Please wait a minute...
Frontiers of Forestry in China

ISSN 1673-3517

ISSN 1673-3630(Online)

CN 11-5728/S

Front Fore Chin    2009, Vol. 4 Issue (2) : 208-215    https://doi.org/10.1007/s11461-009-0007-5
RESEARCH ARTICLE
Effect of NaCl stress on ion distribution in roots and growth of Cyclocarya paliurus seedlings
Ruiling YAO, Shengzuo FANG()
College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, china
 Download: PDF(254 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We studied ion distribution in roots and the growth of Cyclocarya paliurus seedlings of three provenances, Huangshan in Anhui, Jiujiang in Jiangxi and Kunming in Yunnan, under conditions of 0, 1, 3 and 5 g/L NaCl stress using X-ray microanalysis. Results show that under NaCl stress of 3 and 5 g/L, the relative contents of Na+ and Cl in root tissues increased, while the relative content of K+, Ca2+ and Mg2+ decreased. With an increase in salinity, the relative contents of Na+ in the epidermis and cortex of the root increased, while the relative content of Cl in the stele and cortex of the root increased markedly. Thus, ions in the root tissues were unbalanced and the ratios K+/Na+ and Ca2+/Na+ decreased, while Na+/(K++Na++Ca2++Mg2+) increased. The decrease of the K+/Na+ ratio and the substantial increase of Cl in root tissues contributed to a decline in seedlings survival and reduced the increments for seedling leaf area, height, basal diameter as well biomass. Our preliminary conclusion is that the level of salt tolerance for the tested provenance seedlings was in the order of Huangshan>Kunming>Jiujiang, and the threshold of salt tolerance for C. paliurus seedlings was about 1 g/L.

Keywords NaCl stress      Cyclocarya paliurus      ion distribution      root tissue      X-ray microanalysis     
Corresponding Author(s): FANG Shengzuo,Email:fangsz@njfu.com.cn   
Issue Date: 05 June 2009
 Cite this article:   
Shengzuo FANG,Ruiling YAO. Effect of NaCl stress on ion distribution in roots and growth of Cyclocarya paliurus seedlings[J]. Front Fore Chin, 2009, 4(2): 208-215.
 URL:  
https://academic.hep.com.cn/ffc/EN/10.1007/s11461-009-0007-5
https://academic.hep.com.cn/ffc/EN/Y2009/V4/I2/208
Fig.1  Ion distribution in the root tissues after 23 days of salt stress
Note: H, J, K show Huangshan, Jiujiang, Kunming provenances, while CK, S, S, S show 0, 17.0, 51.0 and 85.0 mol/L NaCl treatments, respectively.
tissuetreatmentHuangshanJiujiangKunming
K+/Na+Ca2+/Na+Na+/(K++Na++Ca2++Mg2+)K+/Na+Ca2+/Na+Na+/(K++Na++Ca2++Mg2+)K+/Na+Ca2+/Na+Na+/(K++Na++Ca2++Mg2+)
epidermisS1 2.11±0.83aBC3.51±6.49aA0.14±0.06bA1.39±0.39bB1.27±0.08cB0.25±0.11aB3.94±0.61aA1.94±0.33bAB0.13±0.04bB
S23.04±0.96aB1.13±0.43B0.17±0.04bA1.47±0.80bB1.53±0.47B0.23±0.06aB1.19±0.06bB1.46±0.10AB0.25±0.11aA
S31.42±0.16aC1.27±0.29aB0.26±0.02bA 0.06±0.01bC0.55±0.25bC0.58±0.13aA1.14±0.42aB1.31±0.08aB0.27±0.16bA
CK11.11±3.17aA7.62±2.38aA0.05±0.01bB12.3±1.98aA12.04±2.24aA0.04±0.01bC2.28±0.35bA2.24±0.26bA0.17±0.07aB
cortexS17.55±3.56aB3.32±0.13aA0.08±0.03cB1.53±0.09bB0.55±0.05bB0.29±0.12aB 3.96±0.80aAB1.74±1.29aA0.13±0.03abB
S22.02±0.31C0.51±0.10B0.26±0.12A 2.59±1.76AB0.80±0.19B0.22±0.05B3.04±0.66AB0.93±0.32B0.19±0.09B
S3 2.62±1.93aBC0.87±0.25B0.21±0.05bA 0.06±0.01bC0.38±0.06bB 0.66±0.17aA2.00±0.94aB0.31±0.01B0.29±0.15bA
CK20.60±4.40aA10.49±0.62aA0.03±0.01bC 3.75±0.60cA4.41±1.48bA0.10±0.04aC6.01±3.99bA3.07±0.15cA0.09±0.02aC
steleS11.65±1.06A3.10±1.90aA0.16±0.10bB1.08±0.64B0.44±0.05cB0.35±0.07aB0.95±0.27BC1.29±0.67bB 0.28±0.12abBC
S21.10±0.24B1.00±0.19B0.29±0.02A 1.62±0.82AB0.87±0.27B0.27±0.03B1.23±0.14B0.51±0.12C0.35±0.14AB
S3 2.01±0.07aA1.00±0.32aB 0.24±0.04bA 0.15±0.01cC0.19±0.03bC0.75±0.35aA0.78±0.47bC0.59±0.09aC0.41±0.21bA
CK2.61±1.39A3.04±2.84aA0.14±0.01B3.19±0.81A1.37±0.08bA0.15±0.08C4.82±5.18A3.21±0.79aA0.11±0.04C
Tab.1  Ion ratios in root tissues after 23 days of salt stress
iontreatmentHuangshanJiujiangKunming
cortex/epidermisstele/cortexcortex/epidermisstele/cortexcortex/epidermisstele/cortex
Na+S10.52±0.14bB2.33±0.63AB1.20±0.32aB1.17±0.24A1.02±0.16aA2.30±0.35
S21.44±0.21aA1.29±0.54B0.93±0.21bB1.19±0.29A 0.65±0.19bBC1.81±0.37
S30.72±0.32bB1.20±0.54aB1.10±0.35aB0.67±0.15bB 0.90±0.14abAB1.30±0.62a
CK0.70±0.21bB4.79±1.26aA3.01±1.02aA1.46±0.65bA0.55±0.21bC1.20±0.15b
K+S11.85±0.280.51±0.04bB1.31±0.520.83±0.15aB1.03±0.22 0.55±0.04bB
S20.95±0.28b0.70±0.05AB1.63±0.65a0.75±0.21B1.65±0.29a 0.73±0.17AB
S31.32±0.650.92±0.24bA1.13±0.351.53±0.27aA1.57±0.25 0.50±0.12bB
CK1.31±0.52a0.61±0.32bB0.92±0.24b1.24±0.66aA1.44±0.19a0.96±0.31abA
Ca2+S10.49±0.21bB2.17±0.65a0.52±0.24bB0.93±0.16bA0.92±0.06aA 1.70±0.37abAB
S20.64±0.34B2.53±1.20a0.48±0.16B1.30±0.27abA0.41±0.14B0.98±0.06bB
S30.50±0.08aB1.37±0.35a0.76±0.16aB0.34±0.11bB0.21±0.04bB2.47±0.24aA
CK0.96±0.21abA1.39±0.52a1.10±0.29aA0.45±0.14bB0.75±0.19bA1.25±0.21aAB
Mg2+S11.34±0.57A0.73±0.21BC1.00±0.05AB1.09±0.33A1.85±0.69A0.80±0.11AB
S20.93±0.24aA1.12±0.32B0.49±0.16bC1.47±0.56A0.42±0.14bB1.18±0.37A
S31.20±0.56aA0.52±0.14aC 0.73±0.27bBC0.00±0.01bB0.59±0.15bB 0.92±0.35aAB
CK0.16±0.05bB4.26±1.65aA1.37±0.34aA1.26±0.49bA1.31±0.24aA0.60±0.16cB
ClS11.25±0.37a0.62±0.21 0.98±0.21abA1.09±0.440.83±0.32b0.77±0.27
S21.05±0.210.79±0.051.09±0.34A1.06±0.641.44±0.621.00±0.47
S31.22±0.380.93±0.541.05±0.04A1.50±0.031.29±0.291.09±0.28
CK0.82±0.24a0.66±0.27b 0.44±0.16bB1.84±0.87a0.81±0.22a0.57±0.07b
Tab.2  Ion ratios of cortex to epidermis and stele to cortex in roots after 23 days of salt stress
Fig.2  Survival percentage of seedlings under salt stress
index treatmentHuangshanJiujiangKunming
leaf area increment /cm2S15.34±1.23aB2.41±0.36bB2.25±0.29bB
S20.07±0.05C–1.72±0.46C–0.22±0.07C
S3–1.22±0.57C–2.06±0.58C–2.45±0.09C
CK11.63±2.35aA11.85±3.29aA8.57±1.28bA
height increment /cmS13.10±0.89AB1.90±0.55B1.55±0.29B
S21.20±0.09aB0.10±0.02bC0.35±0.14bC
S30.10±0.06C0.05±0.03C0.15±0.03C
CK5.10±1.59bA5.50±1.69bA8.75±2.49aA
basal diameter increment /mmS10.83±0.20aA0.52±0.24abB0.41±0.30bAB
S20.14±0.11B0.21±0.13C0.12±0.05BC
S30.03±0.02B0.02±0.01C0.02±0.01C
CK1.10±0.33aA1.24±0.22aA0.63±0.22bA
biomass increment per plant /gS11.05±0.12aA0.11±0.05bB0.42±0.26bAB
S20.44±0.22aB0.03±0.01bC0.08±0.06bC
S30.22±0.04aB–0.21±0.11bD0.17±0.12aBC
CK1.51±0.06aA1.22±0.49abA0.71±0.35bA
Tab.3  Analysis of variance of seedling growth after 28 days of salt stress
1 Ashraf M, Harris P J C (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sci , 166: 3–16
doi: 10.1016/j.plantsci.2003.10.024
Ashraf M, Harris P J C (2004). Potential biochemical indicators of salinity tolerancein plants. Plant Sci, 166: 3–16

doi: 10.1016/j.plantsci.2003.10.024
2 Ashraf M, Mcneilly T (1987). Salinity effects on five cultivars/lines of pearl millet (Pennisetum americanum [L] Leeke). Plant Soil , 103: 13–19
doi: 10.1007/BF02370662
Ashraf M, Mcneilly T (1987). Salinity effects on five cultivars/lines of pearl millet(Pennisetum americanum [L] Leeke). Plant Soil, 103: 13–19

doi: 10.1007/BF02370662
3 Blumwald E, Aharon G. S, Apse M P (2000). Na+ transport in plant cells. Acta , 1465: 140–151
Blumwald E, Aharon G. S, Apse M P (2000). Na+ transportin plant cells. Acta, 1465: 140–151
4 Cai Q Q (1990). Research status and prospect of seabeach resources in China. Res Nat Territ Nat Resour Chin , 2: 33–37 (in Chinese)
Cai Q Q (1990). Research status and prospect of seabeach resources inChina. Res Nat Territ Nat Resour Chin, 2: 33–37 (in Chinese)
5 Chen S, Li J, Wang S (2002). Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manag , 168: 217–230
Chen S, Li J, Wang S (2002). Sodium and chloride distribution inroots and transport in three poplar genotypes under increasing NaClstress. For Ecol Manag, 168: 217–230
6 Fang S Z, Fu X X (2007). Research progress and prospects on silviculture and utilization of Cyclocarya paliurus resources. J Nanjing For Univ (Nat Sci Ed) , 31(1): 95–100 (in Chinese)
Fang S Z, Fu X X (2007). Researchprogress and prospects on silviculture and utilization of Cyclocarya paliurus resources. J Nanjing For Univ (Nat Sci Ed), 31(1): 95–100 (in Chinese)
7 Fang S Z, Song L Y, Fu X X (2006). Effects of NaCl stress on seed germination, leaf gas exchange and seedling growth of Pteroceltis tatarinowii. J For Res , 17(3): 185–188
doi: 10.1007/s11676-006-0043-z
Fang S Z, Song L Y, Fu X X (2006). Effectsof NaCl stress on seed germination, leaf gas exchange and seedlinggrowth of Pteroceltis tatarinowii. J For Res, 17(3): 185–188

doi: 10.1007/s11676-006-0043-z
8 Greenway H, Munns R (1980). Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol , 31:149–190
doi: 10.1146/annurev.pp.31.060180.001053
Greenway H, Munns R (1980). Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol, 31:149–190

doi: 10.1146/annurev.pp.31.060180.001053
9 Kuhn A J, Walter H, Bauch J. 2000. The kinetics of calcium and magnesium entry into mycorrhizal spruce roots. Planta , 210: 488–496
doi: 10.1007/PL00008156
Kuhn A J, Walter H, Bauch J. 2000. The kineticsof calcium and magnesium entry into mycorrhizal spruce roots. Planta, 210: 488–496

doi: 10.1007/PL00008156
10 Kurihara H, Fukami H, Kusumoto A, Toyoda Y, Shibata H, Matsui Y, Asami S, Tanaka T (2003). Hypoglycemic action of Cyclocarya paliurus (Batal.) Iljinskaja in normal and diabetic mice. Biosci Biotechnol Biochem , 67(4): 877–880
doi: 10.1271/bbb.67.877
Kurihara H, Fukami H, Kusumoto A, Toyoda Y, Shibata H, Matsui Y, Asami S, Tanaka T (2003). Hypoglycemic action of Cyclocaryapaliurus (Batal.) Iljinskaja in normal and diabetic mice. Biosci Biotechnol Biochem, 67(4): 877–880

doi: 10.1271/bbb.67.877
11 Lambers H (2003). Dryland salinity: a key environmental issue in southern Australia. Plant soil , 257: 5–7
doi: 10.1023/B:PLSO.0000003909.80658.d8
Lambers H (2003). Drylandsalinity: a key environmental issue in southern Australia. Plant soil, 257: 5–7

doi: 10.1023/B:PLSO.0000003909.80658.d8
12 Li L, Xie M Y, Yi X (2002). Study on reducing blood sugar of polysaccharide from Cyclocarya paliurus. Chin Med , 25(1): 39–41
Li L, Xie M Y, Yi X (2002). Study on reducing blood sugar of polysaccharidefrom Cyclocarya paliurus. Chin Med, 25(1): 39–41
13 Li Q, Chen Y, Wang S (1996). X-ray microanalysis of Ce and ions contents in stem tip meristem and leaves of Populus deltoids Bortr cv. “Lux”grown in nutritrient solutions with different level of Ce(NO 3 )3 treatment. J Beijing For Univ , 5(2): 47–55 (in Chinese)
Li Q, Chen Y, Wang S (1996). X-ray microanalysis of Ce and ionscontents in stem tip meristem and leaves of Populus deltoids Bortr cv. “Lux”grownin nutritrient solutions with different level of Ce(NO3)3 treatment. J Beijing For Univ, 5(2): 47–55 (in Chinese)
14 Li Q, Eberhard F, Li T (1991). X-ray microanalysis of ion contents in roots of Populus maximowizii grown under potassium and phosphorus deficiency, Plant Physiol , 138: 180–185
Li Q, Eberhard F, Li T (1991). X-ray microanalysis of ion contentsin roots of Populus maximowizii grown under potassium and phosphorus deficiency, Plant Physiol, 138: 180–185
Lindsay E F, Ma H, Wang S (1996). X-ray microanalysis of ion distributionin salt tolerancy and salt intolerant poplar genotypes. J Beijing For Univ, 5(2): 23–30 (in Chinese)
15 Lindsay E F, Ma H, Wang S (1996). X-ray microanalysis of ion distribution in salt tolerancy and salt intolerant poplar genotypes. J Beijing For Univ , 5(2): 23–30 (in Chinese)
Morabito D, Jolivet Y, Prat D (1996). Differencesin the physiological responses of two clones of Eucalyptus microtheca selected for their salt tolerance. Plant Sci, 114: 129–139

doi: 10.1016/0168-9452(96)04325-7
16 Morabito D, Jolivet Y, Prat D (1996). Differences in the physiological responses of two clones of Eucalyptus microtheca selected for their salt tolerance. Plant Sci , 114: 129–139
doi: 10.1016/0168-9452(96)04325-7
17 Niu X, Bressan R, Hasegawa P (1995). Ion homeostasis in NaCl stress environments. Plant Physiol , 109: 735–742
Niu X, Bressan R, Hasegawa P (1995). Ion homeostasis in NaCl stress environments. Plant Physiol, 109: 735–742
18 Pan R C. 1995. Plant Physiology. Beijing: Higher Education Press, 30 (in Chinese)
Pan R C. 1995. Plant Physiology. Beijing: Higher Education Press, 30 (in Chinese)
19 Peng Y, Zhu Y, Mao Y, Wang S, Su W, Tang Z (2004). Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. J Exp Bot , 55(398): 939–949
doi: 10.1093/jxb/erh071
Peng Y, Zhu Y, Mao Y, Wang S, Su W, Tang Z (2004). Alkali grass resistssalt stress through high [K+] and an endodermis barrier to Na+. J Exp Bot, 55(398): 939–949

doi: 10.1093/jxb/erh071
20 Peterson C A, Murrmann M, Steudle E (1993). Location of the major barriers to water and ion movement in young roots of Zea maysL. Planta , 190, 127–136
doi: 10.1007/BF00195684
Peterson C A, Murrmann M, Steudle E (1993). Location of the major barriers to water and ion movementin young roots of Zea maysL. Planta, 190, 127–136

doi: 10.1007/BF00195684
21 Song X H, Wang X F, Wei M, Zang J B (2005). Effect of adding zeolite on cucumber seedlings growth and ion content under NaCl stress. J Plant Nutr Fert , 11(2): 259–263 (in Chinese)
Song X H, Wang X F, Wei M, Zang J B (2005). Effect of adding zeolite on cucumber seedlings growth and ion contentunder NaCl stress. J Plant Nutr Fert, 11(2): 259–263 (in Chinese)
22 Steudle E (2000). Water uptake by roots: effect of water deficit. J Exp Bot , 51: 1531–1542
doi: 10.1093/jexbot/51.350.1531
Steudle E (2000). Water uptake by roots:effect of water deficit. J Exp Bot, 51: 1531–1542

doi: 10.1093/jexbot/51.350.1531
23 Tomos A D, Hinde P, Richardson P, Pritchard J, Fricke W (1994). Microsampling and measurements of solutes in single cells. In: Harris N, Oparka K J, eds. Plant Cell Biology—A Practical Approach . Oxford, UK: Oxford University Press, 297–314
Tomos A D, Hinde P, Richardson P, Pritchard J, Fricke W (1994). Microsamplingand measurements of solutes in single cells. In: Harris N, Oparka K J, eds. PlantCell Biology—A Practical Approach. Oxford, UK: Oxford UniversityPress, 297–314
24 van Steveninck R F M, van Steveninck M E (1991). Microanalysis. In: Hall J L, Hawes C, eds. Electron Microscopy of Plant Cells . London: Academic Press,415–455
van Steveninck R F M, van Steveninck ME (1991). Microanalysis. In: Hall J L, Hawes C,eds. Electron Microscopy of PlantCells. London: Academic Press,415–455
25 Ward J, Hirschi K, Sze H (2003). Plants pass the salt. Trend Plant Sci , 8(5): 200–201
doi: 10.1016/S1360-1385(03)00059-1
Ward J, Hirschi K, Sze H (2003). Plantspass the salt. Trend Plant Sci, 8(5): 200–201

doi: 10.1016/S1360-1385(03)00059-1
26 Xie M, Li L (2001). Review in studies on chemical constituents and bioactivities of Cyclocarya paliurus. Chin Tradition Herb Drugs , 32(4): 365–366 (in Chinese)
Xie M, Li L (2001). Reviewin studies on chemical constituents and bioactivities of Cyclocarya paliurus. Chin Tradition Herb Drugs, 32(4): 365–366 (in Chinese)
27 Zhu J K, Liu J P, Xiong L M (1998). Genetic analysis of salt tolerance in Arabidopsis: evidence for the critical role of potassium nutrition. Plant Cell , 10: 1181–1191
Zhu J K, Liu J P, Xiong L M (1998). Genetic analysis of salt tolerancein Arabidopsis: evidence for thecritical role of potassium nutrition. PlantCell, 10: 1181–1191
[1] Bin FANG , Qingke ZHU , Wei QIN , Wenhua LI , . Dynamic emulation of the effect from a single tree to lower solar radiation distribution[J]. Front. For. China, 2009, 4(3): 297-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed