Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (7) : 86    https://doi.org/10.1007/s11783-024-1846-x
A review on Bi2WO6-based photocatalysts synthesis, modification, and applications in environmental remediation, life medical, and clean energy
Wei Mao1,2, Xuewu Shen1,2, Lixun Zhang1,2(), Yang Liu1,2, Zehao Liu1,2, Yuntao Guan1,2()
1. Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
2. State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(12952 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Recent progress of bismuth tungstate (Bi2WO6) as photocatalyst was summarized.

● The review reported the fabrication and modification of Bi2WO6-based materials.

● Bi2WO6-based photocatalysts have been widely used in multiple areas.

● Future perspectives on the use of Bi2WO6-based photocatalysts were discussed.

Photocatalysis has emerged a promising strategy to remedy the current energy and environmental crisis due to its ability to directly convert clean solar energy into chemical energy. Bismuth tungstate (Bi2WO6) has been shown to be an excellent visible light response, a well-defined perovskite crystal structure, and an abundance of oxygen atoms (providing efficient channels for photogenerated carrier transfer) due to their suitable band gap, effective electron migration and separation, making them ideal photocatalysts. It has been extensively applied as photocatalyst in aspects including pollutant removal, carbon dioxide reduction, solar hydrogen production, ammonia synthesis by nitrogen photocatalytic reduction, and cancer therapy. In this review, the fabrication and application of Bi2WO6 in photocatalysis were comprehensively discussed. The photocatalytic properties of Bi2WO6-based materials were significantly enhanced by carbon modification, the construction of heterojunctions, and the atom doping to improve the photogenerated carrier migration rate, the number of surface active sites, and the photoexcitation ability of the composites. In addition, the potential development directions and the existing challenges to improve the photocatalytic performance of Bi2WO6-based materials were discussed.

Keywords Bismuth tungstate      Synthesis and modification      Photocatalytic application      Environmental remediation      Clean energy      Medical science     
Corresponding Author(s): Lixun Zhang,Yuntao Guan   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 15 April 2024
 Cite this article:   
Wei Mao,Xuewu Shen,Lixun Zhang, et al. A review on Bi2WO6-based photocatalysts synthesis, modification, and applications in environmental remediation, life medical, and clean energy[J]. Front. Environ. Sci. Eng., 2024, 18(7): 86.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1846-x
https://academic.hep.com.cn/fese/EN/Y2024/V18/I7/86
Fig.1  Graph showing the number of papers published annually on photocatalysis field by Bi2WO6 composites (Data extracted from Web of Science Database).
PhotocatalystSynthesis methodMorphologySpecific surface area (m2/g)ContaminantRemoval efficiencyPhotocatalysis conditionRef.
Bi2WO6HydrothermalNanoflowers26.154Ceftriaxone sodium70.18%C0 = 10 mg/L; t = 240 min; dosage = 1 g/L; LS: 300 W Xenon lampZhao et al. (2018b)
Bi2WO6SolvothermalNanosheets and microspheresRhodamine B97%C0 = 10 mg/L; t = 180 min; dosage = 0.2 g/L; LS: 420 W Xenon lampMa et al. (2016)
Bi2WO6-g-C3N4Microwave hydrothermalNanosheets103.01Atrazine100%C0 = 10 mg/L; t = 60 min; dosage = 0.8 g/L; LS: 500 W Xenon lampYang et al. (2023a)
BPQD/BWOHydrothermalPorous hollow spheres67.03Amoxicillin94.5%C0 = 20 mg/L; t = 60 min; dosage = 0.25 g/L; LS: 300 W Xenon lampChen et al. (2023)
In2S3/Bi2WO6HydrothermalChrysanthemum-like64.8Tetracycline hydrochloride96%C0 = 20 mg/L; t = 120 min; dosage = 1 g/L; LS: 300 W Xenon lampHe et al. (2022)
Bi2S3-Bi2WO6HydrothermalNanorodsCarbamazepine92%C0 = 5 mg/L; t = 30 min; dosage = 0.5 g/L; LS: 100 W Xenon lampCheng et al. (2022)
CQDs/Bi2WO6HydrothermalPetal-like35.56?Tetracycline89%C0 = 20 mg/L; t = 40 min; dosage = 0.6 g/L; LS: 300 W Xenon lampRen et al. (2023)
PPy/BWOSolvothermal-calciningFlower sphericalCr(VI)99.7%C0 = 10 mg/L; t = 30 min; dosage = 0.15 g/L; LS: 300 W Xenon lampSong et al. (2022)
Tab.1  Summary of synthesis and photocatalytic properties of Bi2WO6
Fig.2  The synthetic path of Bi2WO6 (a and b), (c and d) SEM and (e) HRTEM images of Bi2WO6 microstructure. Reprinted from Ref. (Yuan et al., 2019; Mao et al., 2021a) with permission from Elsevier, Chinese Academy of Sciences, and National Natural Science Foundation of China.
Fig.3  (a) Semiconductor heterojunction diagram of Bi2WO6/BiFeO3; Mechanism of photogenerated charge-separation and -migration (b), and photocatalytic degradation and oxygen evolution in Bi2WO6/BiFeO3 (c); Schematic diagram of charge separation and migration in (d) Bi2WO6/BiFeO3-1, (e) Bi2WO6/BiFeO3-2, and (f) Bi2WO6/BiFeO3-3 NFs. Reprinted from Ref. (Tao et al., 2020) with permission from Elsevier.
Fig.4  (a) XRD patterns and (b) XPS spectra of photocatalysts; (c) photocatalytic removal mechanism of mixed RhB, TCH, and Cr(VI). Reprinted from Ref. (Mao et al., 2021b) with permission from Chinese Academy of Engineering and Tsinghua University.
Fig.5  (a) Schematic representation of the fabrication of CQDs/BiOBr/BWO; SEM images of (b) BiOBr and (c) Bi2WO6; (d–f) Charge transfer modes of CQDs/BiOBr/BWO. Reprinted from Ref. (Zhang et al., 2022) with permission from The American Chemical Society.
Fig.6  SEM images of (a)–(b) Bi2WO6/g-C3N4; (c) XRD patterns and (d) HRTEM micrographs of Bi2WO6/g-C3N4; (e) Preparation flowchart of the fabrication of Bi2WO6/NSBC. Reprinted from Ref. (Mao et al., 2018; Mao et al., 2021a) with permission from Elsevier and SpringerLink.
Fig.7  SEM images of (a) BC, (b) NSBC1, (c) Bi2WO6/NSBC3; (d) XRD patterns of the different samples; (e) XPS survey scan, (f) N 1s, (g) C 1s of NSBC1; (h) Transient photocurrent responses and (i) PL spectra of synthesized photocatalysts. Reprinted from Ref. (Mao et al., 2021a) with permission from Elsevier.
Fig.8  The distribution of partial charge density of valence band (a) and conduction band (b) of CQDs/m-Bi2WO6; (c) Deformation charge density of CQDs/m-Bi2WO6; (d) Schematic diagram of PL transformation in CQDs/m-Bi2WO6 heterojunction; (e) Photocatalytic mechanism diagram of CQDs/m-Bi2WO6 under visible and infrared light irradiation. Reprinted from Ref. (Wang et al., 2018a) with permission from The German Chemical Society.
PhotocatalystDoping modePhotocatalytic activityRegulatory mechanismRef.
S, F-Bi2WO6NonmetallicMethyl orange (MO) degradation: 95.4% (120 min) and Cr(VI) reduction: 94.3% (120 min)Tuning oxygen vacancyPeng et al. (2023)
CSs-Bi2WO6NonmetallicTC degradation: 84.6% (60 min)High visible light utilizationJiang et al. (2023)
I0.50-Bi2WO6NonmetallicBisphenol A degradation: 78% (10 min)Introducing reductive species I?Xu et al. (2021)
N-CQDs/Bi2WO6NonmetallicTC degradation: 97% (25 min)Interfacial charge transferZhang et al. (2018b)
Bi2 + XWO6MetalSodium pentachlorophenate degradation: 97% (2.15 h)Interfacial charge transferDing et al. (2014)
Ti-Bi2WO6Transition metalCr(VI) reduction: 100% (60 min)Mediating oxygen vacancyArif et al. (2021)
Zr-Bi2WO6Transition metalRhB degradation: ~100% (20 min)Mediating oxygen vacancyZhang et al. (2011)
Ag-Bi2WO6Transition metalRhB degradation: 94% (120 min)Enhanced surface plasmon resonancePhu et al. (2020)
Sm3+-Bi2WO6Rare earth metalRhB degradation: ~100% (40 min)Tuning oxygen vacancyLiu et al. (2020)
Yb-Bi2WO6Rare earth metalRhB degradation: 95% (180 min)Introducing oxygen vacanciesLi et al. (2021b)
Eu-Bi2WO6Rare earth metalRhB degradation: 78% (60 min)Influence morphology evolutionXu et al. (2014)
Ba-Bi2WO6MetalRhB degradation: 96.3% (50 min)Construction electron defectLi et al. (2015)
La-Bi2WO6Rare earth metalRhB degradation: 90% (99 min)Interfacial charge transferNing et al. (2022)
Tab.2  Comparison of photocatalytic properties of element doping Bi2WO6
PhotocatalystSynthesis methodPhotocatalytic activityPhotocatalysis conditionRef.
Bi2WO6/AgInS2HydrothermalRhB (92.24%, 60 min), NF (81.73%, 90 min), and LEV (87.46%, 90 min)C0 = 10 mg/L; t = 90 min; dosage = 0.3 g/L; LS: 300 W Xenon lampZhao et al. (2024b)
I-Bi/Bi2WO6One-step solvothermalColorless BPA (30 mg/L, 93%), RhB (10 mg/L, 99.9%), anionic dye CoR (40 mg/L, 91%), sulfamethoxazole (SX, 10 mg/L, 55%), and atrazine (AZ, 10 mg/L, 60%)t = 60 min; dosage = 0.2 g/L; LS: 300 W Xenon lampHua et al. (2020)
Bi2WO6-BiOClHydrothermal and solvothermalOxytetracycline (98.5%)C0 = 20 mg/L; t = 80 min; dosage = 1 g/L; LS: 500 W Xenon lampGuo et al. (2020)
I0.30-Bi2WO6Hydrothermal2-chlorophenol (80%)C0 = 10 mg/L; t = 300 min; dosage = 2 mg; LS: 150 W Xenon lampWang et al. (2018c)
Oxygen vacancies enriched Bi2WO6Solvothermal calcinationDecabromodiphenyl ether (BDE209, 98%)C0 = 10 mg/L; t = 40 min; dosage = 0.3 g/L; LS: 300 W Xenon lampYang et al. (2022)
CQD/BiOBr/Bi2WO6HydrothermalNorfloxacin (k = 0.01717 min?1)C0 = 15 mg/L; t = 120 min; dosage = 0.1 g/L; LS: 500 W Xenon lampZhang et al. (2022)
Bi2WO6/RGOHydrothermalRhB (99.5%), MO (78.5%), phenol (66.5%), SX (70.9%), and sulfanilamide (57.6%)C0 = 10 mg/L; t = 8 h; dosage = 0.5 g/L; LS: natural sunlightDong et al. (2017)
Cu-Bi2WO6-VoOne step solvothermalTC (94%)C0 = 20 mg/L; t = 30 min; dosage = 0.3 g/L; PMS = 0.3 g/L; LS: 300 W Xenon lampZheng et al. (2023)
Tab.3  Degradation of OP by Bi2WO6 based materials
Fig.9  (a) Degradation path, and (b) photocatalytic removal mechanism of TC by composite materials. Reprinted from Ref. (Liu et al., 2022) with permission from Elsevier.
Fig.10  (a) Preparation flowchart and (b) photocatalytic charge transfer mechanism at internal interface α-MnO2/Bi2WO6 heterostructure; Schematic diagram of (c) photocatalyst preparation of PPy/Bi2WO6. Reprinted from Ref. (Song et al., 2022; Arif et al., 2023) with permission from Elsevier.
Fig.11  Possible mechanism for photocatalytic removal of antibiotics and Cr(VI) on Bi2WO6/NSBC. Reprinted from Ref. (Mao et al., 2021a) with permission from Elsevier.
Fig.12  Schematic diagram of photocatalytic CO2 reduction mechanism: (a) ultrathin 2Ag-BWO nanosheets, (b) QDh-Bi2WO6, (c) chloride-modified Bi2WO6, and (d) Bi2WO6/TiO2. Reprinted from Ref. (Jiang et al., 2017; Li et al., 2020b; Collado et al., 2023; Zhao et al., 2024a) with permission from Elsevier, The Royal Society of Chemistry, and Catalysis Society of Chinese Chemical Society, respectively.
Fig.13  Schematic diagram of photocatalytic hydrogen production: (a) MBWO and (b) BP-Bi2WO6. Reprinted from Ref. (Hu et al., 2019; Wu et al., 2020) with permission from The American Chemical Society and The German Chemical Society.
Fig.14  Schematic diagram of anti-tumor mechanism: (a) Bi2WO6-DOX-PEG NSs and (b) PM-BiW NPs. Reprinted from Ref. (Feng et al., 2018; Zhang et al., 2020a) with permission from Elsevier, and Wiley, respectively.
1 M Arif , A Mahsud , A Ali , S Liao , J Xia , H Xiao , M Azam , T Muhmood , Z Lu , Y Chen . (2023). Unraveling the synergy of interface engineering α-MnO2/Bi2WO6 heterostructures and defective active sites for superdurable photocatalysis: mechanistic insights into charge separation/transfer. Chemical Engineering Journal, 475: 146458
https://doi.org/10.1016/j.cej.2023.146458
2 M Arif , M Zhang , Y Mao , Q Bu , A Ali , Z Qin , T Muhmood , X Shahnoor , B Liu , S Zhou . (2021). Oxygen vacancy mediated single unit cell Bi2WO6 by Ti doping for ameliorated photocatalytic performance. Journal of Colloid and Interface Science, 581: 276–291
https://doi.org/10.1016/j.jcis.2020.07.113
3 Y Bai , W Mao , Y Wu , Y Gao , T Wang , S Liu . (2021). Synthesis of novel ternary heterojunctions via Bi2WO6 coupling with CuS and g-C3N4 for the highly efficient visible-light photodegradation of ciprofloxacin in wastewater. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 610: 125481
https://doi.org/10.1016/j.colsurfa.2020.125481
4 Y Bai , T Wang , X Zhao , W Mao , S Liu . (2020). Synthesis of novel ternary Bi2WO6/CeO2/g-C3N4 composites with enhanced visible light photocatalytic activity for removal of organic and Cr(VI) from wastewater. Journal of Materials Science Materials in Electronics, 31(20): 17524–17534
https://doi.org/10.1007/s10854-020-04308-4
5 M Cai , Y Liu , K Dong , X Chen , S Li . (2023). Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination. Chinese Journal of Catalysis, 52: 239–251
https://doi.org/10.1016/S1872-2067(23)64496-1
6 H Cao , F Liu , Y Tai , W Wang , X Li , P Li , H Zhao , Y Xia , S Wang . (2023). Promoting photocatalytic performance of TiO2 nanomaterials by structural and electronic modulation. Chemical Engineering Journal, 466: 143219
https://doi.org/10.1016/j.cej.2023.143219
7 X Cao , L Yue , F Lian , C Wang , B Cheng , J Lv , Z Wang , B Xing . (2021). CuO nanoparticles doping recovered the photocatalytic antialgal activity of graphitic carbon nitride. Journal of Hazardous Materials, 403: 123621
https://doi.org/10.1016/j.jhazmat.2020.123621
8 L Chen , C Wang , G Liu , G Su , K Ye , W He , H Li , H Wei , L Dang . (2023). Anchoring black phosphorous quantum dots on Bi2WO6 porous hollow spheres: a novel 0D/3D S-scheme photocatalyst for efficient degradation of amoxicillin under visible light. Journal of Hazardous Materials, 443: 130326
https://doi.org/10.1016/j.jhazmat.2022.130326
9 T Chen , L Liu , C Hu , H Huang . (2021). Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chinese Journal of Catalysis, 42(9): 1413–1438
https://doi.org/10.1016/S1872-2067(20)63769-X
10 Y Cheng , J Chen , P Wang , W Liu , H Che , X Gao , B Liu , Y Ao . (2022). Interfacial engineering boosting the piezocatalytic performance of Z-scheme heterojunction for carbamazepine degradation: Mechanism, degradation pathway and DFT calculation. Applied Catalysis B: Environmental, 317: 121793
https://doi.org/10.1016/j.apcatb.2022.121793
11 X Chu , G Shan , C Chang , Y Fu , L Yue , L Zhu . (2016). Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation. Frontiers of Environmental Science & Engineering, 10(2): 211–218
https://doi.org/10.1007/s11783-014-0753-y
12 L Collado , M Gomez-Mendoza , M García-Tecedor , F E Oropeza , A Reynal , J R Durrant , D P Serrano , la Peña O’Shea V A de . (2023). Towards the improvement of methane production in CO2 photoreduction using Bi2WO6/TiO2 heterostructures. Applied Catalysis B: Environmental, 324: 122206
https://doi.org/10.1016/j.apcatb.2022.122206
13 Y Cui , T Wang , J Liu , L Hu , Q Nie , Z Tan , H Yu . (2021). Enhanced solar photocatalytic degradation of nitric oxide using graphene quantum dots/bismuth tungstate composite catalysts. Chemical Engineering Journal, 420: 129595
https://doi.org/10.1016/j.cej.2021.129595
14 E Dhanaraman , A Verma , P H Chen , N D Chen , Y Siddiqui , Y P Fu . (2024). Bi2WO6 incorporation of g-C3N4 to enhance the photocatalytic N2 reduction reaction and antibiotic pollutants removal. Solar RRL, 8: 2300981
https://doi.org/10.1002/solr.202300981
15 X Ding , K Zhao , L Zhang . (2014). Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions. Environmental Science & Technology, 48(10): 5823–5831
https://doi.org/10.1021/es405714q
16 Y Ding , Y Zhao , S Yao , S Wang , X Wan , Q Hu , L Li . (2023). Enhanced sonodynamic cancer therapy through iron–doping and oxygen–vacancy engineering of piezoelectric bismuth tungstate nanosheets. Small, 19(24): 2300327
https://doi.org/10.1002/smll.202300327
17 S Dong , X Ding , T Guo , X Yue , X Han , J Sun . (2017). Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants. Chemical Engineering Journal, 316: 778–789
https://doi.org/10.1016/j.cej.2017.02.017
18 A M K Fehr , A Agrawal , F Mandani , C L Conrad , Q Jiang , S Y Park , O Alley , B Li , S Sidhik , I Metcalf . et al.. (2023). Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%. Nature Communications, 14(1): 3797
https://doi.org/10.1038/s41467-023-39290-y
19 L Feng , D Yang , S Gai , F He , G Yang , P Yang , J Lin . (2018). Single bismuth tungstate nanosheets for simultaneous chemo-, photothermal, and photodynamic therapies mediated by near-infrared light. Chemical Engineering Journal, 351: 1147–1158
https://doi.org/10.1016/j.cej.2018.06.170
20 X Feng , R Zheng , C Gao , W Wei , J Peng , R Wang , S Yang , W Zou , X Wu , Y Ji . et al.. (2022). Unlocking bimetallic active sites via a desalination strategy for photocatalytic reduction of atmospheric carbon dioxide. Nature Communications, 13(1): 2146
https://doi.org/10.1038/s41467-022-29671-0
21 S A GokulaKrishnan , G Arthanareeswaran , D R Devi . (2024). Bi2WO6 nanoparticles anchored on membrane by grafting via in-situ polymerization for the treatment of antibiotic and pesticides wastewater. Chemosphere, 351: 141214
https://doi.org/10.1016/j.chemosphere.2024.141214
22 M Guo , Z Zhou , S Yan , P Zhou , F Miao , S Liang , J Wang , X Cui . (2020). Bi2WO6–BiOCl heterostructure with enhanced photocatalytic activity for efficient degradation of oxytetracycline. Scientific Reports, 10(1): 18401
https://doi.org/10.1038/s41598-020-75003-x
23 X Guo , F Zhang , Y Zhang , J Hu . (2023). Review on the advancement of SnS2 in photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 11(14): 7331–7343
https://doi.org/10.1039/D2TA09741A
24 S Haider , R Nawaz , M Anjum , T Haneef , V K Oad , S Uddinkhan , R Khan , M Aqif . (2023). Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation. Frontiers of Environmental Science & Engineering, 17(9): 111
https://doi.org/10.1007/s11783-023-1711-3
25 Y He , H Lv , Y Daili , Q Yang , L B Junior , D Liu , H Liu , Z Ma . (2020). Construction of a new cascade photogenerated charge transfer system for the efficient removal of bio-toxic levofloxacin and Rhodamine B from aqueous solution: mechanism, degradation pathways and intermediates study. Environmental Research, 187: 109647
https://doi.org/10.1016/j.envres.2020.109647
26 Z He , M S Siddique , H Yang , Y Xia , J Su , B Tang , L Wang , L Kang , Z Huang . (2022). Novel Z-scheme In2S3/Bi2WO6 core-shell heterojunctions with synergistic enhanced photocatalytic degradation of tetracycline hydrochloride. Journal of Cleaner Production, 339: 130634
https://doi.org/10.1016/j.jclepro.2022.130634
27 J Hu , D Chen , Z Mo , N Li , Q Xu , H Li , J He , H Xu , J Lu . (2019). Z-scheme 2D/2D eterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angewandte Chemie International Edition, 58(7): 2073–2077
https://doi.org/10.1002/anie.201813417
28 C Hua , J Wang , X Dong , Y Wang , N Zheng , M Xue , X Zhang . (2020). In situ plasmonic Bi grown on I-doped Bi2WO6 for enhanced visible-light-driven photocatalysis to mineralize diverse refractory organic pollutants. Separation and Purification Technology, 250: 117119
https://doi.org/10.1016/j.seppur.2020.117119
29 Y Huang , W Fan , B Long , H Li , F Zhao , Z Liu , Y Tong , H Ji . (2016a). Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions. Applied Catalysis B: Environmental, 185: 68–76
https://doi.org/10.1016/j.apcatb.2015.11.043
30 Y Huang , Z Guo , H Liu , S Zhang , P Wang , J Lu , Y Tong . (2019). Heterojunction architecture of N-doped WO3 nanobundles with Ce2S3 nanodots hybridized on a carbon textile enables a highly efficient flexible photocatalyst. Advanced Functional Materials, 29(45): 1903490
https://doi.org/10.1002/adfm.201903490
31 Y Huang , B Long , M Tang , Z Rui , M S Balogun , Y Tong , H Ji . (2016b). Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Applied Catalysis B: Environmental, 181: 779–787
https://doi.org/10.1016/j.apcatb.2015.08.047
32 S F Hung , A Xu , X Wang , F Li , S H Hsu , Y Li , J Wicks , E G Cervantes , A S Rasouli , Y C Li . et al.. (2022). A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nature Communications, 13(1): 819
https://doi.org/10.1038/s41467-022-28456-9
33 X Jiang , S Chen , X Zhang , L Qu , H Qi , B Wang , B Xu , Z Huang . (2023). Carbon-doped flower-like Bi2WO6 decorated carbon nanosphere nanocomposites with enhanced visible light photocatalytic degradation of tetracycline. Advanced Composites and Hybrid Materials, 6(1): 47
https://doi.org/10.1007/s42114-022-00616-x
34 Z Jiang , X Liang , H Zheng , Y Liu , Z Wang , P Wang , X Zhang , X Qin , Y Dai , M H Whangbo . et al.. (2017). Photocatalytic reduction of CO2 to methanol by three-dimensional hollow structures of Bi2WO6 quantum dots. Applied Catalysis B: Environmental, 219: 209–215
https://doi.org/10.1016/j.apcatb.2017.07.023
35 F Kang , X Jiang , Y Wang , J Ren , B B Xu , G Gao , Z Huang , Z Guo . (2023). Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline. Inorganic Chemistry Frontiers, 10(20): 6045–6057
https://doi.org/10.1039/D3QI01283B
36 S P Keerthana , B J Rani , G Ravi , R Yuvakkumar , S I Hong , D Velauthapillai , B Saravanakumar , M Thambidurai , C Dang . (2020). Ni doped Bi2WO6 for electrochemical OER activity. International Journal of Hydrogen Energy, 45(38): 18859–18866
https://doi.org/10.1016/j.ijhydene.2020.05.135
37 J Kochanek , R M Soo , C Martinez , A Dakuidreketi , A M Mudge . (2022). Biochar for intensification of plant-related industries to meet productivity, sustainability and economic goals: a review. Resources, Conservation and Recycling, 179: 106109
https://doi.org/10.1016/j.resconrec.2021.106109
38 C Li , Z Zhao , S Fu , X Wang , Y Ma , S Dong . (2021a). Polyvinylpyrrolidone in the one-step synthesis of carbon quantum dots anchored hollow microsphere Bi2WO6 enhances the simultaneous photocatalytic removal of tetracycline and Cr(VI). Separation and Purification Technology, 270: 118844
https://doi.org/10.1016/j.seppur.2021.118844
39 J Li , Z Liang , Y Qin , L Guo , N Lei , Q Song . (2018). Defective Bi2WO6-supported Cu nanoparticles as efficient and stable photoelectrocatalytic for water splitting in near-neutral media. Energy Technology, 6(11): 2247–2255
https://doi.org/10.1002/ente.201800280
40 K Li , X Lu , Y Zhang , K Liu , Y Huang , H Liu . (2020a). Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environmental Research, 185: 109409
https://doi.org/10.1016/j.envres.2020.109409
41 W T Li , W Z Huang , H Zhou , H Y Yin , Y F Zheng , X C Song . (2015). Synthesis and photoactivity enhancement of Ba doped Bi2WO6 photocatalyst. Materials Research Bulletin, 64: 432–437
https://doi.org/10.1016/j.materresbull.2015.01.023
42 X Li , W Li , S Gu , X Liu , H Li , C Ren , X Ma , H Zhou . (2021b). Efficient ytterbium-doped Bi2WO6 photocatalysts: synthesis, the formation of oxygen vacancies and boosted superoxide yield for enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 851: 156935
https://doi.org/10.1016/j.jallcom.2020.156935
43 Y Y Li , J S Fan , R Q Tan , H C Yao , Y Peng , Q C Liu , Z J Li . (2020b). Selective photocatalytic reduction of CO2 to CH4 modulated by chloride modification on Bi2WO6 nanosheets. ACS Applied Materials & Interfaces, 12(49): 54507–54516
https://doi.org/10.1021/acsami.0c11551
44 Y Li , M Gu , X Zhang , J Fan , K Lv , S A C Carabineiro , F Dong . (2020c). 2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Materials Today, 41: 270–303
https://doi.org/10.1016/j.mattod.2020.09.004
45 K T Lin , W H Cheng , H L Cheng , H H Lin , W Y Chou , B Y Hsu , C A Mao , Y C Hou , J Ruan . (2023). Photocatalytic hydrogen evolution enabled by oriented phase interactions between monolayers of P3HT-wrapped MoS2 and ferroelectric lamellar crystals. Advanced Functional Materials, 34: 2307262
https://doi.org/10.1002/adfm.202307262
46 C Liu , H Dai , C Tan , Q Pan , F Hu , X Peng . (2022). Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: mechanism insight, degradation pathways and DFT calculation. Applied Catalysis B: Environmental, 310: 121326
https://doi.org/10.1016/j.apcatb.2022.121326
47 L Liu , J Liu , K Sun , J Wan , F Fu , J Fan . (2021a). Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance. Chemical Engineering Journal, 411: 128629
https://doi.org/10.1016/j.cej.2021.128629
48 S Liu , C Wang , J Wu , B Tian , Y Sun , Y Lv , Z Mu , Y Sun , X Li , F Wang . et al.. (2021b). Efficient CO2 electroreduction with a monolayer Bi2WO6 through a metallic intermediate surface state. ACS Catalysis, 11(20): 12476–12484
https://doi.org/10.1021/acscatal.1c02495
49 X Liu , Y Zhao , Y Ni , F Shi , X Guo , C Li . (2023). Hydroxylated organic semiconductors for efficient photovoltaics and photocatalytic hydrogen evolution. Energy & Environmental Science, 16(9): 4065–4072
https://doi.org/10.1039/D3EE00835E
50 Y Liu , D Shen , Q Zhang , Y Lin , F Peng . (2021c). Enhanced photocatalytic CO2 reduction in H2O vapor by atomically thin Bi2WO6 nanosheets with hydrophobic and nonpolar surface. Applied Catalysis B: Environmental, 283: 119630
https://doi.org/10.1016/j.apcatb.2020.119630
51 Y Liu , H Tang , H Lv , Z Li , Z Ding , S Li . (2014). Self-assembled three-dimensional hierarchical Bi2WO6 microspheres by sol–gel–hydrothermal route. Ceramics International, 40(4): 6203–6209
https://doi.org/10.1016/j.ceramint.2013.11.075
52 Z Liu , X Liu , L Wei , C Yu , J Yi , H Ji . (2020). Regulate the crystal and optoelectronic properties of Bi2WO6 nanosheet crystals by Sm3+ doping for superior visible-light-driven photocatalytic performance. Applied Surface Science, 508: 145309
https://doi.org/10.1016/j.apsusc.2020.145309
53 C Lu , X Li , Q Wu , J Li , L Wen , Y Dai , B Huang , B Li , Z Lou . (2021). Constructing surface plasmon resonance on Bi2WO6 to boost high-selective CO2 reduction for methane. ACS Nano, 15(2): 3529–3539
https://doi.org/10.1021/acsnano.1c00452
54 D Ma , Z Zhang , Y Zou , J Chen , J W Shi . (2024). The progress of g-C3N4 in photocatalytic H2 evolution: from fabrication to modification. Coordination Chemistry Reviews, 500: 215489
https://doi.org/10.1016/j.ccr.2023.215489
55 Y Ma , Q Liu , Q Wang , D Qu , J Shi . (2016). Insight into the origin of photoreactivity of various well-defined Bi2WO6 crystals: exposed heterojunction-like surface and oxygen defects. RSC Advances, 6(23): 18916–18923
https://doi.org/10.1039/C5RA27295E
56 W Mao , T Wang , H Wang , S Zou , S Liu . (2018). Novel Bi2WO6 loaded g-C3N4 composites with enhanced photocatalytic degradation of dye and pharmaceutical wastewater under visible light irradiation. Journal of Materials Science Materials in Electronics, 29(17): 15174–15182
https://doi.org/10.1007/s10854-018-9659-y
57 W Mao , L Zhang , Y Liu , T Wang , Y Bai , Y Guan . (2021a). Facile assembled N, S-codoped corn straw biochar loaded Bi2WO6 with the enhanced electron-rich feature for the efficient photocatalytic removal of ciprofloxacin and Cr(VI). Chemosphere, 263: 127988
https://doi.org/10.1016/j.chemosphere.2020.127988
58 W Mao , L Zhang , T Wang , Y Bai , Y Guan . (2021b). Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater. Frontiers of Environmental Science & Engineering, 15(4): 52
https://doi.org/10.1007/s11783-020-1344-8
59 W Mao , L Zhang , Y Zhang , Y Guan . (2022a). Simultaneous removal of arsenite and cadmium by a manganese-crosslinking sodium alginate modified biochar and zerovalent iron composite from aqueous solutions. Environmental Science. Nano, 9(1): 214–228
https://doi.org/10.1039/D1EN00722J
60 W Mao , L Zhang , Y Zhang , Y Wang , N Wen , Y Guan . (2022b). Adsorption and photocatalysis removal of arsenite, arsenate, and hexavalent chromium in water by the carbonized composite of manganese-crosslinked sodium alginate. Chemosphere, 292: 133391
https://doi.org/10.1016/j.chemosphere.2021.133391
61 W Mao , Y Zhang , J Luo , L Chen , Y Guan . (2022c). Novel co-polymerization of polypyrrole/polyaniline on ferrate modified biochar composites for the efficient adsorption of hexavalent chromium in water. Chemosphere, 303: 135254
https://doi.org/10.1016/j.chemosphere.2022.135254
62 X Meng , Z Li , H Zeng , J Chen , Z Zhang . (2017). MoS2 quantum dots-interspersed Bi2WO6 heterostructures for visible light-induced detoxification and disinfection. Applied Catalysis B: Environmental, 210: 160–172
https://doi.org/10.1016/j.apcatb.2017.02.083
63 R S Monisha , R L Mani , B Sivaprakash , N Rajamohan , D V N Vo . (2022). Green remediation of pharmaceutical wastes using biochar: a review. Environmental Chemistry Letters, 20(1): 681–704
https://doi.org/10.1007/s10311-021-01348-y
64 S Monticelli , A Talbot , P Gotico , F Caillé , O Loreau , Vecchio A Del , A Malandain , A Sallustrau , W Leibl , A Aukauloo . et al.. (2023). Unlocking full and fast conversion in photocatalytic carbon dioxide reduction for applications in radio-carbonylation. Nature Communications, 14(1): 4451
https://doi.org/10.1038/s41467-023-40136-w
65 C Murugan , K Ranjithkumar , A Pandikumar . (2021). Interfacial charge dynamics in type-II heterostructured sulfur doped-graphitic carbon nitride/bismuth tungstate as competent photoelectrocatalytic water splitting photoanode. Journal of Colloid and Interface Science, 602: 437–451
https://doi.org/10.1016/j.jcis.2021.05.179
66 B J Ng , L K Putri , X Y Kong , Y W Teh , P Pasbakhsh , S P Chai . (2020). Z-scheme photocatalytic systems for solar water splitting. Advanced Science, 7(7): 1903171
https://doi.org/10.1002/advs.201903171
67 J Ning , J Zhang , R Dai , Q Wu , L Zhang , W Zhang , J Yan , F Zhang . (2022). Experiment and DFT study on the photocatalytic properties of La-doped Bi2WO6 nanoplate-like materials. Applied Surface Science, 579: 152219
https://doi.org/10.1016/j.apsusc.2021.152219
68 B O Orimolade , A O Idris , U Feleni , B Mamba . (2021). Recent advances in degradation of pharmaceuticals using Bi2WO6 mediated photocatalysis: a comprehensive review. Environmental Pollution, 289: 117891
https://doi.org/10.1016/j.envpol.2021.117891
69 A I Osman , S Fawzy , M Farghali , M El-Azazy , A M Elgarahy , R A Fahim , M I A A Maksoud , A A Ajlan , M Yousry , Y Saleem . et al.. (2022). Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 20(4): 2385–2485
https://doi.org/10.1007/s10311-022-01424-x
70 D Y Peng , H Y Zeng , J Xiong , F Y Liu , L H Wang , S Xu , Z L Yang , S G Liu . (2023). Tuning oxygen vacancy in Bi2WO6 by heteroatom doping for enhanced photooxidation-reduction properties. Journal of Colloid and Interface Science, 629: 133–146
https://doi.org/10.1016/j.jcis.2022.09.031
71 N D Phu , L H Hoang , X B Chen , M H Kong , H C Wen , W C Chou . (2015). Study of photocatalytic activities of Bi2WO6 nanoparticles synthesized by fast microwave-assisted method. Journal of Alloys and Compounds, 647: 123–128
https://doi.org/10.1016/j.jallcom.2015.06.047
72 N D Phu , L H Hoang , P Van Hai , T Q Huy , X B Chen , W C Chou . (2020). Photocatalytic activity enhancement of Bi2WO6 nanoparticles by Ag doping and Ag nanoparticles modification. Journal of Alloys and Compounds, 824: 153914
https://doi.org/10.1016/j.jallcom.2020.153914
73 X Qian , D Yue , Z Tian , M Reng , Y Zhu , M Kan , T Zhang , Y Zhao . (2016). Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Applied Catalysis B: Environmental, 193: 16–21
https://doi.org/10.1016/j.apcatb.2016.04.009
74 U Rajaji , M Govindasamy , S M Chen , T W Chen , X Liu , S Chinnapaiyan . (2018). Microwave-assisted synthesis of Bi2WO6 flowers decorated graphene nanoribbon composite for electrocatalytic sensing of hazardous dihydroxybenzene isomers. Composites. Part B, Engineering, 152: 220–230
https://doi.org/10.1016/j.compositesb.2018.07.003
75 H Ren , F Qi , A Labidi , J Zhao , H Wang , Y Xin , J Luo , C Wang . (2023). Chemically bonded carbon quantum dots/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic degradation: Interfacial engineering and mechanism insight. Applied Catalysis B: Environmental, 330: 122587
https://doi.org/10.1016/j.apcatb.2023.122587
76 Z Shang , X Feng , G Chen , R Qin , Y Han . (2023). Recent advances on single-atom catalysts for photocatalytic CO2 reduction. Small, 19(48): 2304975
https://doi.org/10.1002/smll.202304975
77 Y Shi , Z Zhao , D Yang , J Tan , X Xin , Y Liu , Z Jiang . (2023). Engineering photocatalytic ammonia synthesis. Chemical Society Reviews, 52(20): 6938–6956
https://doi.org/10.1039/D2CS00797E
78 N Song , S Zhang , S Zhong , X Su , C Ma . (2022). A direct Z-scheme polypyrrole/Bi2WO6 nanoparticles with boosted photogenerated charge separation for photocatalytic reduction of Cr(VI): characteristics, performance, and mechanisms. Journal of Cleaner Production, 337: 130577
https://doi.org/10.1016/j.jclepro.2022.130577
79 J Song , C Li , X Wang , S Zhi , X Wang , J Sun . (2021). Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa. Frontiers of Environmental Science & Engineering, 15(6): 129
https://doi.org/10.1007/s11783-021-1417-3
80 R Tao , X Li , X Li , S Liu , C Shao , Y Liu . (2020). Discrete heterojunction nanofibers of BiFeO3/Bi2WO6: novel architecture for effective charge separation and enhanced photocatalytic performance. Journal of Colloid and Interface Science, 572: 257–268
https://doi.org/10.1016/j.jcis.2020.03.096
81 A Torres‐Pinto , C G Silva , J L Faria , A M T Silva . (2021). Advances on graphyne-family members for superior photocatalytic behavior. Advanced Science, 8(10): 2003900
https://doi.org/10.1002/advs.202003900
82 A Verma , E Dhanaraman , W T Chen , Y P Fu . (2023). Optimization of intercalated 2D BiOCl sheets into Bi2WO6 flowers for photocatalytic NH3 production and antibiotic pollutant degradation. ACS Applied Materials & Interfaces, 15(31): 37540–37553
https://doi.org/10.1021/acsami.3c07489
83 J Wang , L Tang , G Zeng , Y Deng , H Dong , Y Liu , L Wang , B Peng , C Zhang , F Chen . (2018a). 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight. Applied Catalysis B: Environmental, 222: 115–123
https://doi.org/10.1016/j.apcatb.2017.10.014
84 J Wang , D Zhi , H Zhou , X He , D Zhang . (2018b). Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode. Water Research, 137: 324–334
https://doi.org/10.1016/j.watres.2018.03.030
85 L Wang , Z Wang , L Zhang , C Hu . (2018c). Enhanced photoactivity of Bi2WO6 by iodide insertion into the interlayer for water purification under visible light. Chemical Engineering Journal, 352: 664–672
https://doi.org/10.1016/j.cej.2018.07.028
86 M Wang , S Zeng , A R Woldu , L Hu . (2022). BiVO4/Bi2S3 Z-scheme heterojunction with MnOx as a cocatalyst for efficient photocatalytic CO2 conversion to methanol by pure water. Nano Energy, 104: 107925
https://doi.org/10.1016/j.nanoen.2022.107925
87 S Wang , Z Xiong , N Yang , X Ding , H Chen . (2020a). Iodine-doping-assisted tunable introduction of oxygen vacancies on bismuth tungstate photocatalysts for highly efficient molecular oxygen activation and pentachlorophenol mineralization. Chinese Journal of Catalysis, 41(10): 1544–1553
https://doi.org/10.1016/S1872-2067(19)63506-0
88 T Wang , Y Bai , W Si , W Mao , Y Gao , S Liu . (2021a). Heterogeneous photo-Fenton system of novel ternary Bi2WO6/BiFeO3/g-C3N4 heterojunctions for highly efficient degrading persistent organic pollutants in wastewater. Journal of Photochemistry and Photobiology A Chemistry, 404: 112856
https://doi.org/10.1016/j.jphotochem.2020.112856
89 T Wang , C Feng , J Liu , D Wang , H Hu , J Hu , Z Chen , G Xue . (2021b). Bi2WO6 hollow microspheres with high specific surface area and oxygen vacancies for efficient photocatalysis N2 fixation. Chemical Engineering Journal, 414: 128827
https://doi.org/10.1016/j.cej.2021.128827
90 T Wang , S Liu , W Mao , Y Bai , K Chiang , K Shah , J Paz-Ferreiro . (2020b). Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of Rhodamine B and Cr(VI). Journal of Hazardous Materials, 389: 121827
https://doi.org/10.1016/j.jhazmat.2019.121827
91 T Wang , W Mao , Y Wu , Y Bai , Y Gao , S Liu , H Wu . (2019). Heterogeneous photo-Fenton degradation of Rhodamine B dye via a high visible-light responsive Bi2WO6 and BiFeO3 heterojunction composites. Journal of Materials Science Materials in Electronics, 30(17): 16452–16462
https://doi.org/10.1007/s10854-019-02021-5
92 T Wang , G Xiao , C Li , S Zhong , F Zhang . (2015). One-step synthesis of a sulfur doped Bi2WO6/Bi2O3 composite with enhanced visible-light photocatalytic activity. Materials Letters, 138: 81–84
https://doi.org/10.1016/j.matlet.2014.09.106
93 Y Wang , Z Dai , J Wang , D Zhang , F Zhou , J Li , J Huang . (2023a). Scheme-II heterojunction of Bi2WO6@Br-COFs hybrid materials for CO2 photocatalytic reduction. Chemical Engineering Journal, 471: 144559
https://doi.org/10.1016/j.cej.2023.144559
94 Y Wang , J Hu , T Ge , F Chen , Y Lu , R Chen , H Zhang , B Ye , S Wang , Y Zhang . et al.. (2023b). Gradient cationic vacancies enabling inner-to-outer tandem homojunctions: strong local internal electric field and reformed basic sites boosting CO2 photoreduction. Advanced Materials, 35(31): 2302538
https://doi.org/10.1002/adma.202302538
95 J Wei , Y Xia , A Qayum , X Jiao , D Chen , T Wang . (2020). Unexpected photoinduced room temperature magnetization in Bi2WO6 nanosheets. Small, 16(50): 2005704
https://doi.org/10.1002/smll.202005704
96 J Wu , Y Huang , W Ye , Y Li . (2017). CO2 reduction: from the electrochemical to photochemical approach. Advanced Science, 4(11): 1700194
https://doi.org/10.1002/advs.201700194
97 S Wu , J Sun , Q Li , Z D Hood , S Yang , T Su , R Peng , Z Wu , W Sun , P R C Kent . et al.. (2020). Effects of surface terminations of 2D Bi2WO6 on photocatalytic hydrogen evolution from water splitting. ACS Applied Materials & Interfaces, 12(17): 20067–20074
https://doi.org/10.1021/acsami.0c01802
98 Y Xiang , P Ju , Y Wang , Y Sun , D Zhang , J Yu . (2016). Chemical etching preparation of the Bi2WO6/BiOI p-n heterojunction with enhanced photocatalytic antifouling activity under visible light irradiation. Chemical Engineering Journal, 288: 264–275
https://doi.org/10.1016/j.cej.2015.11.103
99 Z Xing , J Hu , M Ma , H Lin , Y An , Z Liu , Y Zhang , J Li , S Yang . (2019). From one to two: in situ construction of an ultrathin 2D–2D closely bonded heterojunction from a single-phase monolayer nanosheet. Journal of the American Chemical Society, 141(50): 19715–19727
https://doi.org/10.1021/jacs.9b08651
100 S Xu , Y J Zhang , R Tang , X Zhang , Z H Hu , H Q Yu . (2021). Enhancing Fenton-like catalytic efficiency of Bi2WO6 by iodine doping for pollutant degradation. Separation and Purification Technology, 277: 119447
https://doi.org/10.1016/j.seppur.2021.119447
101 X Xu , Y Ge , B Li , F Fan , F Wang . (2014). Shape evolution of Eu-doped Bi2WO6 and their photocatalytic properties. Materials Research Bulletin, 59: 329–336
https://doi.org/10.1016/j.materresbull.2014.07.050
102 X Xue , X Chen , Z Zhang , G Fan , T Ma . (2023). Improved ionic organic pollutant degradation under visible light by Ag SPR-promoted phosphorus-doped g-C3N4/AgBr/Bi2WO6 with excellent charge transfer capacity and high surface area. Journal of Alloys and Compounds, 930: 167457
https://doi.org/10.1016/j.jallcom.2022.167457
103 T Yan , Q Yang , R Feng , X Ren , Y Zhao , M Sun , L Yan , Q Wei . (2022). Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS2/ZnIn2S4 composite. Frontiers of Environmental Science & Engineering, 16(10): 131
https://doi.org/10.1007/s11783-022-1566-z
104 C Yang , Z Zhang , P Wang , P Xu , T Shen , M Wang , Q Zheng , G Zhang . (2023a). Ultrathin g-C3N4 composite Bi2WO6 embedded in PVDF UF membrane with enhanced permeability, anti-fouling performance and durability for efficient removal of atrazine. Journal of Hazardous Materials, 451: 131154
https://doi.org/10.1016/j.jhazmat.2023.131154
105 J Yang , L Wang , J Yang , C Li , S Zhong . (2023b). Magnetic biochar coupled with bismuth tungstate for multiple antibiotic removal from contaminated water: characteristics, performance, and competitive adsorption synergistic photocatalysis mechanism. Journal of Environmental Chemical Engineering, 12(1): 111768
https://doi.org/10.1016/j.jece.2023.111768
106 M Yang , T Xu , X Jin , Q Shen , C Sun . (2022). Oxygen vacancies enriched Bi2WO6 for enhanced decabromodiphenyl ether photodegradation via C-Br bond activation. Applied Surface Science, 581(15): 152439
https://doi.org/10.1016/j.apsusc.2022.152439
107 X Yang , Y Ma , Y Liu , K Wang , Y Wang , M Liu , X Qiu , W Li , J Li . (2021). Defect-induced Ce-doped Bi2WO6 for efficient electrocatalytic N2 reduction. ACS Applied Materials & Interfaces, 13(17): 19864–19872
https://doi.org/10.1021/acsami.0c22623
108 K Ye , Y Li , H Yang , M Li , Y Huang , S Zhang , H Ji . (2019). An ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants. Applied Catalysis B: Environmental, 259: 118085
https://doi.org/10.1016/j.apcatb.2019.118085
109 H Yi , L Qin , D Huang , G Zeng , C Lai , X Liu , B Li , H Wang , C Zhou , F Huang . et al.. (2019). Nano-structured bismuth tungstate with controlled morphology: fabrication, modification, environmental application and mechanism insight. Chemical Engineering Journal, 358: 480–496
https://doi.org/10.1016/j.cej.2018.10.036
110 T Yuan , Z Li , W Zhang , Z Xue , X Wang , Z Ma , Y Fan , J Xu , Y Wu . (2019). Highly sensitive ethanol gas sensor based on ultrathin nanosheets assembled Bi2WO6 with composite phase. Science Bulletin, 64(9): 595–602
https://doi.org/10.1016/j.scib.2019.04.014
111 Y Zeng , Q Yin , Z Liu , H Dong . (2022). Attapulgite-interpenetrated g-C3N4/Bi2WO6 quantum-dots Z-scheme heterojunction for 2-mercaptobenzothiazole degradation with mechanism insight. Chemical Engineering Journal, 435: 134918
https://doi.org/10.1016/j.cej.2022.134918
112 C Zhang , J Ren , J Hua , L Xia , J He , D Huo , Y Hu . (2018a). Multifunctional Bi2WO6 nanoparticles for CT-guided photothermal and oxygen-free photodynamic therapy. ACS Applied Materials & Interfaces, 10(1): 1132–1146
https://doi.org/10.1021/acsami.7b16000
113 C Zhang , D Xia , J Liu , D Huo , X Jiang , Y Hu . (2020a). Bypassing the immunosuppression of myeloid-derived suppressor cells by reversing tumor hypoxia using a platelet-inspired platform. Advanced Functional Materials, 30(22): 2000189
https://doi.org/10.1002/adfm.202000189
114 J Zhang , X Yuan , L Jiang , Z Wu , X Chen , H Wang , H Wang , G Zeng . (2018b). Highly efficient photocatalysis toward tetracycline of nitrogen doped carbon quantum dots sensitized bismuth tungstate based on interfacial charge transfer. Journal of Colloid and Interface Science, 511: 296–306
https://doi.org/10.1016/j.jcis.2017.09.083
115 L Zhang , F He , W Mao , Y Guan . (2020b). Fast and efficient removal of Cr(VI) to ppb level together with Cr(III) sequestration in water using layered double hydroxide interclated with diethyldithiocarbamate. Science of the Total Environment, 727: 138701
https://doi.org/10.1016/j.scitotenv.2020.138701
116 L Zhang , C Yang , K Lv , Y Lu , Q Li , X Wu , Y Li , X Li , J Fan , M Li . (2019). SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement. Chinese Journal of Catalysis, 40(5): 755–764
https://doi.org/10.1016/S1872-2067(19)63320-6
117 M Zhang , Y Mao , X Bao , G Zhai , D Xiao , D Liu , P Wang , H Cheng , Y Liu , Z Zheng . et al.. (2023). Coupling benzylamine oxidation with CO2 photoconversion to ethanol over a black phosphorus and bismuth tungstate S-scheme heterojunction. Angewandte Chemie International Edition, 62(36): e202302919
https://doi.org/10.1002/anie.202302919
118 X Zhang , F Han , B Shi , S Farsinezhad , G P Dechaine , K Shankar . (2012). Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angewandte Chemie International Edition, 51(51): 12732–12735
https://doi.org/10.1002/anie.201205619
119 Y Zhang , Y Li , Y Yuan . (2022). Carbon quantum dot-decorated BiOBr/Bi2WO6 photocatalytic micromotor for environmental remediation and DFT calculation. ACS Catalysis, 12(22): 13897–13909
https://doi.org/10.1021/acscatal.2c04149
120 Z Zhang , W Wang , E Gao , M Shang , J Xu . (2011). Enhanced photocatalytic activity of Bi2WO6 with oxygen vacancies by zirconium doping. Journal of Hazardous Materials, 196: 255–262
https://doi.org/10.1016/j.jhazmat.2011.09.017
121 S Zhao , C Chen , J Ding , S Yang , Y Zang , N Ren . (2022). One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B. Frontiers of Environmental Science & Engineering, 16(3): 36
https://doi.org/10.1007/s11783-021-1470-y
122 L Zhao , H Hou , L Wang , C R Bowen , J Wang , R Yan , X Zhan , H Yang , M Yang , W Yang . (2024a). Atomic-level surface modification of ultrathin Bi2WO6 nanosheets for boosting photocatalytic CO2 reduction. Chemical Engineering Journal, 480: 148033
https://doi.org/10.1016/j.cej.2023.148033
123 L Zhao , J Wang , W Yang , H Hou , R Yan . (2023). Efficient photoreduction of carbon dioxide into carbon-based fuels: a review. Environmental Chemistry Letters, 21(3): 1499–1513
https://doi.org/10.1007/s10311-023-01576-4
124 Y Zhao , X Fan , H Zheng , E Liu , J Fan , X Wang . (2024b). Bi2WO6/AgInS2 S-scheme heterojunction: efficient photodegradation of organic pollutant and toxicity evaluation. Journal of Materials Science and Technology, 170: 200–211
https://doi.org/10.1016/j.jmst.2023.06.022
125 Y Zhao , X Liang , Y Wang , H Shi , E Liu , J Fan , X Hu . (2018a). Degradation and removal of Ceftriaxone sodium in aquatic environment with Bi2WO6/g-C3N4 photocatalyst. Journal of Colloid and Interface Science, 523: 7–17
https://doi.org/10.1016/j.jcis.2018.03.078
126 Y Zhao , Y Wang , E Liu , J Fan , X Hu . (2018b). Bi2WO6 nanoflowers: an efficient visible light photocatalytic activity for ceftriaxone sodium degradation. Applied Surface Science, 436: 854–864
https://doi.org/10.1016/j.apsusc.2017.12.064
127 X Zheng , T Han , H Shi . (2023). Cu-doped Bi2WO6–x photocatalyst with efficient charge separation ability for enhanced peroxymonosulfate activation. Journal of Molecular Liquids, 391: 123273
https://doi.org/10.1016/j.molliq.2023.123273
128 F Zhou , Y Zhu . (2012). Significant photocatalytic enhancement in methylene blue degradation of Bi2WO6 photocatalysts via graphene hybridization. Journal of Advanced Ceramics, 1(1): 72–78
https://doi.org/10.1007/s40145-012-0008-y
129 Y Zhou , Y Zhang , M Lin , J Long , Z Zhang , H Lin , J C S Wu , X Wang . (2015). Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nature Communications, 6(1): 8340
https://doi.org/10.1038/ncomms9340
[1] Sajjad Haider, Rab Nawaz, Muzammil Anjum, Tahir Haneef, Vipin Kumar Oad, Salah Uddinkhan, Rawaiz Khan, Muhammad Aqif. Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 111-.
[2] Xianjun Tan, Zhenying Jiang, Yuxiong Huang. Photo-induced surface frustrated Lewis pairs for promoted photocatalytic decomposition of perfluorooctanoic acid[J]. Front. Environ. Sci. Eng., 2023, 17(1): 3-.
[3] Xin Li, Jun Xie, Chuanjia Jiang, Jiaguo Yu, Pengyi Zhang. Review on design and evaluation of environmental photocatalysts[J]. Front. Environ. Sci. Eng., 2018, 12(5): 14-.
[4] Yuankai ZHANG,Zhijiang HE,Hongchen WANG,Lu QI,Guohua LIU,Xiaojun ZHANG. Applications of hollow nanomaterials in environmental remediation and monitoring: A review[J]. Front. Environ. Sci. Eng., 2015, 9(5): 770-783.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed