped by iron and nitrogen for degradation of bisphenol F via peroxymonosulfate activation. Chemical Engineering Journal, 392: 123683
https://doi.org/10.1016/j.cej.2019.123683
|
55 |
S Wu , Z Yang , F Wang , X Jin , F Kengara , K Xi , W Fang , W Yang , Y Zhang . (2022). Effect of γ-Fe2O3 nanoparticles on the composition of montmorillonite and its sorption capacity for pyrene. Science of the Total Environment, 813: 151893
https://doi.org/10.1016/j.scitotenv.2021.151893
|
56 |
X Xie , J Cao , Y Xiang , R Xie , Z Suo , Z Ao , X Yang , H Huang . (2022). Accelerated iron cycle inducing molecular oxygen activation for deep oxidation of aromatic VOCs in MoS2 co-catalytic Fe3+/PMS system. Applied Catalysis B: Environmental, 309: 121235
https://doi.org/10.1016/j.apcatb.2022.121235
|
57 |
B Xu , J Wang , H Yu , H Gao . (2011). Large-scale synthesis of hierarchical flowerlike boehmite architectures. Journal of Environmental Sciences (China), 23(Suppl): S49–S52
https://doi.org/10.1016/S1001-0742(11)61076-0
|
58 |
L Xu , X Wang , Y Sun , H Gong , M Guo , X Zhang , L Meng , L Gan . (2020). Mechanistic study on the combination of ultrasound and peroxymonosulfate for the decomposition of endocrine disrupting compounds. Ultrasonics Sonochemistry, 60: 104749
https://doi.org/10.1016/j.ultsonch.2019.104749
|
59 |
T Yan , Q Yang , R Feng , X Ren , Y Zhao , M Sun , L Yan , Q Wei . (2022). Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS2/ZnIn2S4 composite. Frontiers of Environmental Science & Engineering, 16(10): 131
|
60 |
G Yang , Y Liang , Z Xiong , J Yang , K Wang , Z Zeng . (2021). Molten salt-assisted synthesis of Ce4O7/Bi4MoO9 heterojunction photocatalysts for photo-fenton degradation of Tetracycline: enhanced mechanism, degradation pathway and products toxicity assessment. Chemical Engineering Journal, 425: 130689
https://doi.org/10.1016/j.cej.2021.130689
|
61 |
J Yang , D Zeng , M Hassan , Z Ma , L Dong , Y Xie , Y He . (2022). Efficient degradation of bisphenol A by dielectric barrier discharge non-thermal plasma: performance, degradation pathways and mechanistic consideration. Chemosphere, 286: 131627
https://doi.org/10.1016/j.chemosphere.2021.131627
|
62 |
L Yao , X He , J Lv , G Xu , Z Bao , J Cui , D Yu , Y Wu . (2022). Efficient degradation of ciprofloxacin by Co3O4/Si nanoarrays heterojunction activated peroxymonosulfate under simulated sunlight: performance and mechanism. Journal of Environmental Chemical Engineering, 10(3): 107397
https://doi.org/10.1016/j.jece.2022.107397
|
63 |
Y Yue , S Shen , W Cheng , G Han , Q Wu , J Jiang . (2022). Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/montmorillonite hybrid for antibiotic degradation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 636: 128035
https://doi.org/10.1016/j.colsurfa.2021.128035
|
64 |
E Yun , J H Lee , J Kim , H Park , J Lee . (2018). Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer. Environmental Science & Technology, 52(12): 7032–7042
https://doi.org/10.1021/acs.est.8b00959
|
65 |
L Zeng , L Xiao , X Shi , M Wei , J Cao , Y Long . (2019a). Core-shell prussian blue analogues@ poly(m-phenylenediamine) as efficient peroxymonosulfate activators for degradation of rhodamine B with reduced metal leaching. Journal of Colloid and Interface Science, 534: 586–594
https://doi.org/10.1016/j.jcis.2018.09.074
|
66 |
Y Zeng , N Guo , Y Song , Y Zhao , H Li , X Xu , J Qiu , H Yu . (2018). Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity. Journal of Colloid and Interface Science, 514: 664–674
https://doi.org/10.1016/j.jcis.2017.12.079
|
67 |
Y Zeng , N Guo , X Xu , Y Yu , Q Wang , N Wang , X Han , H Yu . (2019b). Degradation of bisphenol A using peroxymonosulfate activated by WO3@MoS2/Ag hollow nanotubes photocatalyst. Chemosphere, 227: 589–597
https://doi.org/10.1016/j.chemosphere.2019.04.067
|
68 |
D Zhang , X Fan , A Yang , X Zong . (2018). Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing. Journal of Colloid and Interface Science, 523: 217–225
https://doi.org/10.1016/j.jcis.2018.03.109
|
69 |
H Zhang , L Du , J Xing , G Wei , X Quan . (2023). Electro-conductive crosslinked polyaniline/carbon nanotube nanofiltration membrane for electro-enhanced removal of bisphenol A. Frontiers of Environmental Science & Engineering, 17(5): 59
|
70 |
J Zhang , B Sun , X Guan . (2013). Oxidative removal of bisphenol A by permanganate: kinetics, pathways and influences of co-existing chemicals. Separation and Purification Technology, 107: 48–53
https://doi.org/10.1016/j.seppur.2013.01.023
|
71 |
W Zhang , H Zhang , X Yan , M Zhang , R Luo , J Qi , X Sun , J Shen , W Han , L Wang . et al.. (2020). Controlled synthesis of bimetallic Prussian blue analogues to activate peroxymonosulfate for efficient bisphenol A degradation. Journal of Hazardous Materials, 387: 121701
https://doi.org/10.1016/j.jhazmat.2019.121701
|
72 |
S Zhao , C Chen , J Ding , S Yang , Y Zang , N Ren . (2022). One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B. Frontiers of Environmental Science & Engineering, 16(3): 36
|
73 |
K Zheng , Y Sun , S Gong , G Jiang , X Zheng , Z Yu . (2019). Degradation of sulfamethoxazole in aqueous solution by dielectric barrier discharge plasma combined with Bi2WO6-rMoS2 nanocomposite: mechanism and degradation pathway. Chemosphere, 222: 872–883
https://doi.org/10.1016/j.chemosphere.2019.02.004
|
74 |
Y Zhou , L Zhou , Y Zhou , M Xing , J Zhang . (2020). Z-scheme photo-Fenton system for efficiency synchronous oxidation of organic contaminants and reduction of metal ions. Applied Catalysis B: Environmental, 279: 119365
https://doi.org/10.1016/j.apcatb.2020.119365
|
75 |
J Zhu , J Wang , C Shan , J Zhang , L Lv , B Pan . (2019a). Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO4 via charge redistribution for atrazine degradation. Chemical Engineering Journal, 375: 122009
https://doi.org/10.1016/j.cej.2019.122009
|
76 |
M Zhu , J E Yang , D Delai Sun , B Yuan , M Fu . (2022). Deciphering the simultaneous removal of carbamazepine and metronidazole by monolithic Co2AlO4@Al2O3 activated peroxymonosulfate. Chemical Engineering Journal, 436: 135201
https://doi.org/10.1016/j.cej.2022.135201
|
77 |
S Zhu , X Li , J Kang , X Duan , S Wang . (2019b). Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environmental Science & Technology, 53(1): 307–315
https://doi.org/10.1021/acs.est.8b04669
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|