Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (10) : 120    https://doi.org/10.1007/s11783-024-1880-8
Unveiling the complexities of microbiologically induced corrosion: mechanisms, detection techniques, and mitigation strategies
Mahmoud A. Ahmed1,2(), Safwat A. Mahmoud3, Ashraf A. Mohamed2
1. Veolia Water Technologies, Cairo 11835, Egypt
2. Chemistry department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
3. Physics Department, Faculty of Science, Northern Border University, Arar 13211, Saudi Arabia
 Download: PDF(8233 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Microbiologically influenced corrosion is reviewed focusing on its mechanisms and mitigation

● MIC mechanisms help understand the complex interaction of microbes and metallic surfaces

● Traditional and advanced monitoring techniques for diagnosing and assessing MIC are discussed

● Application of various biocides are highlighted, along with their performance enhancement strategies

● Enzymatic remediation is explored as a sustainable alternative approach for MIC mitigation

Microbiologically induced corrosion (MIC) is a complex and destructive phenomenon that occurs in various sectors, involving the interaction between microorganisms and metal surfaces, resulting in accelerated corrosion rates. This review article provides a comprehensive analysis of MIC, encompassing microbial species involved, their metabolic activities, and influential environmental factors driving the corrosion process. The mechanisms of MIC, both in the presence and absence of oxygen, are explored, along with the diverse effects of microbes on different types of corrosion and their economic impacts. Assessment and monitoring techniques, including traditional and advanced methods such as microbiological and electrochemical methods, are discussed. Furthermore, it examines preventive and control measures, such as the use of biocides and their mechanisms of action. Strategies to enhance the performance of these control measures and the effectiveness of antimicrobial agents during disinfection processes, including surfactants and chelators, are discussed. Additionally, the review highlights enzymatic remediation as a sustainable alternative approach, providing detailed examples. The challenges in mitigating MIC and potential future developments and collaborative opportunities are also addressed. This systematic review is a valuable resource for researchers, industry professionals, and policymakers seeking a comprehensive understanding of the complex phenomenon of MIC and effective strategies for its management.

Keywords Metal failure      Biofilm formation      Enzymatic remediation      Antimicrobial agents      Bio-corrosion mechanisms     
Corresponding Author(s): Mahmoud A. Ahmed   
Issue Date: 15 July 2024
 Cite this article:   
Mahmoud A. Ahmed,Safwat A. Mahmoud,Ashraf A. Mohamed. Unveiling the complexities of microbiologically induced corrosion: mechanisms, detection techniques, and mitigation strategies[J]. Front. Environ. Sci. Eng., 2024, 18(10): 120.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1880-8
https://academic.hep.com.cn/fese/EN/Y2024/V18/I10/120
Fig.1  Examples of biofouling (A, B), and MIC (C, D) in cooling water industrial systems.
Fig.2  Scopus indexed documents on MIC; search string was “microbiological* corrosion”. Number (A) and types (B) of documents.
Fig.3  Spatial heterogeneity and diversity of microorganisms within layers of a biofilm involved in MIC of ferrous metals. Reprinted with permission from Xu et al. (2023b), copyright 2024, Springer Nature.
Fig.4  (A) Schematic representation of the biofilm formation on metal surfaces, Adapted from Benčina et al. (2021), copyright 2024, MPID; (B, C) chemical structure of microbial extracellular polymeric substances (EPS) adapted from Liu and Smith (2021), copyright 2024, Springer.
Fig.5  Schematic illustrations of direct electron transfer (DET) and mediated electron transfer (MET) in MIC by Sessile SRB cells. Reprinted with permission from Li et al. (2018), copyright 2024, Elsevier.
Fig.6  SEM images of nanowires formed by SRB for electron transfer from metal surface to the bacterial (A) individual cells, (B) colony reprinted with permission from Sherar et al. (2011), copyright 2024, Elsevier, and (C–E): represent nanowires produced by Shewanella oneidensis MR-1 for extracellular electron transfer adapted from Pirbadian et al. (2014).
Fig.7  Some of the mechanisms by which Fe2+ oxidizing microbes accelerate Fe(0) corrosion reprinted with permission from Pirbadian et al. (2014), copyright 2024, Elsevier. (A) Fe2+ derived from abiotic Fe(0) oxidation is microbially oxidized to Fe3+, with the consumption of O2 and the formation of poorly soluble Fe(III) oxide minerals such as Fe(OH)3; (B) abiotic oxidation of Fe(0) coupled with the reduction of Fe(OH)3 generating Fe2+; (C) creation of an oxygen concentration cell with electrons derived from Fe(0) oxidation in an O2-poor anodic region transferred to a region where O2 is available.
Fig.8  Creation of differential aeration (concentration) cells under a biofilm reprinted with permission from Little et al. (2020), copyright 2024, Elsevier.
Fig.9  Biosurfactants’ mechanisms of action for the interference and disruption of biofilm formation adapted from Jimoh et al. (2023).
Fig.10  (A) Enzymatic degradation of a mature biofilm, (B) enzymatic treatment that specifically targets exopolysaccharides (dispersant B, polysaccharide hydrolase), eDNA (DNase), and extracellular proteins (lysostaphin, peptidoglycan hydrolases). (C) It has been demonstrated that dispersant B’s particular enzymatic activities break down poly-N-acetyle-D-glucosamine’s (PNAG) β-1,6-glycosidic link. (D) Bacteria are killed by lysostaphin, which hydrolyzes the pentaglycine interpeptide linkages in the peptidoglycan layers of the bacterial cell walls. Adapted from Nahar et al. (2018).
Fig.11  SEM-EDX of (A–C) control working electrode; (D–F) abiotic working electrode WE-A; and (G–I) biotic working electrode WE-B. (B, E, H) SEM images of the biofilms/corrosion products formed over carbon steel coupons at different nutrient conditions reprinted with permission from Giorgi-Pérez et al. (2021), copyright 2024, Elsevier. (J) Consortium 1 under batch conditions; (K) consortium 1 with continuous replenishment; (L) consortium 2 under batch conditions; (M) consortium 2 with continuous replenishment. Adapted from Salgar-Chaparro et al. (2020).
Fig.12  CLSM biofilm images (live cells green and dead cells red) on carbon steel coupons after 60 days: (A) no treatment, (B) 100 nmol/L Peptide A, (C) 100 ppm DBNPA, (D) 100 ppm DBNPA + 10 nmol/L Peptide A, (E) 100 ppm DBNPA + 100 nmol/L Peptide A, and (F) 200 ppm DBNPA. Reprinted with permission from Wang et al. (2020b), copyright 2024, Elsevier.
Fig.13  Potentiodynamic polarization curves of caron steel at different levels of carbon source. Reprinted with permission from Dou et al. (2019) , copyright 2024, Elsevier.
Fig.14  Nyquist plots (a–c and d–f) and Bode plots (a’–c’ and d’–f’) of coupons immersed in different conditions for days 1, 3, and 7. Carbon steel (a, b, c, a’, b’, c’), Copper (d, e, f, d’, e’, f’). Reprinted with permission from Xu et al. (2024), copyright 2024, Elsevier.
1 M Adel, M A Ahmed, M A Elabiad, A A Mohamed. (2022a). Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: a critical review. Environmental Nanotechnology, Monitoring & Management, 18: 100719
https://doi.org/10.1016/j.enmm.2022.100719
2 M Adel, T Nada, S Amin, T Anwar, A A Mohamed. (2022b). Characterization of fouling for a full-scale seawater reverse osmosis plant on the Mediterranean Sea: membrane autopsy and chemical cleaning efficiency. Groundwater for Sustainable Development, 16: 100704
https://doi.org/10.1016/j.gsd.2021.100704
3 M A Ahmed, M A Ahmed, A A Mohamed. (2022c). Facile adsorptive removal of dyes and heavy metals from wastewaters using magnetic nanocomposite of zinc ferrite@ reduced graphene oxide. Inorganic Chemistry Communications, 144: 109912
https://doi.org/10.1016/j.inoche.2022.109912
4 M A Ahmed, M A Ahmed, A A Mohamed. (2023a). Adsorptive removal of tetracycline antibiotic onto magnetic graphene oxide nanocomposite modified with polyvinylpyrroilidone. Reactive & Functional Polymers, 191: 105701
https://doi.org/10.1016/j.reactfunctpolym.2023.105701
5 M A Ahmed, M A Ahmed, A A Mohamed. (2023b). Removal of 4-nitrophenol and indigo carmine dye from wastewaters by magnetic copper ferrite nanoparticles: kinetic, thermodynamic and mechanistic insights. Journal of Saudi Chemical Society, 27(6): 101748
https://doi.org/10.1016/j.jscs.2023.101748
6 M A Ahmed, M A Ahmed, A A Mohamed. (2024a). Fabrication of NiO/g-C3N4 Z-scheme heterojunction for enhanced photocatalytic degradation of methylene blue dye. Optical Materials, 151: 115339
https://doi.org/10.1016/j.optmat.2024.115339
7 M A Ahmed, S Amin, A A Mohamed. (2023c). Fouling in reverse osmosis membranes: monitoring, characterization, mitigation strategies and future directions. Heliyon, 9(4): e14908
https://doi.org/10.1016/j.heliyon.2023.e14908
8 M A Ahmed, S A Mahmoud, A A Mohamed. (2024b). Nanomaterials-modified reverse osmosis membranes: a comprehensive review. RSC advances, 14(27): 18879–18906
https://doi.org/10.1039/D4RA01796J
9 M A Ahmed, A A Mohamed. (2023d). A systematic review of layered double hydroxide-based materials for environmental remediation of heavy metals and dye pollutants. Inorganic Chemistry Communications, 148: 110325
https://doi.org/10.1016/j.inoche.2022.110325
10 M A AhmedA A (2023e) Mohamed. The use of chitosan-based composites for environmental remediation: a review. International Journal of Biological Macromolecules, 242, 2: 124787
11 M A Ahmed, A A Mohamed. (2024b). Advances in ultrasound-assisted synthesis of photocatalysts and sonophotocatalytic processes: a review. Iscience, 27(1): 108583
https://doi.org/10.1016/j.isci.2023.108583
12 G U Akpan, M Iliyasu. (2015). Biocidal effects of ozone, sodium hypochlorite and formaldehyde, on sulphate reducing bacteria isolated from biofilms of corroded oil pipelines in the Niger Delta, Nigeria. Donnish Journal of Microbiology and Biotechnology Research, 2(2): 8–14
13 S Al-Saadi, R S Raman, M Anisur, S Ahmed, J Crosswell, M Alnuwaiser, C Panter. (2021). Graphene coating on a nickel-copper alloy (Monel 400) for microbial corrosion resistance: electrochemical and surface characterizations. Corrosion Science, 182: 109299
https://doi.org/10.1016/j.corsci.2021.109299
14 M S AlSalhi, S Devanesan, A Rajasekar, S Kokilaramani. (2023). Characterization of plants and seaweeds based corrosion inhibitors against microbially influenced corrosion in a cooling tower water environment. Arabian Journal of Chemistry, 16(3): 104513
https://doi.org/10.1016/j.arabjc.2022.104513
15 K F Al-Sultani, Z T Khulief, A A Hasan. (2021). Characterization of microbiological influence corrosion for API 5L X46 pipeline by sulphate-reducing bacteria (SRB). Materials Today: Proceedings, 42: 2169–2176
https://doi.org/10.1016/j.matpr.2020.12.301
16 N Amaeze, A Akinbobola, V Chukwuemeka, A Abalkhaila, G Ramage, R Kean, H Staines, C Williams, W Mackay. (2020). Development of a high throughput and low cost model for the study of semi-dry biofilms. Biofouling, 36(4): 403–415
https://doi.org/10.1080/08927014.2020.1766030
17 Amjad Z (2010). The Science and Technology of Industrial Water Treatment. Boca Raton: CRC Press
18 C Andrés-Barrao, M M Saad, M L Chappuis, M Boffa, X Perret, Pérez R Ortega, F Barja. (2012). Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. Journal of Proteomics, 75(6): 1701–1717
https://doi.org/10.1016/j.jprot.2011.11.027
19 Araya-Obando J A (2022). Manganese Removal from Groundwater in Non-bioaugmented Pumice Biofilters Under Tropical Conditions. Cartago: The Costa Rica Institute of Technology
20 D Arun, R Vimala, K Devendranath Ramkumar. (2020). Investigating the microbial-influenced corrosion of UNS S32750 stainless-steel base alloy and weld seams by biofilm-forming marine bacterium Macrococcus equipercicus. Bioelectrochemistry, 135: 107546
https://doi.org/10.1016/j.bioelechem.2020.107546
21 Ashrafi A (2023). Biosensors, mechatronics, & microfluidics for early detection & monitoring of microbial corrosion: a comprehensive critical review. Results in Materials, 25: 100402
22 Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y, Liu H (2022). Turning the page: advancing detection platforms for sulfate reducing bacteria and their perks. The Chemical Record, 22(1): e202100166
23 P (2015) Bajpai. The control of microbiological problems. Pulp and Paper Industry: 103-195
24 A Balakrishnan, S Govindaraj, N G K Dhaipule, N Thirumalaisamy, R S Anne, N Sublime, J Philip. (2024). Enhancing microbiologically influenced corrosion protection of carbon steels with silanized epoxy-biocide hybrid coatings. Environmental Science and Pollution Research International, 31(9): 13302–13326
https://doi.org/10.1007/s11356-024-32014-9
25 A C Barros, L F Melo, A Pereira. (2022). A multi-purpose approach to the mechanisms of action of two biocides (Benzalkonium chloride and Dibromonitrilopropionamide): discussion of Pseudomonas Fluorescens’ viability and death. Frontiers in Microbiology, 13: 842414
https://doi.org/10.3389/fmicb.2022.842414
26 K BartlettJ (2011) Kramer. Comparative performance of industrial water treatment biocides. Nace Corrosion: NACE-11399
27 P F Beese-Vasbender, S Nayak, A Erbe, M Stratmann, K J Mayrhofer. (2015). Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochimica Acta, 167: 321–329
https://doi.org/10.1016/j.electacta.2015.03.184
28 M Benčina, M Resnik, P Starič, I Junkar. (2021). Use of plasma technologies for antibacterial surface properties of metals. Molecules, 26(5): 1418
https://doi.org/10.3390/molecules26051418
29 D BennetH (2018) Hoffmann. Oilfield microbiology: molecular microbiology techniques used during a biocide evaluation. Offshore Technology Conference Asia, 18OCTA, OTC-28411-MS, doi:10.4043/28411-MS
30 C C Borghi, M Fabbri, M Fiorini, M Mancini, P L Ribani. (2011). Magnetic removal of surfactants from wastewater using micrometric iron oxide powders. Separation and Purification Technology, 83: 180–188
https://doi.org/10.1016/j.seppur.2011.09.042
31 A Bridier, R Briandet, V Thomas, F Dubois-Brissonnet. (2011). Resistance of bacterial biofilms to disinfectants: a review. Biofouling, 27(9): 1017–1032
https://doi.org/10.1080/08927014.2011.626899
32 D Brown, R J Turner. (2024). Response of a model microbiologically influenced corrosion community to biocide challenge. Petroleum Microbiology, 53: 167–187
https://doi.org/10.1201/9781003287056-14
33 V Burt, S Lampman, B R Sanders. (2015). Corrosion in the petrochemical industry. ASM International Materials Park, 165: 221–230
34 R M Cabrera-Martinez, B Setlow, P Setlow. (2002). Studies on the mechanisms of the sporicidal action of ortho-phthalaldehyde. Journal of Applied Microbiology, 92(4): 675–680
https://doi.org/10.1046/j.1365-2672.2002.01572.x
35 M F Campa, S M Techtmann, M P Ladd, J Yan, M Patterson, De Matos Amaral A Garcia, K E Carter, N Ulrich, C J Grant, R L Hettich. et al.. (2019). Surface water microbial community response to the biocide 2,2-dibromo-3-nitrilopropionamide, used in unconventional oil and gas extraction. Applied and Environmental Microbiology, 85(21): e01336–19
https://doi.org/10.1128/AEM.01336-19
36 N Canter. (2023). Antimicrobial pesticides (microbicides): additives needed to extend the use of metalworking fluids. Tribology & Lubrication Technology, 1: 5
37 L Cavalli. (2004). Surfactants in the environment: fate and effects of linear alkylbenzene sulfonates (LAS) and alcohol-based surfactants. Handbook of Detergents, Part B: Environmental Impact, 121: 373–428
38 S Y Chang, S Y Huang, Y R Chu, S Y Jian, K Y Lo, Y L Lee. (2021). Antimicrobial and anticorrosion activity of a novel composite biocide against mixed bacterial strains in Taiwan marine environments. Materials, 14(20): 6156
https://doi.org/10.3390/ma14206156
39 N Chatterjee, H Lee, J Kim, D Kim, S Lee, J Choi. (2021). Critical window of exposure of CMIT/MIT with respect to developmental effects on zebrafish embryos: multi-level endpoint and proteomics analysis. Environmental Pollution, 268: 115784
https://doi.org/10.1016/j.envpol.2020.115784
40 Y T Cheah, D J C Chan. (2022). A methodological review on the characterization of microalgal biofilm and its extracellular polymeric substances. Journal of Applied Microbiology, 132(5): 3490–3514
https://doi.org/10.1111/jam.15455
41 H Chen, Z Qin, M He, Y Liu, Z Wu. (2020). Application of electrochemical atomic force microscopy (EC-AFM) in the corrosion study of metallic materials. Materials, 13(3): 668
https://doi.org/10.3390/ma13030668
42 K G Cibis, A Gneipel, H König. (2016). Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants. Journal of Biotechnology, 220: 51–63
https://doi.org/10.1016/j.jbiotec.2016.01.008
43 R CohenD (2007) Exerowa. Surface forces and properties of foam films from rhamnolipid biosurfactants. Advances in Colloid and Interface Science, 134–135: 134–135
44 J Cui, S Cai, S Zhang, G Wang, C Gao. (2022a). Degradation of a non-oxidizing biocide in circulating cooling water using UV/persulfate: kinetics, pathways, and cytotoxicity. Chemosphere, 289: 133064
https://doi.org/10.1016/j.chemosphere.2021.133064
45 T Cui, H Qian, Y Lou, X Chen, T Sun, D Zhang, X Li. (2022b). Single-cell level investigation of microbiologically induced degradation of passive film of stainless steel via FIB-SEM/TEM and multi-mode AFM. Corrosion Science, 206: 110543
https://doi.org/10.1016/j.corsci.2022.110543
46 M D G C da Silva, L A Sarubbo. (2021). Synthetic and biological surfactants used to mitigate biofouling on industrial facilities surfaces. Biointerface Research in Applied Chemistry, 12(2): 2560–2585
https://doi.org/10.33263/BRIAC122.25602585
47 X Dai, H Wang, L K Ju, G Cheng, H Cong, B M Z Newby. (2016). Corrosion of aluminum alloy 2024 caused by Aspergillus niger. International Biodeterioration & Biodegradation, 115: 1–10
https://doi.org/10.1016/j.ibiod.2016.07.009
48 S Dash, D Lahiri, M Nag, D Das, R R Ray. (2021). Probing the surface-attached in vitro microbial biofilms with atomic force (AFM) and scanning probe microscopy (SPM). Analytical Methodologies for Biofilm Research, 291: 223–241
49 L H Da-Silva-Correa, H Smith, M C Thibodeau, B Welsh, H L Buckley. (2022). The application of non-oxidizing biocides to prevent biofouling in reverse osmosis polyamide membrane systems: a review. AQUA—Water Infrastructure, Ecosystems and Society, 71(2): 261–292
https://doi.org/10.2166/aqua.2022.118
50 T P de Mello, L de Souza Ramos, L A Braga-Silva, M H Branquinha, A L dos Santos. (2017). Fungal biofilm: a real obstacle against an efficient therapy: lessons from Candida. Current Topics in Medicinal Chemistry, 17(17): 1987–2004
https://doi.org/10.2174/1568026617666170105145227
51 Paula R S de, C C Souza, C A X Gonçalves, Holanda Moura M V de, A C P Guañabens, G R Andrade, A M A Nascimento, A V Cardoso, Paula Reis M de, E C Jorge. (2024). Diversity and distribution of iron-oxidising bacteria belonging to Gallionellaceae in different sites of a hydroelectric power plant. Brazilian Journal of Microbiology, 55(1): 639–646
https://doi.org/10.1007/s42770-024-01245-w
52 F Di Pippo, L Di Gregorio, R Congestri, V Tandoi, S Rossetti. (2018). Biofilm growth and control in cooling water industrial systems. FEMS Microbiology Ecology, 94(5): fiy044
https://doi.org/10.1093/femsec/fiy044
53 E Diler, V Leblanc, H Gueuné, V Maillot, Y Linard, G Charrier, D Crusset. (2023). Potential influence of microorganisms on the corrosion of carbon steel in the French high-level long-lived radioactive waste disposal context at 80 °C. Materials and Corrosion, 74(11−12): 1795–1810
https://doi.org/10.1002/maco.202313899
54 V Q Do, Y S Seo, J M Park, J Yu, M T H Duong, J Nakai, S K Kim, H C Ahn, M Y Lee. (2021). A mixture of chloromethylisothiazolinone and methylisothiazolinone impairs rat vascular smooth muscle by depleting thiols and thereby elevating cytosolic Zn2+ and generating reactive oxygen species. Archives of Toxicology, 95: 541–556
https://doi.org/10.1007/s00204-020-02930-z
55 X Dong, X Zhai, J Yang, F Guan, Y Zhang, J Duan, B Hou. (2023). Two metabolic stages of SRB strain Desulfovibrio bizertensis affecting corrosion mechanism of carbon steel Q235. Corrosion Communications, 10: 56–68
https://doi.org/10.1016/j.corcom.2023.01.001
56 Y Dong, B Jiang, D Xu, C Jiang, Q Li, T Gu. (2018). Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry, 123: 34–44
https://doi.org/10.1016/j.bioelechem.2018.04.014
57 W Dou, J Liu, W Cai, D Wang, R Jia, S Chen, T Gu. (2019). Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. Corrosion Science, 150: 258–267
https://doi.org/10.1016/j.corsci.2019.02.005
58 J Dutra, R Gomes, García G J Yupanqui, D X Romero-Cale, Cardoso M Santos, V Waldow, C Groposo, R N Akamine, M Sousa, H Figueiredo. et al.. (2023). Corrosion-influencing microorganisms in petroliferous regions on a global scale: systematic review, analysis, and scientific synthesis of 16S amplicon metagenomic studies. PeerJ, 11: e14642
https://doi.org/10.7717/peerj.14642
59 P M (2020) Eakins. CMIT/MIT–Isothiazolone Biocide Assessment. Houston, TX: Hammond’s Fuel Additives, Inc
60 A (2017) El-Sherik. Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission. Cambridge: Woodhead Publishing
61 P Elumalai, M S Alsalhi, S Mehariya, O P Karthikeyan, S Devanesan, P Parthipan, A Rajasekar. (2021). Bacterial community analysis of biofilm on API 5LX carbon steel in an oil reservoir environment. Bioprocess and Biosystems Engineering, 44(2): 355–368
https://doi.org/10.1007/s00449-020-02447-w
62 D Emerson. (2018). The role of iron-oxidizing bacteria in biocorrosion: a review. Biofouling, 34(9): 989–1000
https://doi.org/10.1080/08927014.2018.1526281
63 V V Ermolaev, D M Arkhipova, V A Miluykov, A P Lyubina, S K Amerhanova, N V Kulik, A D Voloshina, V P Ananikov. (2021). Sterically hindered quaternary phosphonium salts (QPSs): antimicrobial activity and hemolytic and cytotoxic properties. International Journal of Molecular Sciences, 23(1): 86
https://doi.org/10.3390/ijms23010086
64 I I N Etim, J Dong, J Wei, C Nan, D B Pokharel, A J Umoh, D Xu, M Su, W Ke. (2021). Effect of organic silicon quaternary ammonium salts on mitigating corrosion of reinforced steel induced by SRB in mild alkaline simulated concrete pore solution. Journal of Materials Science and Technology, 64: 126–140
https://doi.org/10.1016/j.jmst.2019.10.006
65 I I N Etim, D I Njoku, P C Uzoma, S K Kolawole, O S Olanrele, O O Ekarenem, B O Okonkwo, A I Ikeuba, I I Udoh, C N Njoku. et al.. (2023). Microbiologically influenced corrosion: a concern for oil and gas sector in Africa. Chemistry Africa, 6(2): 779–804
https://doi.org/10.1007/s42250-022-00550-x
66 J H Exner, G A Burk, D Kyriacou. (1973). Rates and products of decomposition of 2,2-dibromo-3-nitrilopropionamide. Journal of Agricultural and Food Chemistry, 21(5): 838–842
https://doi.org/10.1021/jf60189a012
67 H Ezuber, S Zakir Hossain. (2023). A review of corrosion failures in shell and tube heat exchangers: roots and advanced counteractive. Heat and Mass Transfer, 59(6): 971–987
https://doi.org/10.1007/s00231-022-03301-3
68 L Fan, Y Sun, D Wang, Y Zhang, M Zhang, E Zhou, D Xu, F Wang. (2023). Microbiologically influenced corrosion of a novel pipeline steel containing Cu and Cr elements in the presence of Desulfovibrio vulgaris Hildenborough. Corrosion Science, 223: 111421
https://doi.org/10.1016/j.corsci.2023.111421
69 D Fernández-Calviño, J Rousk, E Bååth, U E Bollmann, K Bester, K K Brandt. (2023). Isothiazolinone inhibition of soil microbial activity persists despite biocide dissipation. Soil Biology & Biochemistry, 178: 108957
https://doi.org/10.1016/j.soilbio.2023.108957
70 C Frayne. (2001). The selection and application of nonoxidizing biocides for cooling water systems. Analyst, 8(2): 9–16
71 P Gao, K Fan. (2023). Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review. Archives of Microbiology, 205(5): 162
https://doi.org/10.1007/s00203-023-03520-0
72 R George, U Kamachi Mudali, B Raj. (2016). Characterizing biofilms for biofouling and microbial corrosion control in cooling water systems. Anti-Corrosion Methods and Materials, 63(6): 477–489
https://doi.org/10.1108/ACMM-07-2014-1401
73 Afshar M GhahramanM EsmaeilpourShooshtari N (2023) Namaki. Microbial corrosion in cooling tower of ramin power plant: determination and corrective solution. journal of water and wastewater. Ab va Fazilab, 34(4): 97–108 (in Persian)
74 E Ghazy, N A Ghany, A M El-Shamy. (2023). Comparative study of cetyl trimethyl ammonium bromide, formaldehyde, and isobutanol against corrosion and microbial corrosion of mild steel in chloride media. Journal of Bio- and Tribo-Corrosion, 9(3): 64
https://doi.org/10.1007/s40735-023-00782-5
75 A M Giorgi-Pérez, A M Arboleda-Ordoñez, W Villamizar-Suárez, M Cardeñosa-Mendoza, R Jaimes-Prada, B Rincón-Orozco, M E Niño-Gómez. (2021). Biofilm formation and its effects on microbiologically influenced corrosion of carbon steel in oilfield injection water via electrochemical techniques and scanning electron microscopy. Bioelectrochemistry, 141: 107868
https://doi.org/10.1016/j.bioelechem.2021.107868
76 T Gu. (2014). Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion. Journal of Microbial & Biochemical Technology, 6(2): 68–74
77 F Guan, Z Liu, X Dong, X Zhai, B Zhang, J Duan, N Wang, Y Gao, L Yang, B Hou. (2021). Synergistic effect of carbon starvation and exogenous redox mediators on corrosion of X70 pipeline steel induced by Desulfovibrio singaporenus. Science of the Total Environment, 788: 147573
https://doi.org/10.1016/j.scitotenv.2021.147573
78 P C Hackley, A M Jubb, R C Burruss, A E Beaven. (2020). Fluorescence spectroscopy of ancient sedimentary organic matter via confocal laser scanning microscopy (CLSM). International Journal of Coal Geology, 223: 103445
https://doi.org/10.1016/j.coal.2020.103445
79 G Hasanin, A M Mosquera, A H Emwas, T Altmann, R Das, P J Buijs, J S Vrouwenvelder, G Gonzalez-Gil. (2023). The microbial growth potential of antiscalants used in seawater desalination. Water Research, 233: 119802
https://doi.org/10.1016/j.watres.2023.119802
80 S Hong, T Ratpukdi, J Sivaguru, E Khan. (2018). Photolysis of glutaraldehyde in brine: a showcase study for removal of a common biocide in oil and gas produced water. Journal of Hazardous Materials, 353: 254–260
https://doi.org/10.1016/j.jhazmat.2018.03.056
81 B Huber, B Herzog, J E Drewes, K Koch, E Müller. (2016). Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters. BMC Microbiology, 16(1): 153
https://doi.org/10.1186/s12866-016-0767-7
82 R Jahan, A M Bodratti, M Tsianou, P Alexandridis. (2020). Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Advances in Colloid and Interface Science, 275: 102061
https://doi.org/10.1016/j.cis.2019.102061
83 R JavaherdashtiR (2017) Javaherdashti. Microbiologically Influenced Corrosion (MIC). New York: Springer
84 A Jeyaseelan, K Murugesan, S Thayanithi, S B Palanisamy. (2023). A review of the impact of herbicides and insecticides on the microbial communities. Environmental Research, 245: 118020
85 R Jia, T Unsal, D Xu, Y Lekbach, T Gu. (2019). Microbiologically influenced corrosion and current mitigation strategies: a state of the art review. International Biodeterioration & Biodegradation, 137: 42–58
https://doi.org/10.1016/j.ibiod.2018.11.007
86 R Jia, D Yang, H B Abd Rahman, T Gu. (2017a). Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals. International Biodeterioration & Biodegradation, 125: 116–124
https://doi.org/10.1016/j.ibiod.2017.09.006
87 R Jia, D Yang, D Xu, T Gu. (2017b). Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 118: 38–46
https://doi.org/10.1016/j.bioelechem.2017.06.013
88 Jimoh A A, Booysen E, Van Zyl L, Trindade M (2023). Do biosurfactants as anti-biofilm agents have a future in industrial water systems? Frontiers in Bioengineering and Biotechnology, 11: 1244595
89 Y Jin, J Li, T Ueki, B Zheng, Y Fan, C Yang, Z Li, D Wang, D Xu, T Gu. et al.. (2024). Electrically conductive nanowires controlled one pivotal route in energy harvest and microbial corrosion via direct metal-microbe electron transfer. Journal of Materials Science and Technology, 174: 226–233
https://doi.org/10.1016/j.jmst.2023.06.021
90 I A Jones, L T Joshi. (2021). Biocide use in the antimicrobial era: a review. Molecules, 26(8): 2276
https://doi.org/10.3390/molecules26082276
91 G KampfG (2018) Kampf. Glutaraldehyde. Antiseptic Stewardship: Biocide Resistance and Clinical Implications. New York: Springer
92 S K Karn, G Fang, J Duan. (2017). Bacillus sp. acting as dual role for corrosion induction and corrosion inhibition with carbon steel (CS). Frontiers in Microbiology, 8: 2038
https://doi.org/10.3389/fmicb.2017.02038
93 M S Khan, T Liang, Y Liu, Y Shi, H Zhang, H Li, S Guo, H Pan, K Yang, Y Zhao. (2022). Microbiologically influenced corrosion mechanism of ferrous alloys in marine environment. Metals, 12(9): 1458
https://doi.org/10.3390/met12091458
94 M S Khan, K Yang, Z Liu, L Zhou, W Liu, S Lin, X Wang, C Shang. (2023). Microorganisms involved in the biodegradation and microbiological corrosion of structural materials. Coatings, 13(10): 1683
https://doi.org/10.3390/coatings13101683
95 M Khani, M F Hansen, S Knøchel, B Rasekh, K Ghasemipanah, S M Zamir, M Nosrati, M Burmølle. (2023). Antifouling potential of enzymes applied to reverse osmosis membranes. Biofilm, 5: 100119
https://doi.org/10.1016/j.bioflm.2023.100119
96 J Kim, J Choi. (2023). Trans-and multigenerational effects of Isothiazolinone biocide CMIT/MIT on genotoxicity and epigenotoxicity in Daphnia magna. Toxics, 11(4): 388
https://doi.org/10.3390/toxics11040388
97 J Knisz, R Eckert, L Gieg, A Koerdt, J Lee, E Silva, T Skovhus, B An Stepec, S Wade. (2023). Microbiologically influenced corrosion—more than just microorganisms. FEMS Microbiology Reviews, 47(5): fuad041
https://doi.org/10.1093/femsre/fuad041
98 A Koshchaev, L Vishniveckaya, M Rodin, M Iakovetc. (2019). To the questions of the use of disinfection by the method of ozonation on livestocking facility. Znanstvena Misel, 2(1): 5–8
99 P Kovacic, R Somanathan. (2011). Recent developments in the mechanism of anticancer agents based on electron transfer, reactive oxygen species and oxidative stress. Anti-Cancer Agents in Medicinal Chemistry, 11(7): 658–668
https://doi.org/10.2174/187152011796817691
100 J B Kristensen, R L Meyer, B S Laursen, S Shipovskov, F Besenbacher, C H Poulsen. (2008). Antifouling enzymes and the biochemistry of marine settlement. Biotechnology Advances, 26(5): 471–481
https://doi.org/10.1016/j.biotechadv.2008.05.005
101 Y Kryachko, S M Hemmingsen. (2017). The role of localized acidity generation in microbially influenced corrosion. Current Microbiology, 74(7): 870–876
https://doi.org/10.1007/s00284-017-1254-6
102 S F Krzeminski, C K Brackett, J D Fisher. (1975). Fate of microbicidal 3-isothiazolone compounds in the environment: modes and rates of dissipation. Journal of Agricultural and Food Chemistry, 23(6): 1060–1068
https://doi.org/10.1021/jf60202a053
103 N Kumari, S Rathore, B B Patoli, A A Patoli. (2020). Bacterial biofilms and ethylenediamine-N,N’-disuccinic acid (EDDS) as Potential Biofilm Inhibitory compound: EDDS as biofilm inhibitory compound. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 57(1): 85–92
104 D Kwaśniewska, Y L Chen, D Wieczorek. (2020). Biological activity of quaternary ammonium salts and their derivatives. Pathogens, 9(6): 459
https://doi.org/10.3390/pathogens9060459
105 A Labena, H Elsawy. (2020). Microbial corrosion of C1018 mild steel by a Halotolerant consortium of sulfate reducing bacteria isolated from an Egyptian oil field. Egyptian Journal of Chemistry, 63(4): 1461–1468
106 Y LekbachT LiuY LiM MoradiW Dou D XuJ A Smith D R (2021) Lovley. Advances in Microbial Physiology. New York: Elsevier
107 J Li, C Du, Z Liu, X Li. (2022). Extracellular electron transfer routes in microbiologically influenced corrosion of X80 steel by Bacillus licheniformis. Bioelectrochemistry, 145: 108074
https://doi.org/10.1016/j.bioelechem.2022.108074
108 Y Li, D Xu, C Chen, X Li, R Jia, D Zhang, W Sand, F Wang, T Gu. (2018). Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. Journal of Materials Science and Technology, 34(10): 1713–1718
https://doi.org/10.1016/j.jmst.2018.02.023
109 W Liao, J Yuan, X Wang, P Dai, W Feng, Q Zhang, A Fu, X Li. (2023). Under-deposit microbial corrosion of X65 pipeline steel in the simulated shale gas production environment. International Journal of Electrochemical Science, 18(3): 100069
https://doi.org/10.1016/j.ijoes.2023.100069
110 I Liaqat, R T Bachmann, A N Sabri, R G Edyvean, C A Biggs. (2008). Investigating the effect of patulin, penicillic acid and EDTA on biofilm formation of isolates from dental unit water lines. Applied Microbiol Biotechnol, 81(2): 349–358
https://doi.org/10.1007/s00253-008-1691-z
111 L Lin, C H Tsou, B Dou, S Yan, Y Zeng, M Gong. (2022). Electrochemical corrosion behavior and mechanism of iron-oxidizing bacteria Thiobacillus ferrooxidans from acid mine drainage on Q235 carbon steel. New Journal of Chemistry, 46(42): 20279–20291
https://doi.org/10.1039/D2NJ04013A
112 W Lin, X Guan, J Cao, B Niu, Q Chen. (2017). Bactericidal mechanism of glutaraldehyde-didecyldimethylammonium bromide as a disinfectant against Escherichia coli. Journal of Applied Microbiology, 122(3): 676–685
https://doi.org/10.1111/jam.13384
113 J L Lister, A R Horswill. (2014). Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Frontiers in Cellular and Infection Microbiology, 4: 178
https://doi.org/10.3389/fcimb.2014.00178
114 B J LittleT L GerkeR I RayJ S (2015) Lee. Mineral Scales and Deposits. Amsterdam: Elsevier, 107–122
115 B J Little, J Hinks, D J Blackwood. (2020). Microbially influenced corrosion: towards an interdisciplinary perspective on mechanisms. International Biodeterioration & Biodegradation, 154: 105062
https://doi.org/10.1016/j.ibiod.2020.105062
116 B Liu, Z Li, X Yang, C Du, X Li. (2020). Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil. Bioelectrochemistry, 135: 107551
https://doi.org/10.1016/j.bioelechem.2020.107551
117 D Liu, R Jia, D Xu, H Yang, Y Zhao, M S Khan, S Huang, J Wen, K Yang, T Gu. (2019). Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti. Journal of Materials Science and Technology, 35(11): 2494–2502
https://doi.org/10.1016/j.jmst.2019.05.048
118 H Liu, C Fu, T Gu, G Zhang, Y Lv, H Wang, H Liu. (2015). Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corrosion Science, 100: 484–495
https://doi.org/10.1016/j.corsci.2015.08.023
119 H Liu, T Gu, G Zhang, Y Cheng, H Wang, H Liu. (2016). The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria. Corrosion Science, 102: 93–102
https://doi.org/10.1016/j.corsci.2015.09.023
120 L Liu, Q Fu, C Peng, B Wei, Q Qin, L Gao, Y Bai, J Xu, C Sun. (2022). Effect of Glutaraldehyde as a biocide against the microbiologically influenced corrosion of X80 steel pipeline. Journal of Pipeline Systems Engineering and Practice, 13(3): 04022014
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000650
121 P Liu, H Zhang, Y Fan, D Xu. (2023a). Microbially influenced corrosion of steel in marine environments: a review from mechanisms to prevention. Microorganisms, 11(9): 2299
https://doi.org/10.3390/microorganisms11092299
122 R Liu, N Ivanovich, C Zhu, Y P Yeo, X Wang, M Seita, F M Lauro. (2023b). Influence of grain size and crystallographic orientation on microbially influenced corrosion of low-carbon steel in artificial seawater. Materials & Design, 234: 112353
https://doi.org/10.1016/j.matdes.2023.112353
123 Z LiuS R (2021) Smith. Enzyme recovery from biological wastewater treatment. Waste and Biomass Valorization, 12, 4185–4211
124 X Long, R Sha, Q Meng, G Zhang. (2016). Mechanism study on the severe foaming of rhamnolipid in fermentation. Journal of Surfactants and Detergents, 19(4): 833–840
https://doi.org/10.1007/s11743-016-1829-4
125 C Longhi, G L Scoarughi, F Poggiali, A Cellini, A Carpentieri, L Seganti, P Pucci, A Amoresano, P S Cocconcelli, M Artini. et al.. (2008). Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microbial Pathogenesis, 45(1): 45–52
https://doi.org/10.1016/j.micpath.2008.01.007
126 C Loto. (2017). Microbiological corrosion: mechanism, control and impact: a review. International Journal of Advanced Manufacturing Technology, 92(9−12): 4241–4252
https://doi.org/10.1007/s00170-017-0494-8
127 Y Lou, W Chang, T Cui, H Qian, X Hao, D Zhang. (2023). Microbiologically influenced corrosion inhibition induced by S. putriefaciens mineralization under extracellular polymeric substance regulation via FlrA and FlhG genes. Corrosion Science, 221: 111350
https://doi.org/10.1016/j.corsci.2023.111350
128 Z Lou, Y Zhang, Y Li, H Xiao. (2023b). Study on microscopic physical and chemical properties of biomass materials by AFM. Journal of Materials Research and Technology, 24: 10005–10026
https://doi.org/10.1016/j.jmrt.2023.05.176
129 D R Lovley. (2017). Electrically conductive pili: biological function and potential applications in electronics. Current Opinion in Electrochemistry, 4(1): 190–198
https://doi.org/10.1016/j.coelec.2017.08.015
130 M Lv, M Du, X Li, Y Yue, X Chen. (2019). Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria. Journal of Materials Research and Technology, 8(5): 4066–4078
https://doi.org/10.1016/j.jmrt.2019.07.016
131 Y Ma, Y Zhang, R Zhang, F Guan, B Hou, J Duan. (2020). Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view. Applied Microbiology and Biotechnology, 104(2): 515–525
https://doi.org/10.1007/s00253-019-10184-8
132 F Mansfeld. (2003). The use of electrochemical techniques for the investigation and monitoring of microbiologically influenced corrosion and its inhibition: a review. Materials and Corrosion, 54(7): 489–502
https://doi.org/10.1002/maco.200390111
133 C E Marcato-Romain, Y Pechaud, E Paul, E Girbal-Neuhauser, V Dossat-Letisse. (2012). Removal of microbial multi-species biofilms from the paper industry by enzymatic treatments. Biofouling, 28(3): 305–314
https://doi.org/10.1080/08927014.2012.673122
134 Marchant R, Banat I M (2012). Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnology Letters, 34(9): 1597–1605
135 A Matei, C Puscas, I Patrascu, M Lehene, J Ziebro, F Scurtu, M Baia, D Porumb, R Totos, R Silaghi-Dumitrescu. (2020). Stability of glutaraldehyde in biocide compositions. International Journal of Molecular Sciences, 21(9): 3372
https://doi.org/10.3390/ijms21093372
136 D McllwaineJ (2017) Richardson. Reducing agents for producing chlorine dioxide. Google Patents
137 L Melo, A A Pereira, A C Barros. (2021). New functionalized macroparticles for environmentally sustainable biofilm control in water systems. Antibiotics, 10(4): 399
https://doi.org/10.3390/antibiotics10040399
138 B Merchel Piovesan Pereira, M Adil Salim, N Rai, I Tagkopoulos. (2021). Tolerance to glutaraldehyde in Escherichia coli mediated by overexpression of the aldehyde reductase YqhD by YqhC. Frontiers in Microbiology, 12: 680553
https://doi.org/10.3389/fmicb.2021.680553
139 M Moradi, J Duan, H Ashassi-Sorkhabi, X Luan. (2011). De-alloying of 316 stainless steel in the presence of a mixture of metal-oxidizing bacteria. Corrosion Science, 53(12): 4282–4290
https://doi.org/10.1016/j.corsci.2011.08.043
140 B E L MorrisDer Kraan G M (2017) Van. Application of Biocides and Chemical Treatments to Both Combat Microorganisms and Reduce (Bio)Corrosion. . Boca Raton: CRC Press
141 S Nahar, M F R Mizan, A J W Ha, S D Ha. (2018). Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Comprehensive Reviews in Food Science and Food Safety, 17(6): 1484–1502
https://doi.org/10.1111/1541-4337.12382
142 J Narenkumar, S Devanesan, M S Alsalhi, S Kokilaramani, Y P Ting, P K Rahman, A Rajasekar. (2021). Biofilm formation on copper and its control by inhibitor/biocide in cooling water environment. Saudi Journal of Biological Sciences, 28(12): 7588–7594
https://doi.org/10.1016/j.sjbs.2021.10.012
143 B V Nguyen, T Nagakubo, M Toyofuku, N Nomura, A S Utada. (2020). Synergy between sophorolipid biosurfactant and SDS increases the efficiency of P. aeruginosa biofilm disruption. Langmuir, 36(23): 6411–6420
https://doi.org/10.1021/acs.langmuir.0c00643
144 U T Nguyen, L L Burrows. (2014). DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. International Journal of Food Microbiology, 187: 26–32
https://doi.org/10.1016/j.ijfoodmicro.2014.06.025
145 B Nunes, F Cagide, C Fernandes, A Borges, F Borges, M Simões. (2023). Efficacy of novel quaternary ammonium and phosphonium salts differing in cation type and alkyl chain length against antibiotic-resistant staphylococcus aureus. International Journal of Molecular Sciences, 25(1): 504
https://doi.org/10.3390/ijms25010504
146 A Núñez, A M García, C Ranninger, D A Moreno. (2023). Microbiologically influenced corrosion on naval carbon steel inside the hull of tugboats: a case study of prevention and control. Biofouling, 39(3): 257–270
https://doi.org/10.1080/08927014.2023.2209013
147 N Oulahal, A Martial-Gros, M Bonneau, L Blum. (2007). Removal of meat biofilms from surfaces by ultrasounds combined with enzymes and/or a chelating agent. Innovative Food Science & Emerging Technologies, 8(2): 192–196
https://doi.org/10.1016/j.ifset.2006.10.001
148 D Ou-Yahia, M Üstüntürk-Onan, E Ilhan-Sungur. (2023). Isolation and identification of a manganese-oxidizing bacterium from produced water: growth and manganese-oxidation ability of bacillus zhangzhouensis in different manganese concentrations. Arabian Journal for Science and Engineering, 49: 67–75
https://doi.org/10.1007/s13369-023-08001-6
149 S Özcelik, E Kuley, F Özogul. (2016). Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. Lebensmittel-Wissenschaft + Technologie, 73: 536–542
https://doi.org/10.1016/j.lwt.2016.06.066
150 M K Pal, M Lavanya. (2022). Microbial influenced corrosion: understanding bioadhesion and biofilm formation. Journal of Bio- and Tribo-Corrosion, 8(3): 76
https://doi.org/10.1007/s40735-022-00677-x
151 P A Palacios, O Snoeyenbos-West, C R Löscher, B Thamdrup, A E Rotaru. (2019). Baltic Sea methanogens compete with acetogens for electrons from metallic iron. ISME Journal, 13(12): 3011–3023
https://doi.org/10.1038/s41396-019-0490-0
152 C M Paquete, L Morgado, C A Salgueiro, R O Louro. (2022). Molecular mechanisms of microbial extracellular electron transfer: the importance of multiheme cytochromes. Frontiers in Bioscience, 27(6): 174
https://doi.org/10.31083/j.fbl2706174
153 F Pattavina, M Wachocka, F Tuti, F Boninti, R Santi, R Grossi, P Laurenti. (2023). From hazard identification to risk assessment: the role of the prevention technician in the carcinogenic risk assessment for formaldehyde. Frontiers in Public Health, 11: 960921
https://doi.org/10.3389/fpubh.2023.960921
154 S L Percival, D Mayer, M Malone, T Swanson, D Gibson, G Schultz. (2017). Surfactants and their role in wound cleansing and biofilm management. Journal of Wound Care, 26(11): 680–690
https://doi.org/10.12968/jowc.2017.26.11.680
155 S L PercivalJ T WalkerP R (2000) Hunter. Microbiological Aspects of Biofilms and Drinking Water. Boca Raton: CRC Press
156 J Philips, E Monballyu, S Georg, Paepe K De, A Prévoteau, K Rabaey, J B Arends. (2019). An Acetobacterium strain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism as Sporomusa sphaeroides. FEMS Microbiology Ecology, 95(2): fiy222
https://doi.org/10.1093/femsec/fiy222
157 S Pirbadian, S E Barchinger, K M Leung, H S Byun, Y Jangir, R A Bouhenni, S B Reed, M F Romine, D A Saffarini, L Shi. et al.. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences of the United States of America, 111(35): 12883–12888
https://doi.org/10.1073/pnas.1410551111
158 H PolmanH JennerM (2020) Bruijs. Technologies for biofouling control and monitoring in desalination. Corrosion and Fouling Control in Desalination Industry, 343–375
159 A Pourshaban-Shahrestani, J Hassan, M K Koohi. (2024). In vivo toxicity of industrial biocide containing 2,2-dibromo-3-nitrilopropionamide in adult and zebrafish larvae. Bulletin of Environmental Contamination and Toxicology, 112(1): 2
https://doi.org/10.1007/s00128-023-03824-3
160 Y PuY Tian S HouW Dou S (2023) Chen. Enhancement of exogenous riboflavin on microbiologically influenced corrosion of nickel by electroactive Desulfovibrio vulgaris biofilm. npj Materials Degradation, 7(1): 7
161 Y M Pusparizkita, C Aslan, W W Schmahl, H Devianto, A Harimawan, T Setiadi, Y J Ng, A P Bayuseno, P L Show. (2023). Microbiologically influenced corrosion of the ST-37 carbon steel tank by Bacillus licheniformis present in biodiesel blends. Biomass and Bioenergy, 168: 106653
https://doi.org/10.1016/j.biombioe.2022.106653
162 H Qi, Q Shi, R Peng, T Sun, Z Zhang, L Li, X Xie. (2023). Effect of one sulfate-reducing bacterium SRB-Z isolated from Pearl River on the corrosion behavior of Q235 carbon steel. Coatings, 13(2): 478
https://doi.org/10.3390/coatings13020478
163 H Qian, J Zhang, T Cui, L Fan, X Chen, W Liu, W Chang, C Du, D Zhang. (2021). Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense. Bioelectrochemistry, 140: 107746
https://doi.org/10.1016/j.bioelechem.2021.107746
164 I Raad, I Chatzinikolaou, G Chaiban, H Hanna, R Hachem, T Dvorak, G Cook, W Costerton. (2003). In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrobial Agents and Chemotherapy, 47(11): 3580–3585
https://doi.org/10.1128/AAC.47.11.3580-3585.2003
165 I Raad, H Hanna, T Dvorak, G Chaiban, R Hachem. (2007). Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-percent ethanol, rapidly eradicates organisms embedded in biofilm. Antimicrobial Agents and Chemotherapy, 51(1): 78–83
https://doi.org/10.1128/AAC.00154-06
166 I RaadR (2001) Sherertz. Chelators in combination with biocides: treatment of microbially induced biofilm and corrosion. Google Patents
167 A Rajasekar, T Ganesh Babu, S Karutha Pandian, S Maruthamuthu, N Palaniswamy, A Rajendran. (2007). Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline. Corrosion Science, 49(6): 2694–2710
https://doi.org/10.1016/j.corsci.2006.12.004
168 S Rajcoomar, I Amoah, T Abunama, N Mohlomi, F Bux, S Kumari. (2023). Biofilm formation on microplastics in wastewater: insights into factors, diversity and inactivation strategies. International Journal of Environmental Science and Technology, 21: 4429–4444
https://doi.org/10.1007/s13762-023-05266-0
169 P Rao, L Mulky. (2023). Microbially influenced corrosion and its control measures: a critical review. Journal of Bio- and Tribo-Corrosion, 9(3): 57
https://doi.org/10.1007/s40735-023-00772-7
170 T S (2022) Rao. Water-Formed Deposits. Amsterdam: Elsevier
171 M Ravi, G A Jennifer, S Ravi, E Varathan, A Karanath-Anilkumar, G Munuswamy-Ramanujam, J A Selvi. (2024a). Bifunctional properties of Acacia concinna pod as a natural surfactant-based eco-friendly benign corrosion inhibitor toward carbon steel protection in saline medium: experimental and theoretical research. Journal of Environmental Chemical Engineering, 12(2): 111947
https://doi.org/10.1016/j.jece.2024.111947
172 R I RayJ S LeeB J (2010) Little. Iron-oxidizing bacteria: a review of corrosion mechanisms in fresh water and marine environments. NACE Corrosion Conference Paper: NACE-10218
173 Raya D, Militello K, Gadhamshetty V, Dhiman S (2023). Microbial stress response: mechanisms and data science: ACS Publications, 59–73
174 J Recio-Hernandez, M Galicia-García, H Silva-Jiménez, R Malpica-Calderón, E G Ordoñez-Casanova. (2021). EIS Evaluation of corrosion resistance of AISI 304 stainless steel exposed to Pseudomonas stutzeri. International Journal of Electrochemical Science, 16(5): 21058
https://doi.org/10.20964/2021.05.39
175 P C Rivas-Rojas, R P Ollier, V A Alvarez, C Huck-Iriart. (2021). Enhancing the integration of bentonite clay with polycaprolactone by intercalation with a cationic surfactant: effects on clay orientation and composite tensile properties. Journal of Materials Science, 56(9): 5595–5608
https://doi.org/10.1007/s10853-020-05603-5
176 D Roberts, D Nica, G Zuo, J Davis. (2002). Quantifying microbially induced deterioration of concrete: initial studies. International Biodeterioration & Biodegradation, 49(4): 227–234
https://doi.org/10.1016/S0964-8305(02)00049-5
177 D Romero-Fierro, M Bustamante-Torres, S Hidalgo-Bonilla, E Bucio. (2021). Microbial degradation of disinfectants. Recent Advances in Microbial Degradation, 78: 91–130
178 R Sachan, A K Singh, Y S Negi. (2020). Study of microbially influenced corrosion in the presence of iron-oxidizing bacteria (strain DASEWM2). Journal of Bio- and Tribo-Corrosion, 6(4): 109
https://doi.org/10.1007/s40735-020-00409-z
179 S Saini, S Tewari, J Dwivedi, V Sharma. (2023). Biofilm mediated wastewater treatment: a comprehensive review. Materials Advances, 4(6): 1415–1443
https://doi.org/10.1039/D2MA00945E
180 K Sakurai, H Arai, M Ishii, Y Igarashi. (2012). Changes in the gene expression profile of Acetobacter aceti during growth on ethanol. Journal of Bioscience and Bioengineering, 113(3): 343–348
https://doi.org/10.1016/j.jbiosc.2011.11.005
181 K Sakurai, S Yamazaki, M Ishii, Y Igarashi, H Arai. (2013). Role of the glyoxylate pathway in acetic acid production by Acetobacter aceti. Journal of Bioscience and Bioengineering, 115(1): 32–36
https://doi.org/10.1016/j.jbiosc.2012.07.017
182 S J Salgar-Chaparro, K Lepkova, T Pojtanabuntoeng, A Darwin, L L Machuca. (2020). Nutrient level determines biofilm characteristics and subsequent impact on microbial corrosion and biocide effectiveness. Applied and Environmental Microbiology, 86(7): e02885–19
https://doi.org/10.1128/AEM.02885-19
183 S M Shaban, S A Elsamad, S M Tawfik, A A H Abdel-Rahman, I Aiad. (2020). Studying surface and thermodynamic behavior of a new multi-hydroxyl Gemini cationic surfactant and investigating their performance as corrosion inhibitor and biocide. Journal of Molecular Liquids, 316: 113881
https://doi.org/10.1016/j.molliq.2020.113881
184 I Shalayel, N Leqraa, V Blandin, Y Vallée. (2023). Catalysis before enzymes: thiol-rich peptides as molecular diversity providers on the early Earth. Diversity, 15(2): 256
https://doi.org/10.3390/d15020256
185 N SharifS Khoshnoudi-NiaS M (2020) Jafari. Characterization of Nanoencapsulated Food Ingredients. Amsterdam: Elsevier, 131–158
186 G Sharma, A Vimal. (2023). Industrial processing of commercially significant enzymes. Recent Innovations in Chemical Engineering, 16(1): 3–15
https://doi.org/10.2174/2405520416666230301112734
187 B Sherar, I Power, P Keech, S Mitlin, G Southam, D Shoesmith. (2011). Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corrosion Science, 53(3): 955–960
https://doi.org/10.1016/j.corsci.2010.11.027
188 X Shi, W Qing, T Marhaba, W Zhang. (2020). Atomic force microscopy-scanning electrochemical microscopy (AFM-SECM) for nanoscale topographical and electrochemical characterization: principles, applications and perspectives. Electrochimica Acta, 332: 135472
https://doi.org/10.1016/j.electacta.2019.135472
189 X Shi, R Zhang, W Sand, K Mathivanan, Y Zhang, N Wang, J Duan, B Hou. (2023). Comprehensive review on the use of biocides in microbiologically influenced corrosion. Microorganisms, 11(9): 2194
https://doi.org/10.3390/microorganisms11092194
190 R Shrestha, T Černoušek, J Stoulil, H Kovářová, K Sihelská, R Špánek, A Ševců, J Steinová. (2021). Anaerobic microbial corrosion of carbon steel under conditions relevant for deep geological repository of nuclear waste. Science of the Total Environment, 800: 149539
https://doi.org/10.1016/j.scitotenv.2021.149539
191 A Siddiqui, I Pinel, E Prest, S Bucs, M Van Loosdrecht, J Kruithof, J S Vrouwenvelder. (2017). Application of DBNPA dosage for biofouling control in spiral wound membrane systems. Desalination and Water Treatment, 68: 12–22
https://doi.org/10.5004/dwt.2017.20370
192 P Silva, S H Oliveira, G M Vinhas, L J Carvalho, O S Barauna, S L Urtiga Filho, M A G A Lima. (2021). Tetrakis hydroxymethyl phosphonium sulfate (THPS) with biopolymer as strategy for the control of microbiologically influenced corrosion in a dynamic system. Chemical Engineering and Processing, 160: 108272
https://doi.org/10.1016/j.cep.2020.108272
193 V Silva, C Silva, P Soares, E M Garrido, F Borges, J Garrido. (2020). Isothiazolinone biocides: chemistry, biological, and toxicity profiles. Molecules, 25(4): 991
https://doi.org/10.3390/molecules25040991
194 M Simões, L C Simões, S Cleto, I Machado, M O Pereira, M J Vieira. (2007). Antimicrobial mechanisms of ortho-phthalaldehyde action. Journal of Basic Microbiology, 47(3): 230–242
https://doi.org/10.1002/jobm.200610280
195 A A Siyal, M R Shamsuddin, A Low, N E Rabat. (2020). A review on recent developments in the adsorption of surfactants from wastewater. Journal of Environmental Management, 254: 109797
https://doi.org/10.1016/j.jenvman.2019.109797
196 Solomon G R, Balaji R, Ilayaperumal K, Chellappa B (2021). Performance Analysis and Efficiency Enhancement of Cooling Tower in 210 MW Thermal Unit. London: IOP Publishing, 012062
197 X Song, G Zhang, Y Zhou, W Li. (2023). Behaviors and mechanisms of microbially-induced corrosion in metal-based water supply pipelines: a review. Science of the Total Environment, 895: 165034
https://doi.org/10.1016/j.scitotenv.2023.165034
198 Soo Epark H, Jack T R (2014). The role of acetogens in microbial influenced corrosion of steel. Frontiers in Microbiology, 50: fmicb.2014.00268
199 J W Sowards, E Mansfield. (2014). Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria. Corrosion Science, 87: 460–471
https://doi.org/10.1016/j.corsci.2014.07.009
200 J W Sowards, C Williamson, T S Weeks, J D Mccolskey, J R Spear. (2014). The effect of Acetobacter sp. and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels. Corrosion Science, 79: 128–138
https://doi.org/10.1016/j.corsci.2013.10.036
201 R Stadler, W Fuerbeth, K Harneit, M Grooters, M Woellbrink, W Sand. (2008). First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates. Electrochimica Acta, 54(1): 91–99
https://doi.org/10.1016/j.electacta.2008.04.082
202 D Starosvetsky, R Armon, J Yahalom, J Starosvetsky. (2001). Pitting corrosion of carbon steel caused by iron bacteria. International Biodeterioration & Biodegradation, 47(2): 79–87
https://doi.org/10.1016/S0964-8305(99)00081-5
203 J Starosvetsky, D Starosvetsky, B Pokroy, T Hilel, R Armon. (2008). Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling. Corrosion Science, 50(2): 540–547
https://doi.org/10.1016/j.corsci.2007.07.008
204 D Stengel, A M Jörgensen, I Polidori, P Kapitza, F Ricci, A Bernkop-Schnürch. (2024). The power of sulfhydryl groups: thiolated lipid-based nanoparticles enhance cellular uptake of nucleic acids. Journal of Colloid and Interface Science, 654: 1136–1145
https://doi.org/10.1016/j.jcis.2023.10.039
205 L A Sudek, A S Templeton, B M Tebo, H Staudigel. (2009). Microbial ecology of Fe (hydr)oxide mats and basaltic rock from Vailulu’u Seamount, American Samoa. Geomicrobiology Journal, 26(8): 581–596
https://doi.org/10.1080/01490450903263400
206 D Sun, Q He, W Zhang, L Xin, B Shi. (2008). Evaluation of environmental impact of typical leather chemicals. Part I: Biodegradability of fatliquors in activated sludge treatment. Journal of the Society of Leather Technologists and Chemists, 92: 14–18
207 M Sun, W Xu, H Rong, J Chen, C Yu. (2023). Effects of dissolved oxygen (DO) in seawater on microbial corrosion of concrete: morphology, composition, compression analysis and transportation evaluation. Construction & Building Materials, 367: 130290
https://doi.org/10.1016/j.conbuildmat.2023.130290
208 H Y Tang, D E Holmes, T Ueki, P A Palacios, D R Lovley. (2019). Iron corrosion via direct metal-microbe electron transfer. mBio, 10(3): e00303–19
https://doi.org/10.1128/mBio.00303-19
209 J Telegdi, A Shaban, L Trif. (2020). Review on the microbiologically influenced corrosion and the function of biofilms. International Journal of Corrosion and Scale Inhibition, 9(1): 1–33
https://doi.org/10.17675/2305-6894-2020-9-1-1
210 S Tian, L Su, Y An, H C Van Der Mei, Y Ren, H J Busscher, L Shi. (2023). Protection of DNase in the shell of a pH-responsive, antibiotic-loaded micelle for biofilm targeting, dispersal and eradication. Chemical Engineering Journal, 452: 139619
https://doi.org/10.1016/j.cej.2022.139619
211 S Tian, H C Van Der Mei, Y Ren, H J Busscher, L Shi. (2021). Recent advances and future challenges in the use of nanoparticles for the dispersal of infectious biofilms. Journal of Materials Science and Technology, 84: 208–218
https://doi.org/10.1016/j.jmst.2021.02.007
212 Tidwell T J, De Paula R M, Nilsen G P, Keasler V V (2015). Visualization and Quantification of Biofilm Removal for the Mitigation of MIC, NACE—International Corrosion Conference Series 2015, March 15–19, Dallas, TX, USA
213 C E Torres, G Lenon, D Craperi, R Wilting, Á Blanco. (2011). Enzymatic treatment for preventing biofilm formation in the paper industry. Applied Microbiology and Biotechnology, 92(1): 95–103
https://doi.org/10.1007/s00253-011-3305-4
214 M Toyofuku, T Inaba, T Kiyokawa, N Obana, Y Yawata, N Nomura. (2016). Environmental factors that shape biofilm formation. Bioscience, Biotechnology, and Biochemistry, 80(1): 7–12
https://doi.org/10.1080/09168451.2015.1058701
215 T T T Tran, K Kannoorpatti, A Padovan, S Thennadil. (2021). Sulphate-reducing bacteria’s response to extreme pH environments and the effect of their activities on microbial corrosion. Applied Sciences, 11(5): 2201
https://doi.org/10.3390/app11052201
216 V N Tran, C Dasagrandhi, V G Truong, Y M Kim, H W Kang. (2018). Antibacterial activity of Staphylococcus aureus biofilm under combined exposure of glutaraldehyde, near-infrared light, and 405-nm laser. PLoS One, 13(8): e0202821
https://doi.org/10.1371/journal.pone.0202821
217 L Trif, A Shaban, J Telegdi. (2018). Electrochemical and surface analytical techniques applied to microbiologically influenced corrosion investigation. Corrosion Reviews, 36(4): 349–363
https://doi.org/10.1515/corrrev-2017-0032
218 B Tuck, E Watkin, A Somers, M Forsyth, L L Machuca. (2022). Enhancing biocide efficacy: targeting extracellular DNA for marine biofilm disruption. Microorganisms, 10(6): 1227
https://doi.org/10.3390/microorganisms10061227
219 V M Udowo, M Yan, F Liu, A I Ikeuba. (2024). Role of Fe oxide in the underdeposit corrosion of pipeline steel in oilfield produced water containing SRB. Materials and Corrosion, 75(1): 118–129
https://doi.org/10.1002/maco.202313869
220 Ullah S (2011). Biocides in Papermaking Chemistry. Saarbruden: LAP Lambert Academic Publishing
221 E Valencia-Cantero, J J Peña-Cabriales. (2014). Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia. Journal of Microbiology and Biotechnology, 24(2): 280–286
https://doi.org/10.4014/jmb.1310.10002
222 H Venzlaff, D Enning, J Srinivasan, K J Mayrhofer, A W Hassel, F Widdel, M Stratmann. (2013). Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corrosion Science, 66: 88–96
https://doi.org/10.1016/j.corsci.2012.09.006
223 R Verhoef, H A Schols, A Blanco, M Siika-Aho, M Rättö, J Buchert, G Lenon, A G Voragen. (2005). Sugar composition and FT-IR analysis of exopolysaccharides produced by microbial isolates from paper mill slime deposits. Biotechnology and Bioengineering, 91(1): 91–105
https://doi.org/10.1002/bit.20494
224 R K Verma, Y Bohra, A K Gautam, S Avasthi, D Ashok. (2023). Role of microbial biofilms in bioremediation: current perspectives. Microbial Inoculants, 54: 253–276
225 S N Victoria, A Sharma, R Manivannan. (2021). Metal corrosion induced by microbial activity: mechanism and control options. Journal of the Indian Chemical Society, 98(6): 100083
https://doi.org/10.1016/j.jics.2021.100083
226 A Vigneron, I M Head, N Tsesmetzis. (2018). Damage to offshore production facilities by corrosive microbial biofilms. Applied Microbiology and Biotechnology, 102(6): 2525–2533
https://doi.org/10.1007/s00253-018-8808-9
227 V Vishwakarma. (2020). Impact of environmental biofilms: industrial components and its remediation. Journal of Basic Microbiology, 60(3): 198–206
https://doi.org/10.1002/jobm.201900569
228 J M Vroom, K J De Grauw, H C Gerritsen, D J Bradshaw, P D Marsh, G K Watson, J J Birmingham, C Allison. (1999). Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Applied and Environmental Microbiology, 65(8): 3502–3511
https://doi.org/10.1128/AEM.65.8.3502-3511.1999
229 T V Wagner, R Helmus, E Becker, H H Rijnaarts, P De Voogt, A A Langenhoff, J R Parsons. (2020). Impact of transformation, photodegradation and interaction with glutaraldehyde on the acute toxicity of the biocide DBNPA in cooling tower water. Environmental Science. Water Research & Technology, 6(4): 1058–1068
https://doi.org/10.1039/C9EW01018A
230 D J Walker, E Martz, D E Holmes, Z Zhou, S S Nonnenmann, D R Lovley. (2019). The archaellum of Methanospirillum hungatei is electrically conductive. mBio, 10(2): e00579–19
https://doi.org/10.1128/mBio.00579-19
231 S E Walsh, J Y Maillard, A Russell, A Hann. (2001). Possible mechanisms for the relative efficacies of ortho-phthalaldehyde and glutaraldehyde against glutaraldehyde-resistant Mycobacterium chelonae. Journal of Applied Microbiology, 91(1): 80–92
https://doi.org/10.1046/j.1365-2672.2001.01341.x
232 H Wan, T Zhang, J Wang, Z Rao, Y Zhang, G Li, T Gu, H Liu. (2023). Effect of alloying element content on anaerobic microbiologically influenced corrosion sensitivity of stainless steels in enriched artificial seawater. Bioelectrochemistry, 150: 108367
https://doi.org/10.1016/j.bioelechem.2023.108367
233 D Wang, J Liu, R Jia, W Dou, S Kumseranee, S Punpruk, X Li, T Gu. (2020a). Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen evolution detection. Corrosion Science, 177: 108993
https://doi.org/10.1016/j.corsci.2020.108993
234 D Wang, M Ramadan, S Kumseranee, S Punpruk, T Gu. (2020b). Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide. Journal of Materials Science and Technology, 57: 146–152
https://doi.org/10.1016/j.jmst.2020.02.087
235 D Wang, Y Wang, H Wu, Z Li, Y Wu, B Liu, Z Tian, X Li, D Xu, L Peng. et al.. (2024). Eco-friendly bifunctional antibacterial and anticorrosion broad-spectrum rosin thiourea iminazole quaternary ammonium salt against microbiologically influenced corrosion. Corrosion Science, 229: 111847
https://doi.org/10.1016/j.corsci.2024.111847
236 H Wang, L K Ju, H Castaneda, G Cheng, B M Z Newby. (2014). Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans. Corrosion Science, 89: 250–257
https://doi.org/10.1016/j.corsci.2014.09.005
237 J Wang, M Gao, Y Yang, S Lu, G Wang, X Qian. (2022a). Interactions of vallisneria natans and iron-oxidizing bacteria enhance iron-bound phosphorus formation in Eutrophic Lake sediments. Microorganisms, 10(2): 413
https://doi.org/10.3390/microorganisms10020413
238 J Wang, M Lv, M Du, Z Li, T Xu, G Li. (2022b). Effects of cathodic polarization on X65 steel inhibition behavior and mechanism of mixed microorganisms induced corrosion in seawater. Corrosion Science, 208: 110670
https://doi.org/10.1016/j.corsci.2022.110670
239 J WangQ WangQ FengA HuangG Zhu L XiongX ChenY (2012) Zhu. Acute toxicity of glutaraldehyde and benzalkonium bromide on Rhodeus sinensis. Guizhou Agricultural Sciences, 40 (12): 157–159 (in Chinese)
240 Y Wang, J Ye, M Xu, Y Li, J Dou. (2023a). Analysis of microbial community in circulating cooling water system of coal power plant during reagent conversion. Sustainability, 15(23): 16359
https://doi.org/10.3390/su152316359
241 Y Wang, L Yu, Y Tang, W Zhao, G Wu, Y Wang. (2023b). Pitting behavior of L245N pipeline steel by microbiologically influenced corrosion in shale gas produced water with dissolved CO2. Journal of Materials Engineering and Performance, 32(13): 5823–5836
https://doi.org/10.1007/s11665-022-07531-8
242 B Wei, J Xu, C Sun, S Chen, Y F Cheng. (2023). Topographical profiles and mechanical property of corrosion product films on a pipeline steel in Desulfovibrio vulgaris: containing thin electrolyte layer characterised by atomic force microscopy. Corrosion Engineering, Science and Technology, 58(8): 775–786
https://doi.org/10.1080/1478422X.2023.2259668
243 J Wen, K Zhao, T Gu, I Raad. (2010). Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. World Journal of Microbiology & Biotechnology, 26(6): 1053–1057
https://doi.org/10.1007/s11274-009-0269-y
244 J Wen, K Zhao, T Gu, I I Raad. (2009). A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde. International Biodeterioration & Biodegradation, 63(8): 1102–1106
https://doi.org/10.1016/j.ibiod.2009.09.007
245 Williams T M (2007). The Mechanism of Action of Isothiazolone Biocide, NACE - International Corrosion Conference Series, March 12–16, 2006, San Diego, CA, USA
246 C Wu, Y Chen, Z Qian, H Chen, W Li, Q Li, S Xue. (2023). The effect of extracellular polymeric substances (EPS) of iron-oxidizing bacteria (Ochrobactrum EEELCW01) on mineral transformation and arsenic (As) fate. Journal of Environmental Sciences, 130: 187–196
https://doi.org/10.1016/j.jes.2022.10.004
247 F Xie, J Li, T Zou, D Wang, M Wu, X Sun. (2021). Stress corrosion cracking behavior induced by Sulfate-reducing bacteria and cathodic protection on X80 pipeline steel. Construction & Building Materials, 308: 125093
https://doi.org/10.1016/j.conbuildmat.2021.125093
248 D XuT (2011) Gu. Bioenergetics explains when and why more severe MIC pitting by SRB can occur. NACE - International Corrosion Conference Series, March 13–17, 2011, Houston, TX, USA
249 D Xu, T Gu, D R Lovley. (2023). Microbially mediated metal corrosion. Nature Reviews. Microbiology, 21(11): 705–718
https://doi.org/10.1038/s41579-023-00920-3
250 D Xu, Y Li, T Gu. (2016). Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, 110: 52–58
https://doi.org/10.1016/j.bioelechem.2016.03.003
251 D Xu, Y Li, F Song, T Gu. (2013). Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corrosion Science, 77: 385–390
https://doi.org/10.1016/j.corsci.2013.07.044
252 Z Xu, T Zhang, H Wan, Y He, J Wang, R He, H Liu. (2024). Electrochemical investigation of the “double-edged” effect of low-dose biocide and exogenous electron shuttle on microbial corrosion behavior of carbon steel and copper in enriched seawater. Electrochimica Acta, 476: 143687
https://doi.org/10.1016/j.electacta.2023.143687
253 K Yasakau. (2020). Application of AFM-based techniques in studies of corrosion and corrosion inhibition of metallic alloys. Corrosion and Materials Degradation, 1(3): 345–372
https://doi.org/10.3390/cmd1030017
254 A Zanoletti, S Federici, L Borgese, P Bergese, M Ferroni, L E Depero, E Bontempi. (2017). Embodied energy as key parameter for sustainable materials selection: the case of reusing coal fly ash for removing anionic surfactants. Journal of Cleaner Production, 141: 230–236
https://doi.org/10.1016/j.jclepro.2016.09.070
255 S ZehraM MobinR (2023) Aslam. Advancements in Biosurfactants Research. Berlin: Springer
256 W Zeng, Z Liu, C Amanze, J Cheng, W Liao, X Wu, G Qiu, Q Wang, Z Wu, L Zou. et al.. (2023). In situ detection of Cu2+, Fe3+ and Fe2+ ions at the microbe-mineral interface during bioleaching of chalcopyrite by moderate thermophiles. Minerals Engineering, 191: 107936
https://doi.org/10.1016/j.mineng.2022.107936
257 Z Zhang, C Zhang, Y Yang, Z Zhang, Y Tang, P Su, Z Lin. (2022). A review of sulfate-reducing bacteria: metabolism, influencing factors and application in wastewater treatment. Journal of Cleaner Production, 376: 134109
https://doi.org/10.1016/j.jclepro.2022.134109
258 Y Zheng, Y Yang, X Liu, P Liu, X Li, M Zhang, E Zhou, Z Zhao, X Wang, Y Zhang. et al.. (2024). Accelerated corrosion of 316L stainless steel in a simulated oral environment via extracellular electron transfer and acid metabolites of subgingival microbiota. Bioactive Materials, 35: 56–66
https://doi.org/10.1016/j.bioactmat.2024.01.007
259 X Zhou, Z Zhou, T Wu, C Li, Z Li. (2021). Effects of non-viable microbial film on corrosion of pipeline steel in soil environment. Corrosion Communications, 3: 23–33
https://doi.org/10.1016/j.corcom.2021.11.003
260 X Zhu, M A Al-Moniee. (2017). Molecular microbiology techniques. Trends in Oil and Gas Corrosion Research and Technologies, 102: 513–536
[1] Zhuqiu Sun, Bairen Yang, Marvin Yeung, Jinying Xi. Effects of exogenous acylated homoserine lactones on biofilms in biofilters for gaseous toluene treatment[J]. Front. Environ. Sci. Eng., 2023, 17(2): 17-.
[2] Zhuqiu Sun, Jinying Xi, Chunping Yang, Wenjie Cong. Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems: A review[J]. Front. Environ. Sci. Eng., 2022, 16(7): 87-.
[3] Jibin Li, Jinxing Ma, Li Sun, Xin Liu, Huaiyu Liao, Di He. Mechanistic insight into the biofilm formation and process performance of a passive aeration ditch (PAD) for decentralized wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(7): 86-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed